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Abstract. Coupled loops with time delays are common in physiological systems such as neural
networks. We study a Hopfield-type network that consists of a pair of one-way loops each with three
neurons and two-way coupling (of either excitatory or inhibitory type) between a single neuron of
each loop. Time delays are introduced in the connections between loops, and the effects of coupling
strengths and delays on the network dynamics are investigated. These effects depend strongly on
whether the coupling is symmetric (of the same type in both directions) or asymmetric (inhibitory in
one direction and excitatory in the other). The network of six delay differential equations is studied by
linear stability analysis and bifurcation theory. Loops having inherently stable zero solutions cannot
be destabilized by weak coupling, regardless of the delay. Asymmetric coupling is weakly stabilizing
but easily upset by delays. Symmetric coupling (if not too weak) can destabilize an inherently stable
zero solution, leading to nontrivial fixed points if the gain of the neuron response function is not too
negative or to oscillation otherwise. In the oscillation case, intermediate delays can restabilize the
zero solution. At the borderline of the weak coupling region (symmetric or asymmetric), stability can
change with delay ranges. When the coupling strengths are of the same magnitude, the oscillations
of corresponding neurons in the two loops can be in phase, antiphase (symmetric coupling), or one
quarter period out of phase (asymmetric coupling) depending on the delay.
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1. Introduction. Interacting loops that are capable of sustaining oscillation
are common in physiological systems. One approach to modeling such systems is via
coupled oscillators [13]. However, this approach does not lend itself to studying the
patterns of connections between oscillators when each oscillator is itself a network.
Furthermore, such networks may not be inherently oscillatory, but oscillations may
arise as a result of the coupling between them. If the coupling between networks is
slower than each network’s internal dynamics, then additional effects can arise from
the delay in the coupling. The coupling may also be faster than the internal dynamics,
in which case each network could be modeled with internal delays, or both the internal
connections and coupling between networks could have delays.

These questions arise in models of the brain’s motor circuitry, where there are
many interacting loops and feedback systems. For example, functionally separate
parallel loops operate through the basal ganglia (e.g., through matrisomes in the
striatum [10]) but may interact through crosstalk [2]. These loop interactions have
been implicated in the generation of tremor oscillations in Parkinson’s disease. The
effect of the particular patterns of connections between parallel copies of a network
was studied by Edwards and Gill [5], where synchrony of the network copies occurred
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with appropriate crosstalk, but only when each network was in a periodic regime.

Previous work on these problems has not explicitly allowed for delays in connec-
tions. While analysis becomes more difficult with delays, their effects may be im-
portant for the applications. Research on Hopfield-type neural networks with delays,
first introduced by Marcus and Westervelt [15], has shown that delays can modify
dynamics in interesting ways. Delays have been inserted into various simple loop
structures. Some work [14, 17, 18] has considered systems of two neurons with de-
layed connections. Shayer and Campbell [18] gave a detailed analysis of dynamics
of two coupled units with delayed coupling and also delayed self-input, showing in
particular how oscillation occurs when the interactions are strong enough, but also
depending on the delays. A number of authors have studied loops of three or more
neurons with delays, showing various types of behavior including oscillations, waves,
steady states, and even chaos [1, 3, 7, 16, 21]. Other work has dealt with conditions
for stability of steady states in Hopfield-type networks of arbitrary structure (see, for
example, [4, 9, 18, 19, 20] and references therein).

The current study is an initial attempt to determine the effects of coupling (or
crosstalk) between parallel copies of a network structure in the presence of delays.
We focus on the simplest example that uses Hopfield network equations and in which
each network copy is capable of oscillation, namely, a pair of simple loops of three
neurons with one-way connections, with coupling between only one neuron of each
loop. We consider the case in which the coupling between the loops, rather than
the connections within the loops, is delayed. Of the previous studies mentioned
above, this is perhaps most similar to that of Shayer and Campbell [18], in which
the concern was also with delayed coupling between two potential oscillators, though
the oscillators were single neurons with self-input rather than small loops. A sin-
gle (one-way) loop of three Hopfield neurons can oscillate if their connections are
inhibitory and sufficiently strong. The coupling between the loops can change this
behavior, but we seek to determine how the behavior depends on the strength of cou-
pling, the delay in coupling, and the internal gain or connection strengths within each
loop.

We begin in section 2 with the dynamics of a single 3-loop (loop of three neu-
rons with one-way connections). In section 3 we look at a pair of coupled 3-loops,
giving results on stability of the trivial equilibrium and the presence of oscillation
over the parameter space defined by the internal gain parameter (positive or neg-
ative) and a coupling strength parameter, allowing either inhibitory or excitatory
coupling in either direction. Section 4 deals with delayed coupling between the loops.
Most of the analysis is local, but where we do not have global results, numerical
experiments support the conclusions. We summarize our results with a discussion
(section 5).

2. Isolated 3-loop without delay. Consider a Hopfield-type network of three
neurons connected in a (one-way) loop as in the following figure:
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This can be described by the system of ordinary differential equations (with sub-
scripts interpreted mod 3)

dxj

dt
= −xj + tanh (bxj−1) , j = 1, 2, 3,(2.1)

together with initial condition x(0) = (x1(0), x2(0), x3(0))t. Here xj represents the
normalized voltage of neuron j and b ∈ R is the gain of the response function, as-
sumed equal for each neuron. Interactions are inhibitory if b < 0 and excitatory if
b > 0. System (2.1) always has the trivial equilibrium (0, 0, 0)

t
, i.e., at the origin.

The existence of nontrivial equilibria depends on the value of b, as in the following
result.

Theorem 2.1. If b > 1, then system (2.1) has one positive symmetric and one
negative symmetric equilibrium. If b ≤ 1, then there is no nontrivial equilibrium.

Proof. At an equilibrium of (2.1), x1 = tanh (bx3)≡ f (x3) ; thus x2 = tanh (bx1) =
f (f (x3)) and x3 = tanh (bx2) = F (x3), where F (x) ≡ f (f (f (x))). Consider

h (x3) ≡ x3 − F (x3) = 0.(2.2)

Since f ′ (0) = b, h′(0) = 1 − b3. Also limx3→±∞ h (x3) = ±∞. From (2.2)

h′ (x3) = 1 − b3
2

sech (b tanh (b tanh (bx3)))
2

sech (b tanh (bx3))
2

sech (bx3) .(2.3)

Thus h′ (x3) ≥ 1 − b3 for b ≥ 0, which is nonnegative (for all x3) if b ≤ 1. Since
h (0) = 0, there is no nontrivial equilibrium for 0 ≤ b ≤ 1. For b < 0, (2.3) gives
h′ (x3) ≥ 1, which again shows that there is no nontrivial equilibrium.

If b > 1, then (2.3) gives h′′ (x3) > 0 for all x3 > 0, showing that h (x3) is concave
up. This, together with h (0) = 0, h′ (0) < 0, and h (x3) > 0 for sufficiently large
x3 > 0, shows that there is a unique positive solution x3 = x3 > 0 to (2.2). The
corresponding equilibrium values x1 > 0, x2 > 0 are determined from x3 and (2.1).
Since (2.2) holds also for x1 and x2, it must be that x1 = x2 = x3 = x, giving the
unique symmetric positive equilibrium as (x1, x2, x3) t = (x, x, x)

t
, with 0 < x < 1

from the equilibrium equation x = tanh (bx) . By symmetry, there is also a unique
negative equilibrium (x1, x2, x3) t = (−x,−x,−x)

t
if b > 1.

