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The Van der Pol equation is one of the most extensively studied differential equations
with applications ranging from the physical to the biological sciences. Owing to its cu-
bic nonlinearity, an exact solution is still out of reach. However, various approximate
solutions have been advanced over the years. Here, we highlight some of those solu-
tions, discuss their limitations, and propose a new solution. This work also illustrates
the interplay between theory and computation.

Background
In 1926, the Dutch electrical engineer Balthasar van der Pol (1889–1959) introduced
the, now famous, differential equation (DE) which bears his name

d2x

dt2
+ μ(x2 − 1)

dx

dt
+ x = 0 satisfying x(0) = α,

dx

dt

∣∣∣∣
0

= β, (1)

to model triode oscillations in electrical circuits [10]. This equation describes a non-
conservative oscillator having a linear spring force given by x and a nonlinear damping
force represented by

μ(x2 − 1)
dx

dt
,

where the parameter μ is a positive scalar which measures the strength of the damping
term, x is the position and t denotes the time. We see that the sign of the damping
force depends on whether |x| is larger or smaller than unity. When |x| > 1 we have
true damping, meaning that it opposes motion causing it to decay with time. However,
when |x| < 1 the damping term has the opposite effect, that is, it amplifies the motion.
At instants when |x| = 1 the damping force momentarily vanishes.
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The Van der Pol equation is related to other equations. For example, the Rayleigh
equation

d2z

dt2
+ μ

(
1

3

[
dz

dt

]2

− 1

)
dz

dt
+ z = 0,

can be converted to (1) through the substitution

z(t) =
∫ t

0
x(τ)dτ.

In addition, by introducing u = dx

dt
and writing

d2x

dt2
= u

du

dx
, equation (1) becomes

u
du

dx
= −μ(x2 − 1)u − x,

which takes the form of Abel’s equation of the second kind [7]. Since the Rayleigh and
Abel equations do not admit exact analytical solutions in terms of known elementary
functions, we expect that same fate to follow for the Van der Pol equation [6]. It is
worth noting, however, that an exact solution to the Duffing–Van der Pol equation
given by

d2x

dt2
+ c0(x

2 − c1)
dx

dt
+ c2x + c3x

3 = 0,

where c0, c1, c2, c3 are constants has been found [9]. Equation (1) can be studied using
the framework of dynamical systems, and in this context it is well known that all
nontrivial solutions tend to a unique periodic limit cycle as t → ∞ which depend only
on the value of the parameter μ(> 0) [5].

The absence of an exact solution has motivated researchers to construct approx-
imate analytical solutions using well established techniques. We next present a few
of them. Here, we will only list the results as our focus is on the solution presented
in the following section. The details surrounding the techniques utilized to obtain the
solutions are fully explained in [2]. The first takes the form of a regular perturbation
solution in the parameter μ. For small μ the following solution can be found in powers
of μ

x(t) = x0(t) + μx1(t) + μ2x2(t) + · · · .

The leading and first-order solutions, x0 and x1, respectively, have been found and are
given by

x0(t) = α cos(t) + β sin(t),

x1(t) = c1 sin(t) + c2 cos(t) + c3[βt sin(t) + αt cos(t)] + c4 sin(3t) + c5 cos(3t),

where

c1 = − α

32
(16 − 7α2 + 5β2), c2 = − β

32
(3α2 − β2), c3 = 1

2

[
1 − 1

4

(
α2 + β2

)]
,
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Figure 1. Comparison between the approximate solutions given by equations (2), (3) and the
numerical solution.

c4 = α

32
(3β2 − α2), c5 = β

32
(3α2 − β2).

This yields the approximate solution

x(t) ≈ x0(t) + μx1(t). (2)

The above approach can be continued to obtain higher-order terms [4]. We notice
that x0(t) corresponds to the solution of (1) with μ = 0. As indicated by the terms
t sin(t) and t cos(t), the solution grows without bound, and the consequence of this is
illustrated in Figure 1.

