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Abstract. A system of delay differential equations representing a model for a pair of neurons
with time-delayed connections between the neurons and time delayed feedback from each neuron to
itself is studied. Conditions for the linear stability of the trivial solution of this system are represented
in a parameter space consisting of the sum of the time delays between the elements and the product
of the strengths of the connections between the elements. It is shown that the trivial fixed point may
lose stability via a pitchfork bifurcation, a Hopf bifurcation, or one of three types of codimension-two
bifurcations. Multistability near these latter bifurcations is predicted using center manifold analysis
and confirmed using numerical simulations.
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1. Introduction. In 1984, Hopfield [15] considered a simplified neural network
model in which each neuron is represented by a linear circuit consisting of a resistor
and a capacitor and is connected to the other neurons via nonlinear sigmoidal activa-
tion functions. Assuming instantaneous updating of each neuron and communication
between the neurons, Hopfield arrived at a system of first-order ordinary differential
equations (ODEs). Not long afterward, Marcus and Westervelt [19] considered the
effect of including discrete time delays in the connection terms to represent the prop-
agation time between neurons and/or processing time at a given neuron. Due to the
complexity of the analysis this and most subsequent work (for example, [3, 12, 28],
and references therein) has focused on the situation where all connection terms in
the network have the same time delay. In the work which has been done on Hopfield
neural networks with multiple time delays the analysis is usually simplified by either
restricting the size of the network (e.g., [20]), or considering networks with simple
architectures (e.g., [1, 4, 21]). Most work which considers networks of arbitrary size
with multiple time delays [11, 23, 29] has focused on establishing the global stability
of fixed points.

Here we are interested in studying how time delays can affect not only the sta-
bility of fixed points of the network but also the bifurcation of new solutions when
stability is lost. We thus consider a system consisting of two identical neurons, each
possessing nonlinear time delayed feedback which is coupled together with nonlinear,
time delayed connections. The architecture of this system is illustrated in Figure 1.

Following Hopfield’s approach, each individual element is modeled as a circuit
with a linear resistor and a linear capacitor. Our introduction of a nonlinear feedback
term then leads to the following first-order delay differential equation (DDE):

ẋj(t) = −κxj(t) + β tanh(xj(t− τs)).(1.1)
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Fig. 1. Architecture of the model.

Here xj represents the voltage of the neuron, κ, the ratio of the capacitance to the
resistance, and β and τs, the feedback strength and time delay, respectively. For the
model to make sense physically, κ and τs should be nonnegative, but β may take any
value.

Equation (1.1) has been studied by many authors including Campbell [4] and Kol-
manovskii and Nosov [17], who showed that the trivial solution is stable independent
of the size of the delay for −κ < β < κ, but loses stability to two nontrivial equilibrium
solutions for β > κ and to a limit cycle for β < −κ and τs > 1/

√

β2 − κ2Arccos(κβ ).
Thus by varying the parameters appropriately, this fairly simple model can reproduce
two fundamental states of a neuron, quiescence and periodic firing.

Coupling two neurons of type (1.1) together with nonlinear, time-delayed connec-
tions leads to the system that we shall study

ẋ1(t) = −κx1(t) + β tanh(x1(t− τs)) + a12 tanh(x2(t− τ2)),

ẋ2(t) = −κx2(t) + β tanh(x2(t− τs)) + a21 tanh(x1(t− τ1)).(1.2)

We shall refer to τ1, τ2 as the connection time delays and a12, a21 as the connection
strengths. For the model to make sense physically, τ1 and τ2 should be nonnegative,
but a12 and a21 are unrestricted. We shall call a particular connection or feedback ex-
citatory when the corresponding strength is positive and inhibitory when that strength
is negative. Note that a rescaling of time could be used to eliminate one parameter
from (1.2) (i.e., κ could be scaled to 1, or β to ±1). We choose not do this so that
the role of these parameters in our results is apparent and so that we may consider
cases when one or more of these parameters is zero.

As previously mentioned, our goal is to study the effects of the time-delayed
coupling on the behavior of the system. Our choice of model allows us to study these
effects when the individual neurons are in a quiescent state or a periodically firing
state. Moreover, the simplicity of our model allows an in depth analysis, giving insight
into possible mechanisms behind the observed behavior.

The plan for the article is as follows. In section 2, we consider the linear stability
analysis of (1.2) and present some theorems about the region of stability of the trivial
solution as a function of the physical parameters in the model. In section 3, we discuss
the bifurcations which can occur when stability is lost and, in section 4, show how
interactions between these bifurcations can lead to multistability in the system. In
the final section, we will discuss the implications of our results in the context of the
neural network.
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2. Linear stability analysis. By inspection, we see that (x1, x2) = (0, 0) is a
fixed point of the nonlinear DDE (1.2). Linearization of (1.2) about the trivial fixed
point produces the system

η̇1(t) = −κη1(t) + βη1(t− τs) + a12η2(t− τ2),

η̇2(t) = −κη2(t) + βη2(t− τs) + a21η1(t− τ1).(2.1)

The characteristic equation for this linear DDE is obtained by considering solutions
of the form

η(t) = eλt
(

c1
c2

)

.

Such solutions will be nontrivial if and only if

det

[

λ + κ− βe−λτs −a12e
−λτ2

−a21e
−λτ1 λ + κ− βe−λτs

]

= 0.

Expanding the determinant, we get as the characteristic equation for system (2.1)

[

(λ + κ) − βe−λτs
]2 − a12a21e

−λ(τ1+τ2) = 0.(2.2)

Defining

τ =
τ1 + τ2

2
,

the characteristic equation (2.2) effectively becomes a difference of squares and may
be simplified as follows.

(1) For a12a21 > 0,

∆+(λ)∆−(λ) ≡
(

λ + κ− βe−λτs + γe−λτ
) (

λ + κ− βe−λτs − γe−λτ
)

= 0,

(2.3)

where γ =
√
a12a21.

(2) For a12a21 < 0,

∆+(λ)∆−(λ) ≡
(

λ + κ− βe−λτs + iγ̃e−λτ
) (

λ + κ− βe−λτs − iγ̃e−λτ
)

= 0,

(2.4)

where γ̃ =
√−a12a21.

The analysis of (2.3) and (2.4) is similar, thus the majority of this section will fo-
cus on the characteristic equation (2.3). We will discuss how our results may be
extended/modified for (2.4) at the end of the section.

It is well known [17, 26] that the trivial fixed point of the nonlinear DDE (1.2)
is locally asymptotically stable if all the roots, λ, of the characteristic equation (2.3)
satisfy Re(λ) < 0. Whether or not this is true will depend on the values of the
parameters β, κ, γ, τs, τ . Our goal in this section is to describe the largest subset of
this five-dimensional parameter space containing parameter values for which all the
roots of the characteristic equation (2.3) have negative real parts. We shall refer to
this subset as the stability region of the trivial fixed point.

Since (2.3) has a countably infinity of complex roots, it is impossible to study
each one individually to determine where in the parameter space it has a negative real
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part. Instead, we proceed as follows. In section 2.1 we establish various conditions
on the parameters under which it can be shown that any root of (2.3) must have a
negative real part. These conditions, which are given in Theorems 1 and 2, describe
a subset of the full stability region. For comparison, Theorem 3 establishes a subset
of parameter space which is not contained in the stability region. In section 2.2 we
show how the subsets of Theorems 1 and 2 may be extended to give the full stability
region. In particular, Theorem 4 describes the boundary of the full stability region
and Theorems 5 and 6 establish how the real parts of roots of the characteristic
equation (2.3) change as this boundary is crossed. Finally, Theorems 7, 8, and 9
complete the task by describing various two-dimensional slices of the five-dimensional
stability region.

2.1. Subsets of the stability region. The following two theorems establish
subsets of the full stability region.

Theorem 1. If the parameters satisfy 0 < γ < κ − |β|, τs ≥ 0, and τ ≥ 0, then
all the roots of the characteristic equation (2.3) have negative real parts.

Proof. Consider the characteristic function of (2.3), rewritten in the more compact
form

∆±(λ) = λ + κ− βe−λτs ± γe−λτ .

Let λ = µ + iω, µ, ω ∈ R and separate into real and imaginary parts to obtain
∆±(λ) = R±(µ, ω) + iI±(µ, ω), where

R±(µ, ω) = µ + κ− βe−µτs cos(ωτs) ± γe−µτ cos(ωτ)(2.5)

and

I±(µ, ω) = ω + βe−µτs sin(ωτs) ∓ γe−µτ sin(ωτ).(2.6)

From (2.5), we see that

R±(µ, ω) ≥ µ + κ− |β|e−µτs − γe−µτ .(2.7)

Denote the right-hand side of (2.7) by R1(µ). Clearly,

R1(0) = κ− |β| − γ > 0

under the assumptions of the theorem. Furthermore,

R′
1(µ) = 1 + |β|τse−µτs + τγe−µτ > 0.