The linear stability of an equilibrium (x, x, x) t is governed by dx
dt = Ax, with

A =

⎡
⎣ −1 0 b sech2 (bx)

b sech2 (bx) −1 0

0 b sech2 (bx) −1

⎤
⎦ .(2.4)

The following result shows that a Hopf bifurcation can occur at the trivial equilibrium.
Theorem 2.2. The trivial solution of (2.1) is locally asymptotically stable iff

−2 < b < 1. At b = −2, the system undergoes a Hopf bifurcation and has stable limit
cycle solutions for b � −2.

Proof. The characteristic equation of A at x = 0 in (2.4) is − (1 + λ)
3
+b3 = 0. For

−2 < b < 1, all eigenvalues have negative real parts; thus the system is linearly stable.
When b = 1, there is a zero eigenvalue, and for b > 1 there is a real positive eigenvalue.
When b = −2, the eigenvalues are −3, ±

√
3i, and for b < −2 there is a complex pair

of eigenvalues with positive real part. At b = −2, matrix A is diagonalized by a
matrix P of eigenvectors. Approximating tanh (bxj) by bxj − b3x3

j/3 (ignoring terms
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of order ≥ 5) system (2.1) with x = (x1, x2, x3)
t

is transformed by y = P−1x with
y = (y1, y2, y3)

t
at b = −2 to

dy

dt
=

⎡
⎣ 0 −

√
3 0√

3 0 0
0 0 −3

⎤
⎦ y + P−1

(
8

3

)⎡
⎢⎣

(y1 + y3)
3(

−y1/2 −
√

3y2/2 + y3

)3(
−y1/2 +

√
3y2/2 + y3

)3
⎤
⎥⎦ .(2.5)

The center manifold is given by y3 = H (y1, y2), with H third order because the third
equation of (2.5) has no quadratic term. On the center manifold, (2.5) becomes[

dy1

dt
dy2

dt

]
=

[
0 −

√
3√

3 0

] [
y1

y2

]
+

[
p (y1, y2)
q (y1, y2)

]
,(2.6)

where p and q are determined by substituting y3 = H(y1, y2) in the first two equations
of (2.5). The standard formula for the criticality coefficient ((3.4.11) of Guckenheimer
and Holmes [11]) gives a = −1 < 0. Since Re (∂λ/∂b) = −1/2 when evaluated at
λ = ±

√
3i, b = −2, the supercritical Hopf bifurcation gives rise to stable periodic

solutions occurring for b � −2.
For a Hopfield 2-loop, the corresponding characteristic equation, − (1 + λ)

2
+b2 =

0, cannot have pure imaginary solutions. Thus a Hopfield 3-loop without delay is the
smallest that can undergo a Hopf bifurcation at the origin.

Global results for the trivial equilibrium when −2 < b ≤ 1 are now stated.
Theorem 2.1 of van den Driessche and Zou [20] can be used to show easily that if
|b| < 1, then the origin is globally asymptotically stable. For system (2.1), a Lyapunov

function V =
∑3

j=1 x
2
j can be used to extend the range of global stability of the origin

to −
√

2 ≤ b ≤ 1. Note that b = 1 is included here, whereas it was not in Theorem 2.2.
Numerical results indicate that the full range of global stability is −2 < b ≤ 1.

Global results for the existence and stability of periodic solutions for b < −2
are more difficult to obtain. However, in the limit b → −∞, when the hyperbolic
tangents become step functions, the problem is easier. Glass and Pasternack [8]
showed that n-dimensional networks similar to (2.1) but with step functions have
globally asymptotically stable periodic solutions for n ≥ 3. Numerical simulations
of (2.1) with b < −2 indicate that there is a unique globally asymptotically stable
periodic solution for each b ∈ (−∞,−2) .

Consider now the stability of the nontrivial equilibria (when they exist).
Theorem 2.3. For b > 1, the positive and negative symmetric equilibria of (2.1)

are locally asymptotically stable.
Proof. From (2.4), the characteristic equation of A is − (1 + λ)

3
+ b3 sech6 (bx) =

0, where (x, x, x)
t
with x > 0 is the positive symmetric equilibrium of (2.1) that exists

for b > 1 (by Theorem 2.1). Thus the eigenvalues are

λ1 (x) = −1 + b
2

sech (bx) , λ2,3 (x) = −1 −
(

1

2
± i

√
3

2

)
b

2

sech (bx) .

Since b sech2 (bx) > 0, local stability follows if λ1 (x) < 0. By (2.1), bx = tanh−1 (x)
and sech2 (bx) = 1 − x2, giving λ1 (x) = −1 + tanh−1 (x)

(
1 − x2

)
/x for 0 < x < 1,

which is equivalent to 1 < b < ∞. Also, λ1(0) = 0 at b = 1. Differentiating gives

dλ1

dx
(x) =

(
x−

(
1 + x2

)
tanh−1 (x)

)
/x2,
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which is negative, since tanh−1 (x) > x. Thus λ1 (x) < 0, showing that the positive
symmetric equilibrium is locally stable. Stability for x < 0 follows by symmetry.

Note that x → 0+ as b → 1+, showing that the linearly stable positive and
negative equilibria bifurcate from the trivial equilibrium as it loses stability. Thus the
system has a supercritical pitchfork bifurcation at b = 1.

3. Coupled loops without delay. Consider a pair of coupled 3-loops:
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The individual loops each follow the form of (2.1). Coupling strengths are given by
c1 and c2, where bcj > 0 implies excitatory and bcj < 0 implies inhibitory coupling.
The system of equations for the entire system is then

dx1

dt
= −x1 + tanh (bx3) ,

dx2

dt
= −x2 + tanh (bx1) ,

dx3

dt
= −x3 + tanh (bx2) + c1 tanh (bx6) ,(3.1)

dx4

dt
= −x4 + tanh (bx6) ,

dx5

dt
= −x5 + tanh (bx4) ,

dx6

dt
= −x6 + tanh (bx5) + c2 tanh (bx3) ,

together with initial condition x(0) = (x1(0), x2(0), x3(0), x4(0), x5(0), x6(0))t.
Equilibria of (3.1) satisfy x2 = f (x1) = f (f (x3)) and x5 = f (x4) = f (f (x6)),

where f (xj) ≡ tanh (bxj). Using the other two equations gives

x3 = F (x3) + c1f (x6) , x6 = F (x6) + c2f (x3) ,(3.2)

where F (x) = f (f (f (x))) as before. This can be reduced (for c1 �= 0) to

g (x3) ≡ [x3 − F (x3)] − c1f

(
f

(
f

(
1

c1
[x3 − F (x3)]

))
+ c2f (x3)

)
= 0 .(3.3)

Any x3 satisfying (3.3) determines x6 and hence all the variables at an equilibrium.
Clearly the origin xj = 0, j = 1, . . . , 6, is an equilibrium, and our interest mostly
focuses on its stability properties. However, we first show the existence of nontrivial
equilibria for some b values. Define d ≡ b2c1c2 and β ≡ b3. When d > 0, the coupling
is either excitatory or inhibitory in both directions (symmetric coupling); when d < 0,
the coupling is excitatory in one direction and inhibitory in the other (asymmetric
coupling).