Another approximate solution can be obtained using the method of multiple scales
[3]. This method tackles equations possessing multiple time scales by introducing slow
and fast time variables. Using this technique the following leading-order solution can
be derived

x(t) ≈ 2[α cos(t) + β sin(t)]√
(α2 + β2) + (4 − α2 − β2) exp(−μt)

. (3)

Contrasted in Figure 1 are the approximate and numerical solutions for the case α =
0.5, β = −0.5 and μ = 0.1. Shown here are the approximate solutions given by (2)
and (3). We see that all three solutions are in good agreement up to t ≈ 40. After that
the approximate solution given by (2) continues to grow, and noticeable departures
from the numerical solution are apparent, while the approximate solution given by (3)
remains in close agreement with the numerical solution over the entire time interval.
Further, as t → ∞ equation (3) also predicts the correct limit cycle for small μ which
corresponds to the circle in the phase plane given by

x2 +
(

dx

dt

)2

= 4,
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having a period T = 2π . Although the agreement is impressive, one must remem-
ber that the agreement worsens as μ increases. The numerical solution procedure is
outlined in the Appendix.

The above approximate solutions are valid for small μ. The next method is well
suited to address the case of large μ. If μ is large, we can treat 1/μ as a small param-
eter. Scaling the time according to t = μτ equation (1) becomes

ε
d2x

dτ 2
+ (x2 − 1)

dx

dτ
+ x = 0 where ε = 1

μ2
.

An approximate solution to this equation can be constructed using the singular per-
turbation method known as matched asymptotic expansions. This technique involves
splitting the domain into different regions and deriving solutions in each region and
then blending them together using asymptotic matching. The solution obtained using
this method is rather complicated and not worth presenting, but the details can be
found in [1]. However, a key result worth sharing from this analysis is the approximate
period of the limit cycle for large μ given by

T ≈ (3 − 2 ln 2)μ + 2γμ− 1
3 where γ ≈ 2.338.

Power series solution
The solutions presented in the previous section are based on assumptions on the pa-
rameter μ. The approach outlined here makes no assumptions on the parameter μ.
Instead, we will assume a power series solution having the form

x(t) =
∞∑

n=0

ant
n, (4)

since the initial data is prescribed at t = 0. Substituting this series into (1) leads to a

recurrence relation for the coefficients an. The nonlinear term x2 dx

dt
can be computed

using the Cauchy product of two infinite series as follows

x2 =
∞∑

n=0

bnt
n with bn =

n∑
j=0

ajan−j and x2 dx

dt
=

∞∑
n=0

cnt
n,

where

cn =
n∑

k=0

(n − k + 1)an−k+1bk =
n∑

k=0

(n − k + 1)an−k+1

k∑
j=0

ajak−j .

The recurrence relation then becomes

an+2 = μan+1

(n + 2)
− (an + μcn)

(n + 2)(n + 1)
, n = 0, 1, 2, . . ., (5)

and can be viewed as a nonlinear finite difference equation. It follows from the initial
conditions that a0 = α and a1 = β. Although the power series given by (4) repre-
sents an exact solution to equation (1), there is an important limitation that must be
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remembered. Even though the coefficients an can be determined recursively from (5),
an exact expression for an in terms of n and μ is likely out of reach, and thus, makes it
challenging to determine the interval of convergence of (4).

To check our power series solution we consider some special cases where equation
(5) can be solved exactly. If μ = 0, then (5) simplifies to

an+2 = − an

(n + 2)(n + 1)
, n = 0, 1, 2, . . .,

and the solution can be divided into even and odd terms as follows

a2n = α
(−1)n

(2n)!
, a2n+1 = β

(−1)n

(2n + 1)!
, n = 0, 1, 2, . . .,

yielding the expected solution

x(t) = α cos(t) + β sin(t).