Hence, R1(µ) > 0 for all µ ≥ 0 and R±(µ, ω) > 0 for all µ ≥ 0, ω ∈ R.
Now let λ = µ + iω be an arbitrary root of the characteristic equation (2.3).

Then µ and ω must satisfy R+(µ, ω) = 0 and I+(µ, ω) = 0 or R−(µ, ω) = 0 and
I−(µ, ω) = 0. But from the discussion above this implies µ < 0. Thus all the roots of
the characteristic equation have negative real parts.

Theorem 2. If the parameters satisfy 0 ≤ κ < −β, 0 < γ < −β, 0 ≤ τs < − 1
2β

and τ ≥ 0, then all the roots of the characteristic equation (2.3) have negative real
part.

Proof. To begin, let λ = µ+ iω in (2.3). Separating into real and imaginary parts,
we obtain

µ = −κ + βe−µτs cos(ωτs) ∓ γe−µτ cos(ωτ)(2.8)
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and

ω = −βe−µτs sin(ωτs) ± γe−µτ sin(ωτ).(2.9)

We now assume that (2.8) and (2.9) have roots µ and ω, where ω ≥ 0 (without
loss of generality since complex roots of (2.3) come in complex conjugate pairs).
From (2.9), using the conditions imposed on γ, we find that ω < −2β. The condition
0 ≤ τs < − 1

2β then implies that 0 ≤ ωτs < 1. Hence, 1/2 < cos(1) < cos(ωτs) ≤ 1

and 0 ≤ sin(ωτs) < sin(1) < 1.
Isolating the last term in both (2.8) and (2.9), squaring and adding, we obtain

the necessary condition

(µ + κ)2 + ω2 − 2βe−µτs {(µ + κ) cos(ωτs) − ω sin(ωτs)} + β2e−2µτs − γ2e−2µτ = 0,

(2.10)

for a solution of (2.8) and (2.9) to exist. For fixed values of κ, ω, τs, and τ , we call
the left-hand side of (2.10) M(µ) and note that

M(0) = κ2 − 2βκ cos(ωτs) + β2 + ω2 + 2βω sin(ωτs) − γ2.

Since sin(ωτs) < ωτs and τs < − 1
2β , then

ω2 + 2βω sin(ωτs) ≥ ω2(1 + 2βτs) > 0,

which, recalling that β < 0, cos(ωτs) > 0 and γ2 < β2, yields M(0) > 0. Taking the
derivative of M(µ) with respect to µ, we obtain

dM

dµ
= 2

{

τγ2e−2µτ − βωτse
−µτs sin(ωτs) + (µ + κ)

[

1 + βτse
−µτs cos(ωτs)

]

− βe−µτs
[

cos(ωτs) + βτse
−µτs

]}

.(2.11)

Since β < 0, ω ≥ 0, γ > 0, τs ≥ 0,τ ≥ 0, κ ≥ 0, µ ≥ 0, sin(ωτs) ≥ 0, and
cos(ωτs) > 0, the first two terms in the first line of expression (2.11) are nonnegative.
We now consider the other two in turn.

(1) From 0 ≤ τs < − 1
2β and µ ≥ 0, we have 0 < e−µτs ≤ 1. Combining this with

cos(ωτs) ≤ 1, we get

(µ + κ)
[

1 + βτse
−µτs cos(ωτs)

]

> (µ + κ)

(

1 − 1

2

)

≥ 0.

(2) From β < 0, 1
2 < cos(1) < cos(ωτs), τs < − 1

2β , and 0 < e−µτs ≤ 1,

−βe−µτs
[

cos(ωτs) + βτse
−µτs

]

> −βe−µτs

(

cos(1) − 1

2

)

> 0.

Thus, dM
dµ > 0 for µ ≥ 0. Since M(0) > 0, we conclude that M(µ) > 0 if µ ≥ 0. Thus

if M(µ) = 0, then µ < 0; i.e., all roots of the characteristic equation have negative
real part.

The following theorem shows that parameter values analogous to those of Theo-
rem 2, but with β > 0, do not lie inside the region of stability, i.e., the trivial fixed
point is unstable for these parameter values.
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Theorem 3. If 0 ≤ κ < β, then the characteristic equation (2.3) has a root with
a positive real part for all values of γ ≥ 0, τs ≥ 0, and τ ≥ 0.

Proof. Recall from the characteristic equation (2.3), that ∆−(λ) = λ+κ−βe−λτs−
γe−λτ . Then, under the assumption of the theorem,

∆−(0) = κ− β − γ < 0

and

lim
λ→+∞

∆−(λ) = lim
λ→+∞

[λ + κ− βe−λτs − γe−λτ ] = +∞

for all γ ≥ 0, τs ≥ 0, and τ ≥ 0. Hence, as ∆−(λ) is a continuous function of λ, there
exists a λ∗ > 0 such that ∆−(λ∗) = 0 for any fixed values of τs ≥ 0, τ ≥ 0, γ ≥ 0, and
κ < β. Thus, the characteristic equation has a positive real root for these parameter
values.

2.2. Full stability region. The next theorem helps to determine the full sta-
bility region of the trivial fixed point by describing its boundary in parameter space.

Theorem 4. Consider the trivial fixed point of the DDE (1.2). As β, κ, γ, τs,
and τ vary in parameter space, the number of eigenvalues with Re(λ) > 0, counting
multiplicities, can change only if an eigenvalue passes through the imaginary axis in
the complex plane.

Proof. See Bélair and Campbell [2, Lemma 2.1], with m = 3, a1 = κ, τ1 = 0,
a2 = β, τ2 = τs, a3 = ∓γ, and τ3 = τ .

Theorem 4 implies that the subsets of parameter space defined by the equations
λ = 0 (i.e., (2.3) has a zero root) and λ = iω (i.e., (2.3) has a pair of pure imaginary
roots) form the boundary of the stability region. The next step is thus to describe
these subsets.

The case λ = 0 is simple. Substituting λ = 0 into the characteristic equation (2.3),
we get the restriction

(κ− β + γ) (κ− β − γ) = 0.

The second term is zero when

γ = γ0
def
= κ− β, κ > β, β ∈ R,(2.12)

corresponding to the ∆−(λ) having a zero root. The first term is zero when

γ = −γ0 = β − κ, 0 ≤ κ < β,(2.13)

corresponding to ∆+(λ) having a zero root. Note that from Theorem 3, this subset
cannot form part of the boundary of the stability region.

The case λ = iω is more complicated. Substituting λ = iω into (2.3) and sepa-
rating into real and imaginary parts, we obtain the following equations:

κ− β cos(ωτs) = ±γ cos(ωτ)(2.14)

and

−ω − β sin(ωτs) = ±γ sin(ωτ).(2.15)

In principle, we can eliminate ω from these equations, obtaining a single equation
in β, κ, γ, τ , and τs, which will define a hypersurface in the parameter space. Since
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this cannot be carried out in practice, in order to describe this hypersurface, we
consider its intersection with the space κ = constant β = constant and τs = constant,
which we can represent in parametric form with γ and τ as functions of ω.

First, we find γ by squaring and adding (2.14) and (2.15):

γ = γH(ω)
def
=

√

κ2 + β2 + ω2 − 2βκ cos(ωτs) + 2βω sin(ωτs).(2.16)

Taking the ratio of (2.14) and (2.15) and solving for τ yields an expression involv-
ing the inverse tangent function. Noting that the sign of cos(ωτ) may be obtained
from (2.14), we find that the appropriate expression for τ is

τ = τ±j (ω)
def
=











1
ω [Arctan

(

−ω−β sin(ωτs)
κ−β cos(ωτs)

)

+ 2jπ] if ± (κ− β cos(ωτs)) > 0,

1
ω [Arctan

(

−ω−β sin(ωτs)
κ−β cos(ωτs)

)

+ (2j + 1)π] if ± (κ− β cos(ωτs)) < 0

(2.17)

for j = 0, 1, . . . , where Arctan(u) is the principal branch of the inverse tangent func-
tion. A detailed analysis of how τ switches between branches as ω varies, for fixed
values of κ, β, and τs, may be found in [25, Appendix A]. Clearly, equations (2.17)
represent an infinite family of curves. We note the following limits, which hold for all
values of κ and τs:

lim
ω→0+

γH = |κ− β|, lim
ω→+∞

γH = +∞,(2.18)

lim
ω→0+

τ±j =

{

βτs+1
β−κ

def
= τ∗ if j = 0,

+∞ otherwise,
lim

ω→+∞
τ±j = 0.(2.19)

The finite limit in the first part of (2.19) may be established by performing a Taylor
expansion in (2.17). This value is in the parameter space only if 0 ≤ κ < β or

β < 0 ≤ κ and τs ≥ − 1
β

def
= τ∗s . We shall refer to the branch of (2.17) that corresponds

to the finite limit as the exceptional branch.
Remark. If κ > |β|, then the “+” sign in (2.17) is associated with the “>” sign

in (2.17) and similarly, the “−” sign with the “<” sign.
In summary, we have shown that
(1) the lines, γ = ±γ0, with τ and τs positive and arbitrary, represent the set of

points in parameter space for which the trivial fixed point of the DDE (1.2)
has a zero eigenvalue;

(2) the curve (with multiple branches) defined by (2.16) and (2.17) represents
the set of points in parameter space for which the trivial fixed point of the
DDE (1.2) has a pair of purely imaginary eigenvalues.