Theorem 3.1. If d > (1 − β)
2
, then system (3.1) has nontrivial equilibria. If

either (i) 0 < β < 1 and d < (1 − β)
2
, or (ii) β < 0 and d < 1, then system (3.1) has

no nontrivial equilibrium.
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Proof. Assuming c1 �= 0, differentiating (3.3) gives

g′ (x3) = (1 − F ′ (x3))
(
1 − βs2

1s
2
2s

2
3

)
− ds2

1s
2
4,

where s2
k, k = 1, . . . , 4, represents sech2 (·) evaluated at some point; thus 0 < s2

k ≤ 1.

Since F ′(0) = β, it follows from the derivative above that g′(0) = (1 − β)
2 − d;

thus g (x3) is strictly decreasing at the origin if d > (1 − β)
2
. Clearly g(0) = 0 and

limx→∞ g (x3) = ∞ because f (and therefore F ) is bounded. Thus by continuity
there is at least one positive value of x3, namely, x3 > 0, such that g (x3) = 0. By
symmetry, g (−x3) = 0 and these values determine the other variables at a nontrivial
equilibrium.

For x3 > 0 if β > 0, then 0 < F ′ (x3) < β. Thus 0 < β < 1 implies that

(1 − β)
2 − d < g′ (x3) if d ≥ 0, and (1 − β)

2
< g′ (x3) < 1 − d if d ≤ 0. Thus

in case (i), g (x3) is strictly increasing for all x3 > 0. Similarly β < 0 implies that

β < F ′ (x3) < 0 and 1−d < g′ (x3) < (1 − β)
2

if d ≥ 0, and 1 < g′ (x3) < (1 − β)
2−d

if d ≤ 0. Thus in case (ii), g (x3) is strictly increasing for all x3 > 0. In both cases
there is no nontrivial positive equilibrium and, by symmetry, no nontrivial negative
equilibrium. If c1 = 0 but c2 �= 0, then reversing the roles of x3 and x6 leads to the
same conclusions. If c1 = c2 = 0, then the results follow from Theorem 2.1.

Note that Theorem 3.1 does not specify all regions of parameter space in which
nontrivial equilibria occur. It does not provide information about the regions where
β is large and positive or where β is large and negative with d > 1. Moreover, the
number and signs of equilibria may depend on the values of c1 and c2 for a given d.
For example, if b = 2 (so that β = 8) and c1 = c2 = 0, then there is one positive
and one negative nontrivial equilibrium for each uncoupled loop (see Theorem 2.1) so
that for the full system (3.1) there are nine equilibria, three of which have x3 positive.
However, if the coupling goes only one way, e.g., c1 > 0 but c2 = 0, then there can be
two or four different positive equilibrium values for x3 when b > 1.

The special case of symmetric coupling c1 = c2 is now considered.

Theorem 3.2. Let b > 1. If c1 = c2 > 0, then system (3.1) has a positive
equilibrium x∗ = (x1, x2, x3, x1, x2, x3)

t
and an equilibrium −x∗; if c1 = c2 < 0, then

it has equilibria x̃∗ = (x1, x2, x3,−x1,−x2,−x3)
t
with xj > 0, j = 1, 2, 3, and −x̃∗.

Proof. Consider c1 = c2 > 0 and suppose that x3 = x6; then (3.2) reduces to

G (x3) ≡ x3 − F (x3) − c1f (x3) = 0

at an equilibrium. Note that G (0) = 0, limx3→∞ G (x3) = ∞ and G′ (0) = 1 − b3 −
c1b < 0. Thus there is at least one positive zero x3 of G (x3). Since x3 = x6 > 0, it
follows that x1 = x4 > 0 and x2 = x5 > 0. By symmetry, the negative equilibrium
follows.

Consider c1 = c2 < 0 and suppose that x3 = −x6; then (3.2) reduces to

G̃ (x3) ≡ x3 − F (x3) + c1f (x3) = 0

at an equilibrium. By the above there is at least one positive zero x3 of G̃ (x3). Then
x1, x2 > 0 and x4, x5, x6 < 0. Symmetry gives the second equilibrium.

Numerical solutions demonstrate that additional equilibria can occur: for c1 =
c2 > 0 (respectively, < 0) there may be one or three equilibria with x3 > 0, x6 < 0
(respectively, x3 < 0, x6 > 0) and an equal number of symmetric equilibria.
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The linear stability of the trivial equilibrium xj = 0, j = 1, . . . , 6, can be deter-

mined from dx
dt = Ax with x = (x1, . . . , x6)

t
and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 b 0 0 0
b −1 0 0 0 0
0 b −1 0 0 bc1
0 0 0 −1 0 b
0 0 0 b −1 0
0 0 bc2 0 b −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.(3.4)

The characteristic equation for this system at xj = 0 with d ≡ b2c1c2 and β ≡ b3 is[
(1 + λ)

3 − β
]2

− d (1 + λ)
4

= 0.(3.5)

First consider the case d ≥ 0. The characteristic equation then factors as follows:

∆+
+(λ)∆+

−(λ) ≡
[
(1 + λ)

3 − β +
√
d (1 + λ)

2
] [

(1 + λ)
3 − β −

√
d (1 + λ)

2
]

= 0.

(3.6)

From the single-loop results (see Theorem 2.2), if d = 0, then the origin is locally
asymptotically stable for −8 < β < 1 and unstable for β < −8 and β > 1. To find
the stability region for

√
d > 0, look for curves in the βd-plane on which there is a

zero or pure imaginary eigenvalue.
From (3.6), zero eigenvalues occur when 1−β = ±

√
d. Pure imaginary eigenvalues

λ = iω with ω > 0 make ∆+
+(λ) = 0 when their real and imaginary parts are zero,

namely,

1 − 3ω2 − β +
√
d
(
1 − ω2

)
= 0 and ω

(
3 − ω2 + 2

√
d
)

= 0.

The second condition above gives ω2 = 3 + 2
√
d, which can be substituted into the

first condition to yield β = −2(2 +
√
d)2. To make ∆+

−(λ) = 0, there is an analogous

condition where
√
d is replaced by (−

√
d), as long as ω2 = 3− 2

√
d > 0, i.e.,

√
d < 3

2 ,

namely, β = −2(2 −
√
d)2. Note that this curve intersects the parabola of zero

eigenvalues at β = − 1
2 , d = 9

4 . These curves are shown in Figure 3.1. It is clear by
continuity from the single-loop results (d = 0) that the region labeled “STABLE” in
the figure corresponds to linear stability of the origin. By picking points in the other
regions, it can easily be checked that the origin is unstable there.

In the case where d ≤ 0 in (3.5), factor the characteristic equation as

∆−
+(λ)∆−

−(λ) ≡
[
(1 + λ)

3 − β + i
√
−d (1 + λ)

2
] [

(1 + λ)
3 − β − i

√
−d (1 + λ)

2
]

= 0.