As a second case, we ignore the term cn and for mathematical convenience set μ = 2,
then (5) becomes

an+2 = 2an+1

(n + 2)
− an

(n + 2)(n + 1)
, n = 0, 1, 2, . . .,

and the solution is

an = α

n!
+ (β − α)

(n − 1)!
, n ≥ 1 with a0 = α.

Substituting this into the power series (4) we obtain

x(t) = [α + (β − α)t] exp(t),

after some straightforward manipulations. Again, this solution is to be expected since
setting cn = 0 and μ = 2 is equivalent to solving the DE

d2x

dt2
− 2

dx

dt
+ x = 0 satisfying x(0) = α,

dx

dt

∣∣∣∣
0

= β.

The special cases above illustrate that ignoring the nonlinear term yields a power
series solution that is valid for all t . To shed some light on how the nonlinear term
impacts the interval of convergence, we consider the DE

d2x

dt2
= −μx2 dx

dt
satisfying x(0) = α,

dx

dt

∣∣∣∣
0

= β, (6)

which retains the highest-order derivative and the nonlinear term in (1). In terms of

u = dx

dt
, equation (6) can be written as

u
du

dx
= −μx2u.
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The nontrivial solution to the above satisfying the condition u(α) = β is given by

u = μ

3

(
C − x3

)
where C = α3 + 3β

μ
.

While this equation can be solved for x(t) for arbitrary C, we will explore the case
when C = 0 more closely. In this case the initial conditions are related through the
relation β = −μα3/3 and the solution to the above equation is easily found to be

x(t) = ±α

(
1 + 2

3
μα2t

)− 1
2

.

Using the Binomial series the above can be written as

x(t) = ±α

∞∑
n=0

(−1)n(2n)!μnα2n

6n(n!)2
tn for

2

3
μα2|t | < 1.

Since we are only interested in the solution for t > 0, the above series solution is valid

for t <
3

2μα2
. Thus, the solution to (6) can be expressed as the power series

x(t) =
∞∑

n=0

ânt
n with ân = (−1)n(2n)!μnα2n+1

6n(n!)2
for t <

3

2μα2
.

Without loss of generality, we have taken the positive root.
As a curiosity, we ran some numerical experiments to determine if the interval of

convergence given by t <
3

2μα2
also applies to the Van der Pol equation (1) for the

special case when the initial conditions satisfy β = −μα3/3. Shown in Figure 2 is a
comparison between the power series solution (4), the approximate solution given by
equation (3) and the numerical solution for the case α = μ = 1 and β = −μα3/3 =
−1/3. We see excellent agreement between the power series and numerical solutions
for t ≤ 1.5. For t > 1.5 the powers series diverged. Hence, the interval of convergence

agrees well with t <
3

2μα2
= 1.5. In computing the power series solution only 25

terms were needed as the series converged rapidly within the interval of convergence.
The poor agreement between equation (3) and the numerical solution is to be expected
since μ is no longer small. Several numerical experiments were carried out with dif-
ferent values of μ and α and the interval of convergence continued to agree well with

t <
3

2μα2
.

To our knowledge the proposed power series solution has never appeared in the
literature. It can be interpreted as an alternate solution, in addition to the various ap-
proximate solutions that have been advanced over the years. The advantage of this
solution is that it represents an exact solution to the Van der Pol equation over the
interval of convergence. The disadvantage is that the interval of convergence is, in
general, unknown. By investigating the special case when the initial conditions satisfy

β = −μα3/3 the interval of convergence has been estimated to be t <
3

2μα2
and this

was confirmed numerically. As displayed in Figure 2, the power series solution can
provide a solution over intervals where other approximate solutions are not valid.
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Figure 2. Comparison between the power series solution, approximate solution given by equa-
tion (3) and the numerical solution.