We shall refer to the lines γ = ±γ0, (i.e., (2.12) or (2.13)) in the γτ -plane as the
λ = 0 lines, and the curve defined by (2.16) and (2.17) as the λ = iω curve.

We now present two theorems which describe how the real parts of the roots
of (2.3) change as a λ = 0 line or the λ = iω curve is crossed in the γτ -plane.

Theorem 5. Consider crossing a λ = 0 line, while moving along a line τ =
constant in the γτ -plane in the direction of increasing γ. Then the number of roots
λ of the characteristic equation (2.3) with Re(λ) > 0 increases by 1, unless τ < τ∗ in
which case it decreases by 1.
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Proof. Recall that the λ = 0 lines are defined by the zero roots of ∆±(λ) = 0,
i.e.,

λ + κ− βe−λτs ± γe−λτ = 0.

Differentiating with respect to γ, we obtain

dλ

dγ
=

∓e−λτ

1 + βτse−λτs ∓ γτe−λτ
.

If λ = 0 is a root of ∆±(λ) = 0, then γ = ±γ0 = ∓(κ−β) and the derivative becomes

dλ

dγ

∣

∣

∣

∣

λ=0,γ=∓γ0

=
∓1

(κ− β)τ + (1 + βτs)
.

Hence, dλ
dγ |λ=0

>
< 0 if and only if

τ
>
<

βτs + 1

β − κ
.

Theorem 6. Consider moving along a line τ = constant in the γτ -plane in the
direction of increasing γ. If this line cuts a branch of the λ = iω curve along which τ±j
is a decreasing (increasing) function of ω, then as this branch is crossed, the number
of roots λ of the characteristic equation (2.3) with Re(λ) > 0 increases (decreases) by
2.

Proof. The λ = iω curve defined by (2.16) and (2.17) gives the points in the
γτ -plane, where the real part of λ is zero. We can now prove our claim by considering
the appropriate derivatives. Differentiating equation (2.17), with respect to ω, we get

dτ±j
dω

=
−1

γ2
Hω

[

τ±j γ2
H + κ + β[κτs − 1] cos(ωτs) − βωτs sin(ωτs) − β2τs

]

.(2.20)

Implicit differentiation of (2.3) with respect to γ and substitution of λ = iω leads to
the following expression for the real part of dλ

dγ :

dReλ

dγ

∣

∣

∣

∣

λ=iω

=

τ±j γ2
H + κ + β[κτs − 1] cos(ωτs) − βωτs sin(ωτs) − β2τs

γH

{

[

1 + βτs cos(ωτs) ± γHτ±j cos(ωτ±j )
]2

+
[

−βτs sin(ωτs) ∓ γHτ±j sin(ωτ±j )
]2
} .

By inspection, we see that the above denominator is always nonnegative. By (2.20),
dτ±

j

dω < 0 implies that dReλ
dγ > 0. Thus, the real part of λ becomes positive when

τ±j is a decreasing function of ω and the characteristic equation (2.3) gains a pair of

roots with positive real part. Similarly, if
dτ±

j

dω > 0, then the real part of λ becomes
negative, which completes the proof.

Let us summarize our results so far. Theorems 1 and 2 establish regions in
parameter space which form subsets of the stability region of the trivial fixed point
of (1.2). Theorem 4 shows that the full stability region for fixed κ, τs, and β may
be obtained from these subsets by increasing γ until one reaches the λ = 0 lines, i.e.,
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(2.12) or (2.13), or the λ = iω curve, defined by (2.16) and (2.17). Theorems 5 and 6
describe how the real parts of the roots of the characteristic equation change as the
boundary of the stability region is crossed.

The rest of this subsection is concerned with explicitly describing the full stability
region. To do this, one needs to understand the relative positions of the λ = 0 lines
and the λ = iω curve in the γτ -plane for fixed κ, τs, and β. This is the subject of the
next two lemmas.

Lemma 1. If κ > |β|, then the λ = iω curve is bounded on the left by the line
γ = κ− |β|.

Proof. From (2.14), which holds along γ = γH , we have

γH ≥ ±γH cos(ωτ) = κ− β cos(ωτs) ≥ κ− |β|,

which establishes the result.
Lemma 2. The λ = iω curve has the property that γH is monotone increasing as

a function of ω and satisfies γH > |κ− β| for all ω > 0 if τs satisfies

0 ≤ τs ≤
−1 +

√

1 + κ
|β|

κ
.

When β < 0, the converse is also true.
Proof. Differentiating (2.16) with respect to ω, we obtain

dγH
dω

=
1

γH
[ω + β(1 + κτs) sin(ωτs) + βωτs cos(ωτs)].(2.21)

For τs = 0 and ω > 0, dγH

dω = ω
γH

> 0. For ωτs > 0, β cos(ωτs) ≥ −|β| and β sin(ωτs) >

−|β|ωτs; hence

dγH
dω

>
ω

γH
(1 − 2|β|τs − κ|β|τ2

s )

=
ω|β|
γHκ

[

κ

|β| + 1 − (κτs + 1)2
]

≥ 0

for τs ≤ −1+
√

1+κ/|β|

κ . It now follows from the first limit in (2.18), that γH > |κ− β|
for all ω > 0.

To prove the converse, consider the Taylor expansion of dγH

dω about ω = 0:

dγH
dω

= ω

{

1 + 2βτs + βκτ2
s

|κ− β|

}

− 1

2|κ− β|ω
3

{

βτ3
s

3
(4 + κτs) +

(1 + 2βτs + βκτ2
s )2

(κ− β)2

}

+ O(ω5).

If τs >
−1+

√
1+ κ

|β|

κ and β < 0, then the first term of this expression is negative, and
hence γH(ω) is decreasing for ω sufficiently close to zero.

Remark. We denote this special value τs =
−1+

√
1+ κ

|β|

κ by its equivalent form

τ (1)
s =

1
(

1 +
√

1 + κ
|β|

)

|β|
,(2.22)
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Fig. 2. Diagram of the λ = 0 line and the branches of the λ = iω curve for 0 < β < κ (shown

here, β = 1, κ = 3/2). (a) 0 ≤ τs ≤ τ
(1)
s

(τs = 0.01). (b) τs > τ
(1)
s

(τs = 1.2). The stability region
in each diagram is shaded, and the number of roots with positive real parts in other regions is as
indicated.

and refer to it as the first transition point. Note that τ
(1)
s ≤ τ∗s . Furthermore,

Lemma 2 also applies to κ = 0, in which case τ
(1)
s = 1

2|β| .

We now have the background to discuss the stability region when |β| < κ, which
is the subject of the next two theorems.

Theorem 7. For any fixed values of β, κ, and τs, satisfying 0 < β < κ and
τs ≥ 0, the stability region of the trivial fixed point of the nonlinear DDE (1.2) is the
vertical strip 0 < γ < κ− β, τ ≥ 0.

Proof. By Theorem 1, 0 < γ < κ− |β|, all roots, λ, of the characteristic equation
satisfy Re(λ) < 0 for all values of τ ≥ 0 and τs ≥ 0. Furthermore, from Lemma 1, we
know that the λ = iω curve always lies to the right of the line γ = κ− |β|. If β > 0,
this line coincides with the λ = 0 line, γ = κ− β, thus the boundary of the stability
region is always this line.

This Theorem is illustrated in Figure 2.
Now consider the case when 0 < −β < κ. From (2.18) we see that limω→0 γH(ω) =

κ−β and from Lemma 1 that the minimum value γH can achieve is κ−|β|. Further, the

proof of Lemma 2 shows that for τs > τ
(1)
s , γH(ω) is decreasing for ω > 0 sufficiently

small. It follows that the branches of the λ = iω curve cross γ = κ−β (i.e., the λ = 0
line) and γH attains a minimum value γmin (which depends on κ and τs), satisfying
κ− |β| ≤ γmin < κ− β. Clearly γmin = γH(ωmin), where ωmin 6= 0 satisfies

dγH
dω

∣

∣

∣

∣

ω=ωmin

= 0.