(3.7)

Now, λ = 0 when 1−β± i
√
−d = 0, i.e., only at the point β = 1 and d = 0. Working

with ∆−
+(λ) = 0, λ = iω implies that

β = 1 − 2
√
−dω − 3ω2 and

√
−d =

ω
(
ω2 − 3

)
(1 − ω2)

(if ω2 �= 1),(3.8)

giving β = 1 − 3ω2 − 2ω2
(
ω2 − 3

)
/
(
1 − ω2

)
. Working with ∆−

−(λ) = 0 gives this
same equation in β and ω.
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beta

d

-4
-2
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4

-12 -8 -4 -1 0 1 4

STABLE

STABLE

Fig. 3.1. Regions in the parameter plane indicating stability of the origin in the coupled loop
system (see (3.1)). The solid parabolic curve indicates parameter values where there is a zero eigen-
value. Dashed curves indicate parameter values where there are pure imaginary eigenvalues. The
linearly stable regions defined by these boundaries are marked. The shaded area indicates where
global stability of the origin has been proved.

The fact that
√
−d ≥ 0 implies that ω is in one of the intervals

(
−∞,−

√
3
]
,

(−1, 0], or
(
1,
√

3
]
. In these intervals, (3.8) can be considered parametric equations

for curves in the βd-plane. The curves are shown in Figure 3.1. Linear stability
can again be checked by examining eigenvalues at points within each region. In the
regions where d > 0 and β > 1 −

√
d, there are real positive eigenvalues, so the

origin is an unstable node. Everywhere else outside the stability region it can be
verified that there are complex conjugate pairs of eigenvalues with positive real parts,
suggesting the existence of stable oscillations. Note that the pair of positive real
eigenvalues becomes a complex pair with positive real part as d becomes negative
(β > 1) .

For equal coupling strengths, as in the case of the single loop, global stability of
the origin can be shown on a subset of the linear stability region.

Theorem 3.3. The origin is globally asymptotically stable for system (3.1) with
|c1| = |c2| ≡ c > 0 when |b| < 2

γ , where γ = 1 + 2c (B1 + 1) and B1 is the positive

root of the cubic 8c3B1 (1 + B1)
2

= 1.

The proof uses the Lyapunov function V =
∑6

j=1 aj x
2
j , where aj > 0 are given as

a1 = a4 = B1+B2

2 , a2 = a5 = 1
4c + B2

2 , a3 = a6 = 1
4c + B1+1

2 , and B2 =
√
B1/2c. De-

tails of the proof are omitted. The condition |b| < 2
γ can be interpreted in terms

of β and d by taking d = ±b2c21 (the sign depending on the sign of c1c2, with
|c1| = |c2|), and the resulting global stability region is the diamond-shaped region
in Figure 3.1. Note that it covers most of the local stability region in the positive
quadrant.
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4. Coupled loops with delay. The case with delayed coupling connections
between the 3-loops leads to the following system of delay differential equations:

dx1

dt
= −x1(t) + tanh (bx3(t)) ,

dx2

dt
= −x2(t) + tanh (bx1(t)) ,

dx3

dt
= −x3(t) + tanh (bx2(t)) + c1 tanh (bx6(t− τ)) ,(4.1)

dx4

dt
= −x4(t) + tanh (bx6(t)) ,

dx5

dt
= −x5(t) + tanh (bx4(t)) ,

dx6

dt
= −x6(t) + tanh (bx5(t)) + c2 tanh (bx3(t− τ)) ,

where τ ≥ 0 is the time delay, and when τ = 0 this reduces to (3.1). To pose an initial
value problem at t = 0, we must specify data for each variable on the interval [−τ, 0],
i.e., xj(t) = φj(t), −τ ≤ t ≤ 0, j = 1, . . . , 6.

The equilibria for (4.1) are the same as for (3.1); in particular, Theorem 3.1 is
also valid for (4.1). Using Theorem 2.1 of van den Driessche and Zou [20], we give
one global stability result for system (4.1): If |b|maxi{1 + |ci|} < 1, then the origin
is globally asymptotically stable for all values of delay τ ≥ 0. However, for other
parameter ranges the stability of the equilibria may change due to the delay. In the
next subsection we focus on the linear stability analysis of the trivial equilibrium.
This then leads us to a discussion of the bifurcations of the trivial equilibrium.

4.1. Stability regions. Linearization of (4.1) about the origin gives

x′(t) = A1x(t) + A2x(t− τ),(4.2)

where

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 b 0 0 0
b −1 0 0 0 0
0 b −1 0 0 0
0 0 0 −1 0 b
0 0 0 b −1 0
0 0 0 0 b −1

⎤
⎥⎥⎥⎥⎥⎥⎦
, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 bc1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 bc2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4.3)

The characteristic equation for this system with d ≡ b2c1c2 and β ≡ b3 is[
(1 + λ)3 − β

]2 − d(1 + λ)4e−2τλ = 0.(4.4)

Section 3 describes the stability region of the trivial equilibrium when τ = 0 (see
Figure 3.1). To determine the stability region for τ > 0, we determine curves in the
dτ -plane along which (4.4) has a zero root or a pair of pure imaginary roots. Given
values of β and d for which the trivial equilibrium is stable at τ = 0, it remains so for
0 ≤ τ ≤ τcrit, where τcrit is the lowest value of τ on one of these curves.

First consider the case d ≥ 0. The characteristic equation then factors as

∆+
+(λ)∆+

−(λ)
(4.5)

≡
[
(1 + λ)3 − β + (1 + λ)2

√
de−τλ

] [
(1 + λ)3 − β − (1 + λ)2

√
de−τλ

]
= 0.

As for the nondelayed case, zero roots occur when d = (1 − β)2 ≡ d0.
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Lemma 4.1. Let β and τ be fixed.
(i) If β < 1 and τ �= 2 + 3

β−1 , then ∆+
−(λ) has a simple zero root when d = d0;

the number of roots of (4.4) with positive real part increases (decreases) by
one as d increases through d0 with τ > 2 + 3

β−1 (τ < 2 + 3
β−1).

(ii) If β > 1 and τ �= 2 + 3
β−1 , then ∆+

+(λ) has a simple zero root when d = d0;

the number of roots of (4.4) with positive real part increases (decreases) by
one as d increases through d0 with τ > 2 + 3

β−1 (τ < 2 + 3
β−1).

(iii) If β = 1, both factors of (4.5) have a simple zero root when d = d0 = 0.
(iv) If β < 1 (β > 1) and τ = 2 + 3

β−1 , then ∆+
−(λ) (∆+

+(λ)) has a double zero
root when d = d0.

Proof. The presence of zero roots follows from the facts that ∆+
+(0) = 0 when√

d = β − 1 and ∆+
−(0) = 0 when

√
d = 1 − β. For case (iv), note that

d

dλ
∆+

±(λ) = 3(1 + λ)2 ± 2(1 + λ)
√
de−τλ ∓ τ(1 + λ)2

√
de−τλ.

Thus, if
√
d = ±(β − 1) and τ = 2 + 3

β−1 , then d
dλ∆+

±(0) = 0. The fact that zero is a

simple root in cases (i)–(iii) also follows from this derivative.
To study the rate of change of the real part of a root, λ, of (4.5), consider either

factor of this equation. For d > 0, differentiating with respect to d, keeping in mind
that λ is a function of d, and rearranging give

dλ

d d
=

±(1 + λ)2
√
de−τλ

−6d(1 + λ)2 ∓ 4d(1 + λ)
√
de−τλ ± 2dτ(1 + λ)2

√
de−τλ

,

where the upper sign in ±, ∓ refers to ∆+
+ and the lower sign to ∆+

−. Using (4.5) to

eliminate ±
√
de−τλ and setting λ = 0 and d = d0 yield

dλ

d d

∣∣∣∣
λ=0

=
1

2(β − 1)[(τ − 2)(β − 1) − 3]
.