As a concluding remark we note that the power series solution also provides a re-
cursive formula for the nth derivative of the Van der Pol solution evaluated at t = 0.
By comparing (4) with its Maclaurin series it immediately follows that

dnx

dtn

∣∣∣∣
0

= n!an for n = 0, 1, 2, . . .,

with an satisfying (5). Lastly, we can also prove uniqueness of the Maclaurin series as
follows. Let v1 and v2 denote two distinct solutions to (1), then

d2v1

dt2
+ μ(v2

1 − 1)
dv1

dt
+ v1 = 0 satisfying v1(0) = α,

dv1

dt

∣∣∣∣
0

= β,

d2v2

dt2
+ μ(v2

2 − 1)
dv2

dt
+ v2 = 0 satisfying v2(0) = α,

dv2

dt

∣∣∣∣
0

= β.

Subtracting these equations and defining w = v1 − v2 we obtain

d2w

dt2
− μ

dw

dt
+ w + μ

3

d(ξw)

dt
= 0 satisfying w(0) = 0,

dw

dt

∣∣∣∣
0

= 0, (7)

where ξ = v2
1 + v1v2 + v2

2. Here, we have used

v2
1

dv1

dt
− v2

2

dv2

dt
= 1

3

d

dt

(
v3

1 − v3
2

) = 1

3

d

dt

(
[v1 − v2][v2

1 + v1v2 + v2
2]

) = 1

3

d(ξw)

dt
.

Since w(0) = 0 and
dw

dt

∣∣∣∣
0

= 0 it follows from (7) that
d2w

dt2

∣∣∣∣
0

= 0 and repeated differ-

entiation of (7) yields
dnw

dtn

∣∣∣∣
0

= 0 for n = 3, 4, 5, . . .. Since all the derivatives vanish,

we have that w(t) = 0 and the desired result v1 = v2 immediately follows.
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Appendix
To numerically solve equation (1) the fourth-order Runge-Kutta (RK4) algorithm [8]
was adopted because of its simplicity, accuracy and popularity. In order to apply this
technique equation (1) was expressed as the following coupled system of first-order
differential equations

dx

dt
= G1(u) = u,

du

dt
= G2(x, u) = −x − μ(x2 − 1)u.

When applied to this system the RK4 method advances the solution from time tn to
time tn+1 = tn + 	t according to the marching algorithm given by

xn+1 = xn + 	t

6
(m1 + 2m2 + 2m3 + m4) ,

un+1 = un + 	t

6
(k1 + 2k2 + 2k3 + k4) ,

where

m1 = G1(un), k1 = G2(xn, un),

m2 = G1

(
un + k1	t

2

)
, k2 = G2

(
xn + m1	t

2
, un + k1	t

2

)
,

m3 = G1

(
un + k2	t

2

)
, k3 = G2

(
xn + m2	t

2
, un + k2	t

2

)
,

m4 = G1(un + k3	t), k4 = G2(xn + m3	t, un + k3	t).

Here, xn, un are the computed solutions at time tn while xn+1, un+1 are the sought af-
ter solutions at time tn+1. To test the numerical solution procedure a comparison was
made with the MATLAB inbuilt solver ode45 and the agreement was excellent. In our
simulations a time step of 	t = 0.01 was used. The MATLAB program (titled “Van-
derPol.m”) used to solve the above system of equations is provided as supplemental
material.

Summary. Presented in this paper are various solutions to the Van der Pol equation. Numeri-
cal solutions are utilized as an independent means of validating the various solutions discussed.
A new solution in the form of a power series has been found. Although this solution is exact,
its interval of convergence can only be estimated for a special case. Numerical experiments
reveal that the power series solution can provide an exact solution over intervals where other
approximate solutions are not valid. Thus, the new solution represents an additional solution
that can complement other existing solutions. This work also emphasizes the importance and
the role of computation. Although the power series solution along with the other approximate
solutions mentioned are of theoretical interest, their restrictions limit their usefulness in real
applications, and therefore numerical methods should also be considered.
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