Define the associated τ values by τ±j,min = τ±j (ωmin). We can now state our second
stability theorem.

Theorem 8. Let β, κ, and τs be fixed with 0 < −β < κ and let τ±j be as defined
in (2.17). Then we have the following.

(1) For 0 ≤ τs < τ
(1)
s , the stability region is the vertical strip 0 < γ < κ − β,

τ ≥ 0.



NEURAL NETWORK WITH MULTIPLE TIME DELAYS 683

Fig. 3. Diagram of the λ = 0 line and the branches of the λ = iω curve for 0 ≤ κ < −β (shown

here, β = −1, κ = 1/2). (a) 0 ≤ τs < τ
(1)
s

(τs = 0.01). (b) τ
(1)
s

≤ τs ≤ τ∗
s

(τs = 0.8). The stability
region in both diagrams is shaded, and the number of roots with positive real parts in other regions
is as indicated.

(2) For τ
(1)
s ≤ τs ≤ τ∗s , the stability region is the set of points (γ, τ), satisfying

(a) 0 < γ < γmin, τ ≥ 0;
(b) γmin < γ < κ− β,

(i) 0 < τ < τ−1 ≤ τ−1,min;

(ii) τ−j,min ≤ τ−j < τ < τ+
j ≤ τ+

j,min; and

(iii) τ+
j,min ≤ τ+

j < τ < τ−j+1 ≤ τ−j+1,min

for j = 1, 2, . . . .
(3) For τs > τ∗s , the stability region is the set of points (γ, τ), satisfying

(a) 0 < γ < γmin, τ ≥ 0, γmin → κ− |β| as τs → ∞;
(b) γmin < γ < κ− β,

(i) max(τ+
0 , 0) < τ < τ−1 ≤ τ−1,min;

(ii) τ−j,min ≤ τ−j < τ < τ+
j ≤ τ+

j,min; and

(iii) τ+
j,min ≤ τ+

j < τ < τ−j+1 ≤ τ−j+1,min

for j = 1, 2, . . . .
Proof. By Theorem 1, for κ > |β| and γ < κ− |β|, all roots of the characteristic

equation (2.3) λ satisfy Re(λ) < 0. Moreover, Theorem 4 extends the subset of the
stability region to the boundary Re(λ) = 0.

For 0 ≤ τs < τ
(1)
s , Lemma 2 implies that the boundary is the λ = 0 line, γ = κ−β.

This establishes statement 1.
As discussed above, for τs ≥ τ

(1)
s , some portion of the λ = iω curve lies to the

left of the λ = 0 line γ = κ − β, hence the boundary of the stability region must be
composed of parts of the λ = iω curve and parts of this line.

Consider the region R−
j defined by

R−
j =

{

(γ, τ) : γmin ≤ γ ≤ κ− β, τ−j,min ≤ τ ≤ τ+
j,min

}

.

It can be shown that the curve {
(

γH(ω1), τ
−
j (ω1)

)

: 0 ≤ ω1 ≤ ωmin} defines a

curve
{(

γH , τ−j (γH)
)

: γmin ≤ γH ≤ κ− β
}

with τ−j a continuous, increasing func-
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Fig. 4. Diagram of the λ = 0 line and the branches of the λ = iω curve for 0 ≤ κ < −β (shown

here, β = −1, κ = 1/2). (a) τ∗
s

< τs < τ
(2)
s

(τs = 1.5). (b) τs > τ
(2)
s

(τs = 3). The stability
region is shaded, and the number of roots with positive real parts in other regions is as indicated.
The lowest branch in (a) corresponds to τ+

0 .

tion of γH and that the curve {
(

γH(ω2), τ
+
j (ω2)

)

: ωmin ≤ ω2} defines a curve
{(

γH , τ+
j (γH)

)

: γmin ≤ γH ≤ κ− β
}

with τ+
j a continuous, decreasing function of

γH . Since τ−j (γmin) = τ−j,min < τ+
j,min = τ+

j (γmin), a straightforward argument

shows that these curves intersect at one point (γint, τint) in the region R−
j and that

τ−j (γH) < τ+
j (γH) for γmin ≤ γH < γint. Hence, in R−

j the boundary of the

stability region is given by the curves
{(

γH(ω1), τ
−
j (ω1)

)

: ω1,int ≤ ω1 ≤ ωmin

}

and
{(

γH(ω2), τ
+
j (ω2)

)

: ωmin ≤ ω2 ≤ ω2,int

}

, where τ−j (ω1,int) = τint = τ+
j (ω2,int).

A similar result holds in the region

R+
j =

{

(γ, τ) : γmin ≤ γ ≤ κ− β, τ+
j,min ≤ τ ≤ τ−j+1,min

}

.

For τ
(1)
s ≤ τs ≤ τ∗s , {

(

γH(ω), τ−1 (ω)
)

: ωmin ≤ ω}, is the lowest branch of the
λ = iω curve. This establishes statement 2.

For τs > τ∗s ,
(

γH(ω), τ+
0 (ω)

)

, 0 ≤ ω ≤ ωmin, is the lowest branch of the λ = iω
curve. Noting that this branch intersects the γ-axis at γ = γ̂ ≥ γmin and never
intersects the curve

(

γH(ω), τ−1 (ω)
)

, ωmin ≤ ω, establishes statement 3.
Stability diagrams corresponding to this theorem are not shown, however, they

appear qualitatively like those in Figures 3 and 4(a).
We now come to the final case 0 ≤ κ < −β. In contrast to the previous cases,

here it is possible for γH(ω) to be zero. The following lemma establishes when this
occurs.

Lemma 3. Let κ and β be fixed. If κ > |β|, then γH(ω) 6= 0 for any τs ≥ 0 and
any ω ∈ (0,∞). If κ < |β|, there exist a countable infinity of values of τs for which
γH(ω) = 0, for some ω ∈ (0,∞).

Proof. We begin by letting γ = 0 in (2.14) and (2.15) and assume that ω > 0.
This results in

β cos(ωτs) = κ and β sin(ωτs) = −ω.(2.23)
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Clearly, these equations can be satisfied only if κ < |β|. In this case, squaring and
adding (2.23) produce

ω =
√

β2 − κ2.(2.24)

Substituting this expression into the first equation of (2.23) and solving for τs, we
obtain

τs =
1

√

β2 − κ2

{

Arccos

(

κ

β

)

+ 2nπ

}

,(2.25)

where Arccos is the principal branch of the inverse cosine function which has the range
[0, π], and we add multiples of 2π since for fixed β, sin(ωτs) never changes sign.

Remark. We are particularly interested in the smallest positive value of τs for
which the λ = iω curve touches the τ -axis. We denote this value of τs by

τ (2)
s =

1
√

β2 − κ2

{

Arccos

(

κ

β

)}

, 0 ≤ κ < |β|(2.26)

and refer to it as the second transition point.
We can now state our final stability theorem, which is illustrated in Figures 3 and

4.
Theorem 9. Let β, κ, and τs be fixed with 0 ≤ κ < −β, and let τ±j be as defined

in (2.17). Then we have the following.

(1) For 0 ≤ τs < τ
(1)
s , the stability region is the vertical strip 0 < γ < κ − β,

τ ≥ 0.
(2) For τ

(1)
s ≤ τs ≤ τ∗s , the stability region is the set of the points (γ, τ), satisfying

(a) 0 < γ < γmin, τ ≥ 0;
(b) γmin < γ < κ− β,

(i) 0 < τ < τ−1 ≤ τ−1,min;

(ii) τ−j,min ≤ τ−j < τ < τ+
j ≤ τ+

j,min; and

(iii) τ+
j,min ≤ τ+

j < τ < τ−j+1 ≤ τ−j+1,min

for j = 1, 2, . . . .

(3) For τ∗s < τs < τ
(2)
s , the stability region is the set of points (γ, τ), satisfying

(a) 0 < γ < γmin for all τ ≥ 0;
(b) γmin < γ < κ− β,

(i) τ+
0,min ≤ τ+

0 < τ < τ−1 ≤ τ−1,min;

(ii) τ−j,min ≤ τ−j < τ < τ+
j ≤ τ+

j,min; and

(iii) τ+
j,min ≤ τ+

j < τ < τ−j+1 ≤ τ−j+1,min

where γmin → 0 as τs → τ
(2)
s

for j = 1, 2, . . . .

(4) For τs ≥ τ
(2)
s , there is no stability region.