Consideration of the sign of the right-hand side completes the proofs of (i) and
(ii).

For d > 0, to find the curves where pure imaginary roots exist, set λ = iω in each
factor of (4.5) and separate into real and imaginary parts. Without loss of generality,
take ω > 0. For ∆+

+(λ), isolating sin (ωτ) and cos (ωτ) yields

(1 + ω2)2
√
d cos(ωτ) = −

(
(1 + ω2)2 − β(1 − ω2)

)
≡ −C(ω),

(1 + ω2)2
√
d sin(ωτ) = ω

(
(1 + ω2)2 + 2β

)
≡ S(ω).

(4.6)

To find d and τ in terms of β and ω, square the equations in (4.6) and add to give

d = dim(ω) ≡ (1 + ω2)3 + 2β(3ω2 − 1) + β2

(1 + ω2)2
.(4.7)

Dividing the second equation of (4.6) by the first gives tan(ωτ) = −S (ω) /C (ω).
However, this loses information about the signs of cos(ωτ) and sin(ωτ) that is in
(4.6). Thus we introduce y = Arctan(u) as the branch of the arctangent function
with range (−π

2 ,
π
2 ). Note that this corresponds to cos(y) > 0 and that the function



326 S. A. CAMPBELL, R. EDWARDS, AND P. VAN DEN DRIESSCHE

Arctan(u) + π corresponds to cos(y) < 0. The other branches of the arctangent
function are obtained from these two by adding multiples of 2π. As can be seen from
(4.6), the sign of cos(ωτ) is determined by C(ω), and thus we define

τ = τ+
k+(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(
−S(ω)

C(ω)

)
+ 2kπ, C(ω) < 0,

Arctan
(
−S(ω)

C(ω)

)
+ (2k + 1)π, C(ω) > 0,

(4.8)

where k = 0, 1, . . . . (We do not take k < 0 as these branches always yield τ < 0.)

In a similar manner it can be shown that the curves along which the second
factor, ∆+

−(λ), of (4.5) has a pair of pure imaginary roots are given by (d, τ) =
(dim(ω), τ+

k−(ω)), where dim is as above and

τ+
k−(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(
−S(ω)

C(ω)

)
+ 2kπ, C(ω) > 0,

Arctan
(
−S(ω)

C(ω)

)
+ (2k + 1)π, C(ω) < 0.

(4.9)

The zeros of C(ω) define the points where the branches join. To see how the sign
of C(ω) varies with β and ω, rewrite the first equation of (4.6) as a quartic in ω,
namely, C(ω) = ω4 + (2 + β)ω2 + 1 − β. The roots of this quartic are ±ω+

C ,±ω−
C ,

where

ω±
C =

√
−1 − β

2
± 1

2

√
β(β + 8).(4.10)

All four roots exist if β ≤ −8 (with ω+
C = ω−

C when β = −8), no roots exist if

−8 < β < 1, and only ±ω+
C exists if β ≥ 1 (ω+

C = 0 when β = 1). This yields the
following ranges:

β < −8 : C(ω) > 0 for 0 < ω < ω−
C , ω+

C < ω,

C(ω) < 0 for ω−
C < ω < ω+

C ,

−8 ≤ β ≤ 1 : C(ω) > 0 for 0 < ω, ω �= ω±
C ,

1 < β : C(ω) < 0 for 0 < ω < ω+
C ,

C(ω) > 0 for ω+
C < ω.

Now consider the case d < 0. The characteristic equation factors as

(4.11)

∆−
+(λ)∆−

−(λ)

≡
[
(1 + λ)3 − β + i(1 + λ)2

√
−de−τλ

] [
(1 + λ)3 − β − i(1 + λ)2

√
−de−τλ

]
= 0.

Clearly, neither factor has a zero root. Note that λ is a root of ∆−
+(λ) iff λ̄ is a

root of ∆−
−(λ). This is a consequence of the fact that the roots of the unfactored

characteristic equation (4.4) come in complex conjugate pairs. Following a similar
procedure to that for d > 0, pure imaginary roots iω,−iω with ω > 0, of the first
and second factors, respectively, exist along the curves (d, τ) = (−dim(ω), τ−k+(ω)).
Similarly, pure imaginary roots −iω, iω with ω > 0, of the first and second factors,
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respectively, exist along the curves (d, τ) = (−dim(ω), τ−k−(ω)). Here

τ−k+(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(

C(ω)
S(ω)

)
+ 2kπ, S(ω) < 0,

Arctan
(

C(ω)
S(ω)

)
+ (2k + 1)π, S(ω) > 0,

(4.12)

τ−k−(ω) ≡ 1

ω

⎧⎪⎨
⎪⎩

Arctan
(

C(ω)
S(ω)

)
+ 2kπ, S(ω) > 0,

Arctan
(

C(ω)
S(ω)

)
+ (2k + 1)π, S(ω) < 0.

(4.13)

The zeros of S(ω) define the points where the branches join. To make the definitions

of τ−k± more precise, the sign of S(ω) with ωS =
√√

−2β − 1 is given as follows:

β < − 1
2 : S(ω) < 0 for 0 < ω < ωS ,

S(ω) > 0 for ωS < ω,
β ≥ −1

2 : S(ω) > 0 for 0 < ω.

To determine what these curves look like, we use the following results that are
derived by using L’Hôpital’s rule. Note that we consider only τ ≥ 0.

Lemma 4.2. For the functions in (4.7)–(4.9), (4.12), (4.13),

dim(0) = d0, lim
ω→∞

dim(ω) = ∞; lim
ω→∞

τ±k± = 0;

lim
ω→0+

τ+
k± = ∞, k > 0; lim

ω→0+
τ+
0 + =

{
2 + 3

β−1 , β > 1,

∞, β ≤ 1;

lim
ω→0+

τ+
0− =

⎧⎨
⎩

∞, β > 1,
−∞, β = 1,

2 + 3
β−1 , β < 1;

lim
ω→0+

τ−k± = ∞, k > 0; lim
ω→0+

τ−0 + =

{ −∞, β < − 1
2 ,

∞, β ≥ − 1
2 ;

lim
ω→0+

τ−0− =

⎧⎨
⎩

∞, β < 1,
1, β = 1,

−∞, β > 1.

Lemma 4.3. For 1
2 (5 − 3

√
3) ≤ β ≤ 12 − 4

√
5, i.e., β approximately ∈ [−0.0981,

3.0557], dim(ω) is a nondecreasing function of ω. Outside this interval it is nonmono-
tone and has the following behavior. For β < 1

2 (5−3
√

3) or β ≥ 1
2 (5+3

√
3) ≈ 5.0981,

there exists ωc > 0 such that dim(ω) is decreasing for 0 < ω < ωc and increasing for
ω > ωc. For 12− 4

√
5 < β < 1

2 (5 + 3
√

3), there exist 0 < ωc1 < ωc2 such that dim(ω)
is increasing for 0 < ω < ωc1 and ω > ωc2 and decreasing for ωc1 < ω < ωc2.

Proof. From (4.7) it is clear that

d dim
dω

= 2ω
ω6 + 3ω4 + 3(1 − 2β)ω2 + 2β(5 − β) + 1

(1 + ω2)3
;(4.14)

thus the sign of d dim

dω is determined by Ω3 + 3Ω2 + 3(1− 2β)Ω + 2β(5− β) + 1, where
Ω = ω2. Consideration of the sign of the constant term shows that the cubic has an
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even number of positive roots if β ∈ [ 12 (5 − 3
√

3), 1
2 (5 + 3

√
3)) and an odd number

otherwise. The discriminant of this cubic is a positive multiple of −β2(β2−24β+64),
which is nonnegative for β ∈ [12 − 4

√
5, 12 + 4

√
5] and negative otherwise. Thus

outside this interval the cubic has one real root, and inside it has three. For β ∈
[ 12 (5 − 3

√
3), 12 − 4

√
5), the cubic has no positive roots and at β = 12 − 4

√
5 it

has a double positive root. Consideration of the graph of the cubic in Ω shows that
d dim

dω ≥ 0 for β ∈ [ 12 (5−3
√

3), 12−4
√

5], and hence dim(ω) is a nondecreasing function

of ω. For β < 1
2 (5 − 3

√
3) or β ≥ 1

2 (5 + 3
√

3) the cubic has one positive root, Ωc.

Let ωc =
√

Ωc. For 12 − 4
√

5 < β < 1
2 (5 + 3

√
3), the cubic has two positive roots

Ωc1 < Ωc2. Let ωcj =
√

Ωcj . The results follow from the graph of the cubic.
Lemma 4.4. For fixed β, τ , the number of roots of (4.4) with positive real part in-

creases (decreases) by two as τ increases through one of the curves (d, τ) = (dim, τ+
k±),

where dim is an increasing (decreasing) function of ω. The number of roots of (4.4)
with positive real part increases (decreases) by two as τ increases through one of the
curves (d, τ) = (−dim, τ−k±), where −dim is a decreasing (increasing) function of ω.

Proof. Consider the first factor of (4.5). Differentiating with respect to τ gives

dλ

dτ
=

λ(1 + λ)
√
de−τλ

3(1 + λ) +
√
de−τλ(2 − τ(1 + λ))

.

Using (4.5) to eliminate e−τλ and setting λ = iω yield

dλ

dτ

∣∣∣∣
λ=iω

=
iω

[
β + 4ω2 − (1 − ω2)2 + iω(β − 4(1 − ω2))

]
1 − 3ω2 + 2β − τ(β + 4ω2 − (1 − ω2)2) + iω[3 − ω2 − τ(β − 4(1 − ω2))]

.

Taking the real part gives

d [Re(λ)]

dτ

∣∣∣∣
λ=iω

=
ω2

K2
1 + K2

2

(
ω6 + 3ω4 + 3(1 − 2β)ω2 + 2β(5 − β) + 1

)
,

where

K1 = 1 − 3ω2 + 2β − τ(β + 4ω2 − (1 − ω2)2), K2 = ω[3 − ω2 − τ(β − 4(1 − ω2))].

The second factor of (4.5) or either factor of (4.11) yields the same expression. Using
(4.14) gives

d [Re(λ)]

dτ

∣∣∣∣
λ=iω

=
ω(1 + ω2)3

2(K2
1 + K2

2 )

d dim
dω

,

along the curves associated with pure imaginary roots of (4.5). Along the curves asso-
ciated with pure imaginary roots of (4.11), dim is replaced by −dim so the derivative
is of opposite sign. The result follows.

From section 3, when τ = 0 and β < − 1
2 the characteristic equation has a

pair of pure imaginary roots λ = ±i
√
−1 +

√
−2β = ±iωS at the positive value

d = d+ ≡ (2 −
√
−β/2)2. Similarly, when τ = 0 and β ≤ −8 the characteristic

equation has pairs of pure imaginary roots λ = ±iω+
C ,±iω−

C , as defined in (4.10), at
the following negative values of d:

d−± ≡ −ω± 2
C (ω± 2

C − 3)2

(1 − ω± 2
C )2

.
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The roots at d−+ also occur when β > 1. Note that d+ must correspond to the
value of dim when τ = 0 and d−± to values of −dim when τ = 0. More specif-
ically, the definitions (4.8)–(4.9) and (4.12)–(4.13) of τ±k± give the following. For

β ≤ −8, d+ is the d intercept of the curve (dim(ω), τ+
0 +(ω)) and d−∓ are the d in-

tercepts of the curves (−dim(ω), τ−0±(ω)). For −8 < β < − 1
2 , d+ is the d inter-

cept of the curve (dim(ω), τ+
0−(ω)). For β > 1, d−+ is the d intercept of the curve

(−dim(ω), τ−0−(ω)).

We now describe the region of stability of the trivial equilibrium in the dτ -plane
for intervals of values of β by finding bifurcation curves on which an eigenvalue has
zero real part. This is the content of the rest of this section. Theorem 4.5 is illustrated
(using Maple) in Figure 4.1(a) with β = 1.5, Theorem 4.6 is illustrated in Figure 4.1(b)
with β = 0.1, and Theorem 4.7 is illustrated in Figure 4.4 with β = −10.

Theorem 4.5. Let 1 ≤ β ≤ 12 − 4
√

5 be fixed. Then the trivial solution of (4.1)
is linearly asymptotically stable for d < d−+, 0 ≤ τ < τ−0−.

Proof. From section 3, for τ = 0 and β ≥ 1, all roots of the characteristic
equation have negative real parts if d < d−+ (see Figure 3.1). For fixed β and d, as τ is
increased the number of roots with positive real parts remains the same until τ reaches
the smallest value for which the characteristic equation has a pair of pure imaginary
roots. This value is τ−0−. To see this, note from Lemma 4.4 that dim is a continuous

nondecreasing function of ω with 0 ≤ d0 ≤ dim < ∞ and that d−+ < −d0. Thus for
any fixed d < d−+ there is one positive value of ω such that −dim(ω) = d. Further, it
is straightforward to show that, for any value of ω, τ−0−(ω) < τ−0 +(ω) < τ−k±(ω) for
k = 1, 2, . . . . Thus all the roots of the characteristic equation have negative real parts
in the given range of d and τ . Applying the results of Lemma 4.4 shows there is at
least one root of the characteristic equation with positive real part everywhere else in
the dτ -plane.

(a) (b)
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2

4

6

8

10

τ

–4 –2 2 4
d

β=1.5

0

2

4

6

8

10

τ

–4 –2 2 4
d

β=0.1

Fig. 4.1. Bifurcation curves for the trivial solution of (4.1) for (a) β = 1.5, (b) β = 0.1. The
stability region is qualitatively the same for (a) 1 ≤ β ≤ 12 − 4

√
5, (b) 1

2
(5 − 3

√
3) ≤ β < 1. Along

the solid (dashed) curves with d > 0, ∆+
−(λ) (∆+

+(λ)) has a pair of pure imaginary roots. Along

the solid (dashed) vertical line d = d0, ∆+
−(λ) (∆+

+(λ)) has a zero root. Along the solid (dashed)

curves with d < 0, ∆−
−(λ) (∆−

+(λ)) has a root iω with ω > 0 and ∆−
+(λ) (∆−

−(λ)) has the complex
conjugate root −iω.
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Fig. 4.2. (a) Bifurcation curves for the trivial solution of (4.1) for β = 3.5. (b) Close-up
showing stability region. The meaning of the solid and dashed curves are as described for Figure 4.1.