Proof. Statements (1), (2), and (3) are established as in Theorem 8. The fact

that γmin → 0 as τs → τ
(2)
s follows directly from Lemma 3. To establish statement

(4), consider the line γ = 0. Along this line, ∆+(λ) = ∆−(λ) = 0 is the charac-
teristic equation of the trivial solution of (1.2). It follows directly from studies of
this equation [4, 17] that the characteristic equation (2.3) has two pairs of complex
conjugate roots with nonnegative real parts. Appealing to Theorems 4, 5, and 6, and
the ordering of the λ = 0 lines and the branches of the λ = iω curve shows that this
number can never decrease by more than 3 as γ increases.
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The case a12a21 < 0. When we derived the characteristic equation corresponding
to the linear DDE (2.1), we listed two different sets of characteristic equations. The
one we have not yet discussed is related to the case a12a21 < 0, i.e., the characteristic
equation (2.4):

∆+(λ)∆−(λ) =
(

λ + κ− βe−λτs + iγ̃e−λτ
) (

λ + κ− βe−λτs − iγ̃e−λτ
)

= 0,

where γ̃ =
√−a12a21.

We shall not discuss this case in great depth; it suffices to say that Theorems 1, 2,
and 3 can be slightly altered so that the conclusions are the same. Furthermore, γ̃H is
defined exactly the same way as γH in (2.16), thus all theorems and lemmas relating
to γH follow. Moreover, in this case τ±j are defined similarly to (2.17), the main
difference lying in the argument of the Arctan function.

Notice that there is no λ = 0 line. Further, since Theorem 6 applies, the charac-
teristic equation of the trivial fixed point gains a pair of complex conjugate eigenvalues
when crossing the λ = iω curve. Therefore, by Theorem 4, the boundary of the sta-
bility region must always be the λ = iω curve. Hence, the stability region of the
trivial fixed point is the region between the τ -axis and the λ = iω curve, where the
λ = iω curve undergoes various qualitative changes depending on the values of the
parameters.

In summary, for the case a12a21 < 0 we know the following:
(1) For β > 0, 0 ≤ κ < β, there is no stability region for all γ ≥ 0, τ ≥ 0, and

τs ≥ 0.
(2) For β > 0, κ > β, the stability region is defined by the region between the

τ -axis and the λ = iω curve, which undergoes one transition:

(a) for 0 ≤ τs < τ
(1)
s , the branches of the λ = iω curve are nested;

(b) for τ
(1)
s ≤ τs, the branches of the λ = iω curve intersect.

(3) For β < 0, 0 ≤ κ < −β, the stability region is defined by the region between
the τ -axis and the λ = iω curve, which undergoes two transitions:

(a) for 0 ≤ τs < τ
(1)
s , the branches of the λ = iω curve are nested;

(b) for τ
(1)
s ≤ τs < τ

(2)
s , the branches of the λ = iω curve intersect, and for

τs > τ∗s an exceptional branch appears;

(c) for τs ≥ τ
(2)
s , the trivial fixed point has no region of stability.

(4) For β < 0, κ > −β, the λ = iω curve undergoes one transition:

(a) for 0 ≤ τs < τ
(1)
s , the branches of the λ = iω curve are nested;

(b) for τ
(1)
s ≤ τs, the branches of the λ = iω curve intersect, and once again,

for τs > τ∗s an exceptional branch appears.

3. Bifurcations. In the previous section, we determined all points in parameter
space where the characteristic equation (2.2) has roots with zero real parts, i.e., where
the trivial fixed point of (1.2) has eigenvalues with zero real parts. Varying one or
more parameters in the system (1.2) so as to pass through such a point may cause a
bifurcation, i.e., a qualitative change in the type of solutions admitted by the DDE.
Such points are important, particularly when they lie on the boundary of the stability
region of the trivial fixed point, as they determine the overall behavior of the system.

The purpose of this section is to study the bifurcations which occur in (1.2) when a
single parameter is varied. There are two such codimension one bifurcations: a steady
state bifurcation, which can occur when the characteristic equation has a single zero
eigenvalue, and a Hopf bifurcation, which can occur when the characteristic equation
has a pair of pure imaginary eigenvalues. It should be clear from the results of the
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previous section that both these bifurcations may occur when a12a21 > 0, but only
the Hopf bifurcation may occur when a12a21 < 0. We will thus restrict our analysis
to the former case, the analysis for the latter being similar. We perform numerical
simulations for both cases.

For the case a12a21 > 0, we shall choose the parameter γ as the one to vary to
cause the bifurcations. While this seems natural based on the results of the previous
section, and, in particular, Figures 2–4, this parameter does not appear explicitly in
the original equation (1.2), thus some extra assumption is required. The discussion of
the rest of this section will hence take place under the assumption that the parameters
a12 and a21 may be written as continuously differentiable functions of the parameter
γ via

a12 = f(γ), a21 = g(γ),(3.1)

where f(γ)g(γ) = γ2. Under these assumptions, the standard theory of bifurcations
may be applied to (1.2) with γ as the distinguished parameter. Since we do not need
to specify f and g explicitly, we shall be able to make quite general assertions about
bifurcations in the system. Note that two particular cases included above are

f(γ) = γ = g(γ)(3.2)

and

f(γ) = constant, g(γ) =
γ2

constant
,(3.3)

the latter being our choice for the numerical simulations.
For the simulations in the case a12a21 < 0 we choose γ̃ as our distinguished

parameter, with a12 = constant and a21 = −γ̃2/constant.

3.1. Steady state bifurcation. In this subsection we investigate the behavior
of (1.2) in the neighborhood of a λ = 0 line. Recall from the previous section that
the trivial fixed point exists for all parameter values and, for fixed β, κ, τs, and τ ,
satisfying τ > τ∗, as γ increases through a λ = 0 line, the characteristic equation (2.3)
gains a positive real root (cf. Theorem 5). Thus, one might expect a steady state
bifurcation to occur at these parameter values. In this subsection we will show that,
indeed, the behavior associated with a pitchfork bifurcation occurs in the DDE (1.2)
when γ passes through ±γ0.

The following two propositions establish the standard nondegeneracy conditions
for a steady state bifurcation.

Proposition 1. The root λ = 0 of (2.3) is simple for almost all parameter
values.

Proof. From the characteristic equation (2.3), we find that the derivative of ∆±(λ)
with respect to λ is

∆′
±(λ) = 1 + βτse

−λτs ∓ τγe−λτ .

Evaluating this at λ = 0 and recalling the location of these zero roots in parameter
space ((2.12) and (2.13)) yields

∆′
±(λ)

∣

∣

λ=0
= 1 + βτs + τ(κ− β).

Thus, ∆′
±(λ)

∣

∣

λ=0
6= 0 so long as τ 6= τ∗, as defined in (2.19). Note that for β > 0

and κ > β, ∆′
±(λ)

∣

∣

λ=0
> 0 for all τ ≥ 0 and τs ≥ 0.
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Consider a point (±γ0, τ) on a λ = 0 line. If τ 6= τ∗ and the point does not
correspond to an intersection point with the λ = iω curve, then there is only one root
with Re(λ) = 0.

Proposition 2. For fixed κ ≥ 0, β, τ ≥ 0, and τs ≥ 0,

dRe(λ)

dγ

∣

∣

∣

∣

λ=0,γ=±γ0

6= 0.

Proof. The result follows directly from the proof of Theorem 5.
Propositions 1 and 2 indicate the possibility of a steady state bifurcation along

γ = ±γ0. To determine the type of bifurcation which occurs, we investigate the
existence of nontrivial fixed points of (1.2). Such fixed points must satisfy

x1 =
β

κ
tanh(x1) +

a12

κ
tanh(x2) and x2 =

a21

κ
tanh(x1) +

β

κ
tanh(x2)

for κ > 0. Isolation of x1 and x2 in turn yields the equivalent equations

x2 =
1

a12

[

βx1 +
γ2 − β2

κ
tanh(x1)

]

≡ f(x1)(3.4)

and

x1 =
1

a21

[

βx2 +
γ2 − β2

κ
tanh(x2)

]

≡ g(x2),(3.5)

where γ =
√
a12a21. Careful study of these equations leads to the following theorem.

Theorem 10. If γ > |κ− β|, then the DDE (1.2) has two nontrivial fixed points
(x∗

1, x
∗
2) and (−x∗

1,−x∗
2).

Proof. Consider the function

h(x1) ≡ x1 − g (f(x1)) .(3.6)

It follows from (3.4)–(3.6) that

h(x1) =
(

γ2−β2

κγ2

)[

κx1 − β tanh(x1)

− a12 tanh
{

1
a12

(

βx1 + γ2−β2

κ tanh(x1)
)}]

for κ > 0. A straightforward calculation yields

lim
x1→0+

h(x1)

x1
=

(

γ2 − β2
) [

(κ− β)2 − γ2
]

κ2γ2

and

lim
x1→+∞

h(x1)

x1
=

γ2 − β2

γ2
.

Thus, if γ > |κ− β|, then we have

(

lim
x1→0+

h(x1)

x1

)(

lim
x1→+∞

h(x1)

x1

)

< 0.(3.7)
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Since h(x1) is a continuous function, (3.7) implies that h(x1) has a positive root; call
it x∗

1. Define x∗
2 = f(x∗

1), then (x∗
1, x

∗
2) is a nontrivial solution of (3.4) and (3.5).

Since h(x1) and f(x1) are odd functions, (−x∗
1,−x∗

2) is also a solution of (3.4) and
(3.5).

Theorem 11. If β < 0, κ ≥ 0, and γ < κ− β, then (0, 0) is the only fixed point
of the DDE (1.2).

Proof. Define h(x1) as in Theorem 10. Then

h′(x1) ≡ 1 − g′ (f(x1)) f
′(x1),

and using (3.4) and (3.5), we find

h′(x1) =
γ2 − β2

κ2γ2

{

κ2 − βκ
[

sech2(x1) + sech2(f(x1))
]

−(γ2 − β2)sech2(x1)sech
2(f(x1))

}

.

Note that h(0) = 0 and

h′(0) =
γ2 − β2

κ2γ2

[

(κ− β)2 − γ2
]

.

Clearly, if γ2 < β2, then h′(x1) < 0 for all x1 ≥ 0. Since h(0) = 0, we have h(x1) 6= 0
for x1 > 0.

Consider now the case when γ2 > β2,

h′(x1) >
γ2 − β2

κ2γ2

{

κ2
[

1 − sech2(f(x1))sech
2(x1)

]

− βκ
[

sech2(x1) + sech2(f(x1))

−2sech2(f(x1))sech
2(x1)

]}

,

>
γ2 − β2

κ2γ2

{

κ2
[

1 − sech2(f(x1))sech
2(x1)

]

− βκ [sech(f(x1)) − sech(x1)]
2
}

.

Hence, h′(x1) > 0 for x1 ≥ 0. Since h(0) = 0, we have h(x1) 6= 0 for x1 > 0.
Further, since h(x1) is odd, h(x1) 6= 0 for x1 < 0 in both cases.
Theorem 12. If β > 0, κ > 2β, and γ < κ−β, then (0, 0) is the only fixed point

of the nonlinear DDE (1.2).
Proof. The proof is similar to that of Theorem 11, hence we will omit it.
Remark. For a given set of parameter values, it is possible to study the existence

of nontrivial fixed points of (1.2) by plotting (3.4) and (3.5) and looking for intersec-
tion points. Using this procedure we have never observed nontrivial fixed points for
parameter values satisfying 0 < γ < κ − β and have observed up to four nontrivial
fixed points for parameter values satisfying 0 < γ < β − κ.

Based on these results, we make the following conjectures.
Conjecture 1. For fixed β > 0, τ ≥ 0, τs ≥ 0, κ ≥ 0, and any a12, a21 satis-

fying (3.1), the trivial fixed point of the DDE (1.2) undergoes a pitchfork bifurcation
at γ = |κ − β|. If κ > β, this bifurcation is supercritical, and for 0 < γ < κ − β,
the trivial fixed point is stable and attracts all solutions. If β > κ, the bifurcation is
subcritical.

Conjecture 2. Let β < 0, τ ≥ 0, τs ≥ 0, κ ≥ 0, and a12, a21 satisfying (3.1) be
fixed. Suppose that τ 6= τ∗ and that (κ− β, τ) does not correspond to an intersection
point of the λ = iω curve and the λ = 0 line. Then the trivial fixed point of the
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Fig. 5. Numerical simulations of (1.2) for the three initial conditions (3.8), (3.9), and (3.10).
Parameter values are β = −1, κ = 1/2, τs = 0.01, τ1 = τ2 = 1, a12 = 1. (a) a21 = 1.2,
corresponding to γ < κ−β. All solutions are asymptotic to the stable fixed point at (0, 0). (b) a21 =
2.5, corresponding to γ > κ− β. Solutions tend to either the fixed point at (x∗

1, x
∗
2) = (0.496, 0.881)

or the fixed point at (−x∗
1,−x∗

2) = (−0.496,−0.881). Solutions are shown in the x1, x2 plane.

nonlinear DDE (1.2) undergoes a supercritical pitchfork bifurcation at γ = κ − β. If

τs satisfies 0 < τs < τ
(1)
s , then the trivial fixed point is stable for 0 < γ < κ − β and

attracts all solutions.
To determine with certainty the type of steady state bifurcations which occur

in this system would require analyzing the stability of the fixed points (x∗
1, x

∗
2) and

(−x∗
1,−x∗

2). To do this, we would need to linearize the DDE (1.2) about these fixed
points, produce a new characteristic equation, and analyze its roots. This is a large
task, certainly beyond the scope of this paper. Instead, we provide numerical evidence
to support our conjectures.

3.1.1. Numerical simulations near the λ = 0 line. In this subsection we
supplement our steady state bifurcation argument with numerical simulations of the
evolution of solutions of the original nonlinear DDE (1.2). All simulations shown here
and in the following sections were performed with the package XPP by Ermentrout [8]
using one of the following initial conditions:

x1(t) = 0.4 x2(t) = 0.3 − h ≤ t ≤ 0,(3.8)

x1(t) = −0.4 x2(t) = −0.3 − h ≤ t ≤ 0,(3.9)

x1(t) = −0.3 x2(t) = 0.6 − h ≤ t ≤ 0,(3.10)

h = max{τs, τ}, unless otherwise indicated. We have, however, performed experi-
ments using a variety of initial conditions.
Experiment 1: 0 < β < κ.

We observe that solutions with parameters satisfying γ < κ − β tend to
the origin. Furthermore, we observe that solutions having parameter values
satisfying γ > κ − β tend to the nontrivial fixed points. These simulations
support Conjecture 1, i.e., that there is a supercritical pitchfork bifurcation
at γ = κ− β.
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Experiment 2: 0 < κ < β.
We observe that solutions always converge to a nontrivial fixed point, i.e.,
the behavior of the system is unaffected by the bifurcation at γ = β − κ.
This is expected as this bifurcation does not form part of the boundary of
the stability region (c.f. Theorem 3).

Experiment 3: β < 0, 0 < τs < τ
(1)
s .

We find that solutions with parameter values satisfying γ < κ − β tend to
the stable fixed point at (0, 0), as predicted by our stability analysis. An
example is shown in Figure 5(a), where we chose β = −1, κ = 1/2, τs = 0.01,
a12 = 1, a21 = 1.2, τ = 1 (corresponding to the“x” in Figure 3(a)), and
used (3.8), (3.9), and (3.10). We further find that solutions with parameter
values satisfying γ > κ − β tend to a nontrivial fixed point. An exam-
ple is shown in Figure 5(b), where we let β = −1, κ = 1/2, τs = 0.01,
a12 = 1, a21 = 2.5, τ = 1 (corresponding to the “+” in Figure 3(a)), and
used (3.8) and (3.10). In this case, solving (3.4) and (3.5) numerically in
Maple shows that that the fixed point, rounded to three decimal places, is
(x∗

1, x
∗
2) = (0.496, 0.881), which agrees with Figure 5(b). Using the same

parameter values, but initial conditions (3.9) yields a solution which tend
toward the stable fixed point (−x∗

1,−x∗
2) = (−0.496,−0.881). This supports

Conjecture 2, namely, that a supercritical pitchfork bifurcation occurs.

Experiments for the case β < 0, τs > τ
(1)
s will be discussed in section 3.2.

3.2. Hopf bifurcation. In this subsection we consider the behavior of the non-
linear DDE (1.2) in the neighborhood of the λ = iω curve. Section 2 showed that the
characteristic equation associated with the trivial fixed point has a pair of complex
conjugate imaginary roots along this curve, thus we might expect (1.2) to exhibit a
Hopf bifurcation along this curve. In the following we prove, via Propositions 3 and 4
and Theorem 13, that a Hopf bifurcation does occur along this curve when a12a21 > 0.
The argument in the case a12a21 < 0 is similar.

We begin by establishing the usual nondegeneracy conditions on the roots of the
characteristic equation.