Theorem 4.6. Let 1
2 (5−3

√
3) ≤ β < 1 be fixed. Then the trivial solution of (4.1)

is linearly asymptotically stable for −d0 ≤ d < d0, 0 ≤ τ or d < −d0, 0 ≤ τ < τ−0−.

Proof. From section 3, for τ = 0 and 1
2 (5 − 3

√
3) ≤ β < 1, all roots of the

characteristic equation have negative real parts if d < d0 (see Figure 3.1). Using the
same argument as in the proof of Theorem 4.5, it can be shown that all roots of the
characteristic equation have negative real parts for d < −d0 and 0 ≤ τ < τ−0−. From
Lemma 4.3, dim is a monotone function of ω for the assumed β range. Thus, using
Lemma 4.2 for ω > 0, dim(ω) ≥ dim(0) = d0 and −dim(ω) ≤ −dim(0) = −d0. Hence
for −d0 ≤ d < d0 and τ ≥ 0 all roots of the characteristic equation have negative real
parts. The rest of the proof is the same as for Theorem 4.5.

When β no longer lies in the first range given in Lemma 4.3, the curves along
which the characteristic equation has pure imaginary roots become nonmonotone.
This has two consequences. First, there will be values of ω such that dim(ω) < d0,
and second, there may exist intersection points of the curves (dim(ω), τ+

j ±(ω)) and

(−dim(ω), τ−j ±(ω)) with each other and with the line d = d0. In this situation, the

boundary of the stability region is made up of pieces of the curves (dim(ω), τ+
j ±(ω))

and (−dim(ω), τ−j ±(ω)) and of the line d = d0.

Consider first the case β > 12 − 4
√

5. For this range of β, we observe that
(d, τ) = (−dim, τ−0−) intersects itself. The stability region is still bounded by the d

axis for d < d−+ and the curve (−dim(ω), τ−0−(ω)). However, part of the curve now
forms a loop, inside which the trivial solution is unstable (this may be verified by
applying Lemma 4.4). This is illustrated in Figure 4.2 with β = 3.5. We believe that
the stability region is qualitatively the same for any β > 12 − 4

√
5.

Now consider the range β < 1
2 (5 − 3

√
3). For β ≤ − 1

2 part of the curve of pure

imaginary eigenvalues (dim(ω), τ+
0−(ω)) enters the nonnegative τ region (this can be

seen from the limits in Lemma 4.2). Using this fact, the discussion above, and the
results of Lemmas 4.2 and 4.3, it can be shown that for − 1

2 ≤ β < 1
2 (5 − 3

√
3) the

stability region looks qualitatively as depicted in Figure 4.3(a) and for −8 < β < − 1
2

it looks qualitatively as depicted in Figure 4.3(b).
As β is decreased, the curves of pure imaginary eigenvalues approach the τ axis

(and the stability region shrinks) until at β = −8 their points of minimal d value
actually touch the τ axis. Recall that for β < −8, the curves (−dim(ω), τ−0−(ω))
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(a) (b)

STABLE STABLE

0

2

4

6

8

10

τ

–4 –2 2 4
d

β=−0.4

0

2

4

6

8

10

τ

–4 –2 2 4
d

β=−1

Fig. 4.3. Bifurcation curves for the trivial solution of (4.1) for (a) β = −0.4, (b) β = −1. The
stability region is qualitatively the same for (a) − 1

2
≤ β < 1

2
(5 − 3

√
3), (b) −8 < β < − 1

2
. The

meaning of the solid and dashed curves is as described for Figure 4.1.

and (−dim(ω), τ−0 +(ω)) intersect the d axis at d−+ and d−−, respectively. From their

definitions, (4.12)–(4.13), and the fact that d−− < d−+, these curves must have an
intersection point. We denote this point by (dint, τint) and have the following result,
illustrated in Figure 4.4, for β = −10.

Theorem 4.7. Let β ≤ −8 be fixed. Then the trivial solution of (4.1) is linearly
asymptotically stable for d < d−−, 0 ≤ τ < τ−0− or d−− ≤ d < dint, τ

−
0 + < τ < τ−0−.

Proof. From section 3, for τ = 0 and β ≤ −8, all the roots of the characteristic
equation have negative real parts if d < d−− (see Figure 3.1). Using the same argument
as in the proof of Theorem 4.5, it can be shown that all roots of the characteristic
equation have negative real parts for d < d−− and 0 ≤ τ < τ−0−. For τ = 0 and

d−− < d < d−+, the characteristic equation has two roots with positive real parts.

(a) (b)
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Fig. 4.4. (a) Bifurcation curves for the trivial solution of (4.1) for β = −10. (b) Close-up
showing stability region. The stability region is qualitatively the same for any β ≤ −8. The meaning
of the solid and dashed curves is as described for Figure 4.1.
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Applying Lemma 4.4 shows that the number of roots with positive real parts decreases
by two along the part of (−dim(ω), τ−0 +(ω)), where −dim is increasing, and increases

by two along the part of
(
−dim(ω), τ−0−(ω)

)
, where −dim is decreasing. The rest of

the proof is the same as for Theorem 4.5.

4.2. Bifurcations. In the previous subsection, we determined all points in pa-
rameter space where the trivial solution of (4.2) has eigenvalues with zero real parts.
The bifurcations that may occur at such points as a system parameter is varied are
important, particularly when they lie on the boundary of the stability region, as they
determine the observable behavior of the system.

Consider first the case when a zero root of (4.4) exists. This occurs for parameter
values along the line d = d0. For β �= 1, it can be shown that the conditions for
a pitchfork bifurcation to occur are satisfied at almost all points on this line. In
particular, taking d as the bifurcation parameter, Lemma 4.1 shows that the root is
simple for β �= 1 and τ �= 2 + 3

β−1 . To ensure that the characteristic equation has
no other roots with zero real part, the points of intersection of the line d = d0 with
the curves (dim(ω), τ+

± (ω)) and (−dim(ω), τ−± (ω)) must also be excluded. In terms of
the original model parameters, taking d as the bifurcation parameter is equivalent to
fixing b, τ , and one of the cj and using the other cj as the bifurcation parameter.

Consider now the case when a pair of pure imaginary roots of (4.4) exists. This
occurs for parameter values on the curves (dim(ω), τ+

± (ω)) and (−dim(ω), τ−± (ω)). A
statement of the Hopf bifurcation theorem for delay equations can be found in [12,
Chapter 11]. It can be shown that this theorem is satisfied at almost all points on these
curves. In particular, taking τ as the bifurcation parameter, Lemma 4.4 shows that
the roots are simple at all points where ddim

dω �= 0. To ensure that the characteristic
equation has no other roots with zero real part, the points of intersection of each
curve with d = d0 and the other curves where pure imaginary roots exist must be
excluded.