Proposition 3. Consider a purely imaginary root λc = iωc of the characteristic
equation (2.3). Then λc is simple and all roots λ other than λc and λ̄c satisfy λ 6= mλc

for any integer m, for almost all choices of the parameters.
Proof. To show that λc = iωc is simple, we need to show that ∆′

±(λc) 6= 0, where

∆′
±(λ) = 1 + βτse

−λτs ∓ τγe−λτ(3.11)

by (2.3). Suppose that ∆′
±(λc) = 0. Substituting λc = iωc, separating (3.11) into

real and imaginary parts, we get

βτs cos(ωcτs) + 1 = ±τγH cos(ωcτ)(3.12)

and

βτs sin(ωcτs) = ±τγH sin(ωcτ).(3.13)

Consider the ratio of (3.13) and (3.12)

tan(ωcτ) =
βτs sin(ωcτs)

βτs cos(ωcτs) + 1
.(3.14)
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Furthermore, ωc must satisfy

tan(ωcτ) =
β sin(ωcτs) + ωc

β cos(ωcτs) − κ
,(3.15)

the ratio of (2.14) and (2.15), which are the real and imaginary parts of (2.3) when
γ = γH and λc = iωc. Equating (3.14) and (3.15), we get

β sin(ωcτs) + ωc

β cos(ωcτs) − κ
=

βτs sin(ωcτs)

βτs cos(ωcτs) + 1
.

Cross-multiplying, we obtain

ωc + βωcτs cos(ωcτs) + β sin(ωcτs) = −βκτs sin(ωcτs).

Define Υ(ωc) = ωc + βωcτs cos(ωcτs) + β(1 + κτs) sin(ωcτs). We note that Υ(ωc) is

identical to the numerator of (2.21). Hence, by Lemma 2, Υ(ωc) > 0 for all τs < τ
(1)
s .

Moreover, zeros of Υ(ωc) occur when dγH

dω |ω=ωc
= 0. Hence, when ∆′

±(λ) = 0, then

these values of ωc correspond to points satisfying dγH

dω |ω=ωc
= 0. Therefore, excluding

the values of ωc satisfying dγH

dω |ω=ωc
= 0, λc = iωc is a simple root of (2.3).

Further, if the point (γH , τ) in the γτ -plane does not correspond to an intersection
point of two branches of the λ = iω curve nor an intersection point of the λ = iω
curve and a λ = 0 line, then there is only one pair of eigenvalues with Re(λ) = 0 at
this point. Thus, for any other root λ 6= ±miωc, for any m ∈ Z.

Proposition 4. dReλ
dγ |λc=iωc

= 0 if and only if ωc satisfies
dτ±

j

dω |ω=ωc
= 0,

γH(ωc) 6= 0 and dγ
dω |ω 6=ωc

6= 0.
Proof. The result follows from the proof of Theorem 6.
Remark. Since the zeros of dReλ

dγ correspond to points, where dτ
dω = 0|ω=ωc

and
dγ
dω |ω=ωc

6= 0, then the zeros of dReλ
dγ occur where the λ = iω curve has a horizontal

tangent line.
Theorem 13. Suppose that β, κ ≥ 0, τs ≥ 0, and τ = τc ≥ 0 are fixed and that

(γc, τc) is a point on the λ = iω curve that does not correspond to an intersection
point of the branches of the λ = iω curve or an intersection point of the λ = iω curve
and a λ = 0 line. Denote by iωc the purely imaginary root of (2.3) which is such
that γc = γH(ωc), and τc = τ±j (ωc) for some j, where γH(ω) and τ±j (ω) are defined

by (2.16) and (2.17). Assume that ωc is neither a zero of dγH

dω nor of
dτ±

j

dω . Then the
nonlinear DDE (1.2) undergoes a Hopf bifurcation at γ = γc.

Proof. We begin by noting that (1.2) may be written in the standard form

ẋ(t) = F (γ, xt),(3.16)

where xt ∈ C, F : R × C, C = C([−h, 0],R2), when we take

F (γ, xt) =

(

−κx1t(0) + β tanh (x1t(−τs)) + a12 tanh(x2t(−τ))
−κx2t(0) + β tanh (x2t(−τs)) + a21 tanh(x1t(−τ))

)

and let a12, a21 be given by (3.1). It is then straightforward to show that F has
continuous first and second derivatives with respect to both γ and φ (see [25] for
details).
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Propositions 3 and 4 imply that (3.16) obeys the conditions of the Hopf bifurcation
theorem [14, p. 333] and the result follows.

It is well known [14] that the behavior of a DDE such as (1.2) in the neighborhood
of a point of the Hopf bifurcation is determined by the following system of ODEs (in
polar coordinates)

ṙ = µr + ar3,

θ̇ = ω.

In particular, if a > 0, the Hopf bifurcation is supercritical and if a < 0, it is subcrit-
ical. Using the centre manifold and normal form techniques, this coefficient may be
related to parameters in the DDE (see [2], [5], [27] for details of this computation).

We have used a Maple program [5] to determine the coefficient a for the first four
branches of the λ = iω curve shown in Figures 3(b) and 4(a) for the parameterization
given in (3.1)–(3.3). We see the following behavior. In some cases, the bifurcation is
supercritical along the whole branch. In other cases, the bifurcation is supercritical
for large values of τ , but becomes subcritical as τ decreases. In a few cases, we
observed several switches between supercritical and subcritical bifurcations along a
single branch. The point or points where the criticality changes (which corresponds
to a well studied [10] degenerate Hopf bifurcation) usually occur to the right of the
λ = 0 line and thus will not have a large effect on the observable behavior of the
system. Of particular note is the fact that even when β, κ, τs, τ , and γ are fixed,
changing the parameterization of a12 and a21 (i.e., changing f and g in (3.1)) can
change the criticality of the bifurcation. This is because the coefficient a depends on
both a12 and a21 independently and not just their product, γ2.

3.2.1. Numerical simulations near the λ = iω curve.

Experiment 1: 0 < β < κ, a12a21 > 0 or β < 0, 0 < τs < τ
(1)
s , a12a21 > 0.

We observe that solutions always converge to a nontrivial fixed point. This is
expected since, in these cases, the Hopf bifurcation curves occur to the right
of the λ = 0 line, where the trivial fixed point is already unstable.

Experiment 2: β < 0, τ
(1)
s < τs < τ

(2)
s , a12a21 > 0 or 0 < τs < τ

(2)
s , a12a21 < 0.

In this case, the branches of the λ = iω curve are, qualitatively, as shown in
Figures 3(b) and 4(a). Choosing parameter values to the left of the λ = iω
curve, we observe solutions that tend to the origin, while parameter values in
the region marked 2 (in Figures 3(b) and 4(a)) produce solutions which tend
to a stable periodic orbit.
This experiment provides evidence that a supercritical Hopf bifurcation of
the trivial fixed point occurs for parameter values crossing from the stability
region to the region marked 2 in Figures 3(b) and 4(a).

Experiment 3: β < 0, τs > τ
(2)
s .

We observe that solutions always converge to a periodic orbit or to a nontrivial
fixed point. This is expected since this bifurcation curve does not form part
of the boundary of the stability region (cf. Theorem 9).

4. Interaction of bifurcations. In the previous sections, we described the lo-
cation of various bifurcations in the γτ parameter space. In particular, we provided
analytical and numerical evidence that pitchfork bifurcations occur along the λ = 0
lines (2.12) and (2.13) and that Hopf bifurcations occur along the various branches
of the λ = iω curve, (2.16) and (2.17) in the case a12a21 > 0. It is evident from
the results of section 2, as shown for example in Figure 4, that intersections of these
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various lines and curves may occur. Such intersection points correspond to bifurcation
interaction points, also known as codimension two bifurcation points. In this section,
we describe the bifurcation interactions which can occur in the DDE (1.2) and show
how these interactions influence the behavior observed in the system.

There are three main ways in which the bifurcation curves can intersect leading
to the following three types of bifurcation interaction points.

(1) Hopf-Hopf interaction: This occurs where two branches of the λ = iω curve
intersect transversally. It corresponds to a point where the characteristic
equation (2.2) has two pairs of pure imaginary roots.

(2) Hopf-pitchfork interaction: This occurs where a branch of the λ = iω curve
intersects a λ = 0 line transversally. It corresponds to a point where the
characteristic equation (2.2) has a pair of pure imaginary roots and a zero
root.

(3) Takens–Bogdanov interaction: This occurs where the exceptional branch of
the λ = iω curve terminates on a λ = 0 line. It corresponds to a point where
the characteristic equation (2.2) has a double zero root.

The various lemmas and theorems of section 2 indicate where in parameter space
these interactions may occur, as summarized below.

• a12a21 > 0, β > 0: Interactions occur outside the region of stability of the
trivial fixed point and thus do not affect the observable dynamics of the
system.

• a12a21 > 0, β < 0: Interactions 1 and 2 occur if and only if τs ≥ τ
(1)
s .

Interaction 3 occurs if and only if τs > τ∗s .

• a12a21 < 0: Interaction 1 occurs if and only if τs ≥ τ
(1)
s . Interactions 2 and 3

do not occur.
Note that for each value of τs where these interactions can occur, there are a countable
infinity of interaction points of types 1 and 2 but only one of type 3.