If there is slightly more symmetry in the model, then some interesting patterns
in the bifurcating solutions emerge. Suppose that c1 = c2 = c, as in parts of section 3
(e.g., Theorem 3.2), implying that d = b2c2 > 0. In this case, only the pitchfork bifur-
cation and the Hopf bifurcations along (dim(ω), τ+

± (ω)) can occur. Consider the bifur-
cations that occur at a point in parameter space where ∆+

−(λ) has a root with zero real
part. (This corresponds to the solid curves in the figures of the previous subsection.)
When bc > 0 it is straightforward to show that the solution of (4.2) corresponding
to a root λ of ∆+

−(λ) has the form eλt(y1, y2, y3, y1, y2, y3)
t. Thus we expect that the

bifurcating solutions have a similar property—namely, the corresponding elements of
the two loops are in phase, or synchronized. Similarly, when bc < 0 the solution of
(4.2) corresponding to a root λ of ∆+

−(λ) has the form eλt(y1, y2, y3,−y1,−y2,−y3)
t,

and we expect the bifurcating solutions have corresponding elements of the two loops
antiphase (or half a period out of phase). The solutions corresponding to roots of
∆+

+(λ) have just the opposite property. When bc > 0 they are antiphase and when
bc < 0 they are in-phase. When c1 �= c2 but c1 ≈ c2, we expect that bifurcating
solutions are almost in-phase or almost antiphase. Such behavior was observed in
[18].

Now suppose that c1 = −c2 = c, implying that d = −b2c2 < 0. In this case, only
Hopf bifurcations along the curves (−dim(ω), τ−± (ω)) occur. When the characteristic
equation has a pair of roots λ = ±iω, corresponding solutions of (4.2) have the
form eλt(y1, y2, y3,±iy1,±iy2,±iy3)

t. Thus corresponding elements of the bifurcating
periodic orbits are one quarter period out of phase. When c1 �= −c2 but c1 ≈ −c2,



DELAYED COUPLING BETWEEN TWO NEURAL NETWORK LOOPS 333

(a) (b)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X1,X4

0 20 40 60 80 100 120 140
t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X1,X4

0 20 40 60 80 100 120 140
t

Fig. 4.5. Numerical simulations of (4.1) with b = −1, c1 = c2 = 1.75. The plots in each
case show x1 (solid line) and x4 (dot-dash line) vs. t. (a) τ = 0.3; periodic orbit with x4(t) =
−x1(t). (b) τ = 1.5; periodic orbit with x4(t) = x1(t). Initial conditions for both cases x(t) =
(1,−0.7,−0.9, 1.1, 0.8, 1.2)t, −τ ≤ t ≤ 0.
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Fig. 4.6. Numerical simulations of (4.1) with b = −1, τ = 0.5, and c1 = −c2. The plots
in each case show x1 (solid line) and x4 (dot-dash line) vs. t. (a) c1 = 1.75; periodic orbit with
x4(t) = x1(t − T

4
), where T is the period. (b) c1 = −1.75; periodic orbit with x4(t) = x1(t + T

4
).

Initial conditions as for Figure 4.5.

we expect that bifurcating solutions are close to one quarter period out of phase.

These results are illustrated in Figures 4.5–4.6, showing numerical simulations of
(4.1), with b = −1 and other parameters as indicated, which correspond to points in
the stability diagram of Figure 4.3(b). Only x1 and x4 are shown in Figures 4.5–4.6;
solutions for other pairs are similar. Simulations were performed in XPPAUT [6]
using a fourth order Runge–Kutta integrator adapted for delay differential equations.

5. Discussion. Combining local and global results with numerical evidence, we
arrive at the following summary of the dynamics of these loops. Results are given
in terms of β = b3 and d = b2c1c2, where b is the gain of the response function
for each neuron and ci are the coupling strengths between the 3-loops. The loops
are inherently (i.e., in isolation) oscillatory for β < −8. The origin is proved to be
globally stable for β ∈ (−2

√
2, 1), and numerical evidence extends this to (−8, 1). For
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β > 1 the solutions approach a nontrivial stable fixed point (the origin is unstable).

The effect of coupling depends on whether it is symmetric (excitatory in both
directions or inhibitory in both directions) or asymmetric (excitatory in one direc-
tion and inhibitory in the other). It is interesting that the linear stability analysis
is identical for excitatory and inhibitory coupling, as long as it is the same in both
directions, as it depends essentially on the product of the two coupling coefficients.
This was also noted in the somewhat similar situation studied by Shayer and Camp-
bell [18]. Symmetric coupling of sufficient strength (not necessarily very strong) can
destabilize the origin in the middle (inherently stable) β range. When β ∈ (− 1

2 , 1),
the system goes to nontrivial fixed points, but when β ∈ (−8,− 1

2 ), it first goes to
oscillation as coupling is increased. Asymmetric coupling of sufficient strength (and
here it needs to be quite strong) can stabilize the origin in either of the two inherently
unstable ranges. The further β is from the inherently stable range, the stronger the
coupling needs to be to accomplish this stabilization. In the case of symmetric cou-
pling, nontrivial equilibria exist when β is large enough, but there are no nontrivial
equilibria for smaller β when the coupling is weak. In the case of asymmetric cou-
pling, there are no nontrivial equilibria for β < 1. It is not clear whether nontrivial
equilibria occur for other regions of parameter space. For most regions, oscillation of
the system is suggested when the linear results show that the origin is unstable.

We have observed five main delay-related phenomena in this system.

1. When coupling is asymmetric (d < 0) and large, the stability of the origin
is weak in the sense that only a small delay is needed to destabilize it and
produce oscillation. This is delay-induced oscillation or delay-induced insta-
bility, which has commonly been observed in delayed networks since the early
work of Marcus and Westervelt [15].

2. In the inherently stable range β ∈ (−8, 1), delay independent stability exists
for weak enough coupling (|d| small) whether symmetric or asymmetric.

3. For intermediate values of |d| and β ∈ (−8,−0.098), whether the system
oscillates or settles at the origin depends on the delay in a complex way. For
some delay ranges, the origin is stable, and for others it is unstable, and there
can be stability/instability switches as the delay increases.

4. For β ∈ (−8,− 1
2 ), if coupling is symmetric and fairly strong (d > 0 and large

but still < (1− β)2), in the region where coupling has destabilized the origin
to create oscillation, there is an intermediate range of delays (not including
zero but not too large) that stabilizes the origin again and suppresses the
oscillations. This is delay-induced stability or oscillator death.

5. For equal and symmetric coupling strengths, oscillatory solutions in the two
loops bifurcating from the origin may be in phase or antiphase depending
on the value of the delay. For asymmetric coupling with equal strengths,
corresponding neurons in the two loops oscillate one quarter period out of
phase.

Some of these results are similar to those found by Shayer and Campbell [18] for
a simpler coupled system. However, their work focused on the symmetric coupling
case.

Some properties of coupled systems that can each potentially oscillate begin to
emerge from these studies—in particular, the ways in which oscillation or instability
depends on the interaction between coupling strength and coupling delay. Although
the system studied here is too simple to draw definite conclusions about physiological
systems, results do show that complicated effects can occur even in the simplest
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coupled loops with delay. This study could be extended by investigating other patterns
of coupling between two loops, such as “lateral” coupling between each corresponding
pair of units in the two loops (if the loops have the same structure), or “forward”
coupling as studied without delays by Edwards and Gill [5]. For applications in which
the units are far apart, it would be worthwhile to include delays in connections within
each loop.
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