Using a center manifold reduction [14], it can be shown that the dynamics of
systems of DDEs, such as (1.2), in the neighborhood of a bifurcation interaction point
are determined by a system of ODEs, whose dimension corresponds to the number of
roots of the characteristic equation with zero real parts at the interaction point. Using
normal form analysis, the behavior of the system of ODEs corresponding to each of
the interaction types described above has been studied in depth [13, Chapter 7], [18,
Chapter 8]. The details of these computations and of a Maple program designed to
perform them symbolically are described in [5]. In the rest of this section, we use the
results of this program to predict the behavior of system (1.2) in the neighborhood
of interaction points of the three types described above, and compare the predictions
with numerical simulations of the full system of DDEs.

4.1. Hopf-Hopf interaction. Recall from section 3 that the Hopf bifurcations
which occur in system (1.2) on the boundary of the region of stability of the fixed
point are, for the most part, supercritical. As shown in Guckenheimer and Holmes [13,
section 7.5], the interaction of two such supercritical Hopf bifurcations results in a
secondary Hopf bifurcation leading to the creation of a 2-torus. We have applied
the Maple program described above to several Hopf-Hopf interaction points on the
boundary of the stability region in Figures 3(b) and 4(a). In all cases, we find that the
parameter values are such that the torus is unstable and coexists with two stable limit
cycles (one resulting from each of the primary Hopf bifurcations). This is confirmed by
numerical simulations of (1.2) with parameter values near any one of these interaction
points. An example is shown in Figure 6, where the parameter values correspond to
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Fig. 6. Numerical simulations of (1.2) with β = −1, κ = 1/2, τs = 0.8, τ1 = τ2 = 2.5, a12 = 1,
a21 = 1.39. (a) Initial condition (3.10). (b) Transient behavior, initial condition (3.8). (c) Longterm
behavior, initial condition (3.8). Solutions are shown as x2 time histories.

the intersection point of the lower two branches of the λ = iω curve in Figure 3(b).
When the initial condition (3.10) is used, the system tends to one limit cycle (Figure 6
(a)). When the initial condition (3.8) is used, however, the system initially behaves
quasiperiodically (Figure 6 (b)) and ultimately settles on a second limit cycle (Figure 6
(c)).

4.2. Hopf-pitchfork interaction. This interaction is also discussed in [13, sec-
tion 7.5] where it is shown that when both bifurcations are supercritical (as is our
situation, see section 3), a secondary bifurcation leading to the creation of two limit
cycles not surrounding the origin results. Again, applying the Maple program to sev-
eral interaction points yields the same qualitative results: the parameters are such
that these new limit cycles are unstable and coexist with two stable, nontrivial fixed
points and a stable limit cycle surrounding the origin. These results are confirmed by
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Fig. 7. Numerical simulation of (1.2) with β = −1, κ = 1/2, τs = 0.8, τ1 = τ2 = 0.7, a12 = 1,
a21 = 2.28. Three solutions, corresponding to initial conditions (3.8), (3.9), and (3.10), are shown
in the x1, x2 plane.
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Fig. 8. Numerical simulation of (1.2) with β = −1, κ = 1/2, τs = 1.5, τ1 = τ2 = 0.2, a12 = 1,
a21 = 2.34. Three solutions, corresponding to initial conditions (3.8), (3.9), and (3.10), are shown
as superimposed x2 time histories.

numerical simulations of (1.2), an example of which is shown in Figure 7.

4.3. Takens–Bogdanov interaction. In [13, section 7.3], it is shown that when
the Takens–Bogdanov interaction involves a supercritical Hopf and a supercritical
pitchfork bifurcation, one should expect to find a region of parameter space in which
the nontrivial fixed points are stable and coexist with a large amplitude, stable limit
cycle which surrounds them. We observe this behavior in our numerical simulations
of (1.2), an example of which is shown in Figure 8.

5. Discussion. In this paper, we have given a detailed analysis of the mathemat-
ical properties of the system of DDEs (1.2), emphasizing the implications of having
time delays. In this section, we will review some of the important mathematical
results obtained and discuss their meaning in the context of neural networks.

Perhaps the most interesting aspect of the analysis in section 2, of the stability of
the trivial solution, is the fact that all the results depend on the connection parameters
only through the product of the strengths, a12a21, and the sum of the delays, τ1 + τ2.
In particular this means that the stability results for a system with two inhibitory
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Fig. 9. Numerical simulation of (1.2) with parameter values β = −1, κ = 1/2, τs = 1.5, a12 = 1
and a21 = 2 (corresponding to Figure 4(a)) and initial condition (3.8). (a) In phase oscillation of
two neurons occur when the connection time delays, τ1 and τ2, are both zero. (b) “Death” of the
oscillation occurs when the connection time delays are increased to τ1 = τ2 = 0.4. (c) Out of phase
oscillation occurs when the connection delays are large enough (τ1 = τ2 = 1). Solutions are shown
as x1 and x2 time histories, superimposed.

connections are identical to those for as a system with two excitatory connections of
the same magnitude. Similar results have been observed in ring neural networks [1, 4]
with an even number of elements.

The effect of the feedback on the stability results comes down to a certain critical

value, τ
(1)
s , of the delay which is determined by the circuit parameter κ and the

strength of the feedback β. If the feedback delay, τs, is smaller than this value, the
system behaves in a similar manner to systems without feedback such as those studied
in [1, 12]. That is, its behavior is characterized by large regions of connection-delay
independent stability and regions of global stability (see [25] for details) of the trivial
fixed point, and the only other solutions possible are simple periodic or nontrivial fixed
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points. If the feedback delay is larger than this value, more complicated behavior may
arise, as discussed below.

In section 3, we showed that increasing the magnitude of either of the connection
strengths, aij , can cause the trivial fixed point to lose stability via a pitchfork bifurca-
tion giving rise to stable nontrivial fixed points or via a Hopf bifurcation giving rise to
a stable periodic solution. These latter solutions dominate the parameter space, ex-
isting (and most often being the attractor of the system) in all regions in Figures 2–4
which are neither in the stability region nor in a region marked with “1”. The pres-
ence of these solutions in our model is primarily due to the presence of time delays,
as similar models without delays can be shown to be globally stable [6]. It should be
clear from Figures 2–4 that Hopf bifurcations may also be caused by changing either
of the connection delays, τ1, τ2. Thus, the common belief that delays can destabilize
a stable fixed point giving rise to a periodic solution is true in this system. However,
contrary to this view, increasing the connection delays in our system can also stabilize
the trivial fixed point (this can be seen in Figures 3(b) and 4(a)). This phenomenon
is quite common in systems with multiple time delays [2] and higher order systems
with a single time delay [3, 7].

In section 4, we showed that when the feedback delay is larger than the critical

value τ
(1)
s , interactions of the various bifurcations may occur, giving rise to multi-

stability. Interaction of a pitchfork bifurcation with a Hopf bifurcation gives rise to
multistability between a pair of nontrivial fixed points and a periodic solution. When
the parameters are in this state, small perturbations to the variables can cause the
system to initiate or terminate oscillations. This type of oscillator death is observed in
many systems including in a certain experimental culture of neurons [16]. Interactions
of two Hopf bifurcations give rise to bistability between two limit cycles of different
frequencies. This is interesting as it is generally believed that periodic firing is one
mechanism for transmitting information in the nervous system [9], with the frequen-
cies of the oscillations being the “message” transmitted. Thus, bistability between
limit cycles provides a mechanism for the system to convey two different “messages”
in response to different stimuli, for the same parameter values.

Finally, we present some other interesting behavior seen in our system. As noted
in the introduction and seen in Figure 4, under certain conditions on the feedback
parameters, the system will oscillate even when the connection delays or strengths are
zero. In this parameter region, the neurons behave like a system of coupled oscillators
and exhibit some of the associated behavior. For example, it is possible to destroy
the oscillations in the system by increasing the connection time delay, as pictured in
Figures 9 (a) and (b). This phenomenon of oscillator death due to time delays has
recently been noted in a quite different system of coupled oscillators [22], and may, in
fact, be quite common in oscillators with time delayed coupling. Further, as discussed
in Schuster [24], delayed coupling may introduce a phase shift in the oscillations. This
effect is quite interesting for it can give rise to solutions which are counterintuitive.
As an example consider two neurons coupled together with excitatory connections.
One might expect that they should oscillate in phase, which is what we observe in our
system when the connection delay is zero (Figure 9(a)). However, if the connection
delay is large enough we observe that they oscillate 180◦ out of phase (Figure 9(c)).
The opposite effect is observed when the connections are inhibitory (see [25] for an
example). This is important from an experimental viewpoint as it means that two
neurons observed to be oscillating synchronously may have excitatory coupling with
small time delays, or inhibitory coupling with large time delays.
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