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Abstract
We consider a ring of identical elements with time delayed, nearest-neighbour
coupling. The individual elements are modelled by a scalar delay differential
equation which includes linear decay and nonlinear delayed feedback. The
bifurcation and stability of nontrivial asynchronous oscillations from the trivial
solution are analysed using equivariant bifurcation theory and centre manifold
construction.
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1. Introduction

The work of Golubitsky et al [12] shows that systems with symmetry can lead to many
interesting patterns of oscillation, which are predictable based on the theory of equivariant
bifurcations. In a series of papers, Wu and co-workers [20, 21, 29] extended the theory of
equivariant Hopf bifurcation to systems with time delays (functional differential equations). It
should be noted that this theory predicts the possible patterns of oscillation in a system solely
on the symmetry structure of the system. To understand which patterns occur in a particular
system and whether they are stable, one needs to consider a specific model for a system.

With this in mind, there has been interest in applying these results to models related to
the Hopfield–Cohen–Grossberg neural networks [8, 13, 14, 18, 19] with time delays [22, 24].
Such models make an ideal test bed for this theory as the models for the individual elements
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Figure 1. Architecture of a network of n neurons with two different time delays. τs , α are the time
delay and strength of the connection of each element to itself. τ, β are the time delay and strength
of the connections between different elements.

are quite simple (one variable for each element), yet with the introduction of time delays the
behaviour can be quite complex. The focus of this work has been on networks with a ring
structure with nearest-neighbour (bi-directional) coupling between the elements. This leads to
a system with Dn symmetry, i.e. a system which has the symmetries of a polygon with n sides of
equal length. Most of these studies have concerned lower dimensional systems (e.g. [6,25,30])
and/or systems with a single time delay [16, 29, 30]. There is also work on Hopfield–Cohen–
Grossberg networks with a ring structure and uni-directional coupling [1,5,7,28]. These studies
did not consider identical elements, however, and thus did not use the theory of equivariant
bifurcations.

Other work on systems with symmetry and time delays includes that of Orosz and
Stépán [26], who studied a quite general system with translational symmetry and one time
delay using centre manifold and normal form analysis. They applied their results to a two-
dimensional car following model with periodic boundary conditions, which leads to a system
with a ring structure and uni-directional coupling. Orosz et al [27] studied the n-dimensional
version of this model using local bifurcation theory and numerical continuation analysis.

Here we will consider a Hopfield–Cohen–Grossberg network consisting of n identical
elements with time delayed nearest-neighbour coupling, as illustrated schematically in figure 1.
The individual elements are represented by a scalar equation, consisting of a linear decay term
and a nonlinear, time delayed self-connection (feedback) giving the following model of the
network:

ẋi (t) = −xi(t) + αf (xi(t − τs)) + β [g(xi−1(t − τ)) + g(xi+1(t − τ))], i(mod n).

(1)

Here τ represents the time delay in the connections between different elements and τs the time
delay in the self-connection. This is a generalization to arbitrary n of the model of [6,25]. The
main difference from the model considered by [16, 29] is that there are different time delays
in the self-connections and the connections between elements. This adds some complications
to the analysis but, as we shall show, also allows for more interesting behaviour of the system.
In [31] we analysed the linear stability of the trivial solution of (1) and the bifurcation and
stability of nontrivial synchronous solutions from the trivial solution. In order to describe
the existence and stability of asynchronous patterns of oscillation in this network, we must
consider the points of equivariant Hopf bifurcation. This is the goal of this work.
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To begin, we give some assumptions and background about our model. We will assume
that the nonlinearities f, g are adequately smooth, e.g. f, g ∈ C3, satisfy the following
normalization conditions:

f (0) = g(0) = 0, f ′(0) = g′(0) = 1, f ′′(0) = g′′(0) = 0 (2)

and satisfy at least one of the following nondegeneracy conditions:

f ′′′(0) �= 0, g′′′(0) �= 0. (3)

An example of such a function is (1/γ ) tanh(γ x), which we will use for our numerical studies.
The delays will be taken to be nonnegative, τ, τs � 0, but the connection strengths have
no sign restriction. Positive/negative connection strengths correspond to excitatory/inhibitory
connections. We note that when n = 2, the model is not in the ‘natural’ setup; however, it can
be transformed to this by rescaling 2β to β.

When isolated, each of the individual elements of equation (1) satisfies the scalar delay
differential equation

ẋi (t) = −xi(t) + αf (xi(t − τs)). (4)

It is well known (see, e.g. [5]) that for f satisfying conditions such as (2), the trivial solution
always exists and is locally asymptotically stable if

−1 � α < 1 and τs � 0,

α < −1 and 0 � τs <
1√

α2 − 1
Arccos

(
1

α

)
def= τH

s

(5)

and unstable if

α > 1 and τs � 0,

α < −1 and τs > τH
s .

(6)

Further, there is a steady state bifurcation at α = 1 and a Hopf bifurcation at τ = τH
s when

α < −1. We can thus consider our model as a ring of n identical coupled oscillators with
time delayed, nearest-neighbour coupling. This makes it a natural extension to systems with
time delay of the work of Golubitsky et al [12, chapter XVIII] on rings of coupled oscillators.
In particular, since we have different time delays in the self-connections and those between
elements, we can focus on the oscillations produced by the network parameters τ and β.

The outline of this paper is as follows. In section 2 we briefly review some relevant results
from our previous work [31] and some background and notation from the theory of delay
differential equations and equivariant bifurcations. In section 3 we describe the existence
of asynchronous oscillations in our system via an equivariant Hopf bifurcation theorem. In
section 4 we study the criticality and stability of these solutions using a centre manifold
construction. In section 5 we compare our theoretical results with those from numerical
continuation for a particular example. Finally, in section 6 we discuss the implications of our
results.

2. Preliminaries

From conditions (2) it is clear that (1) admits the trivial solution, x∗ = 0, and that the
linearization of (1) at this equilibrium point is

u̇i(t) = −ui(t) + αui(t − τs) + β[ui−1(t − τ) + ui+1(t − τ)] i(mod n). (7)

In vector form, this can be written as

u̇(t) = −Iu(t) + αIu(t − τs) + βMu(t − τ), (8)
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where I is the n × n identity matrix and

M =




0 1 0 · · · 1
1 0 1 · · · 0
0 1 0 · · · 0
...

...
... · · · ...

1 0 0 · · · 0




n×n

. (9)

Thus the characteristic matrix of the linearization of (1) about the trivial solution is

Mn(λ) = (λ + 1 − αe−λτs )I − βe−λτM (10)

and the corresponding characteristic equation is

det Mn(λ) = 0. (11)

It can be shown [31] that

det Mn(λ) =
n−1∏
k=0

�k(λ)

=




�0(λ)

(n−1)/2∏
k=1

�2
k(λ) (if n is odd),

�0(λ)�n/2(λ)

(n/2)−1∏
k=1

�2
k(λ) (if n is even),

(12)

where �k(λ) = λ + 1 − αe−λτs − 2βe−λτ cos(2πk/n).
From (12), it is clear that the characteristic equation has a repeated pair of pure

imaginary roots λ = ±iω for parameters such that �j(±iω) = 0, for some j ∈
{1, 2, . . . , [(n − 1)/2]}, j �= n/4, i.e. when

1 − α cos(ωτs) = 2β cos

(
2πj

n

)
cos(ωτ),

ω + α sin(ωτs) = −2β cos

(
2πj

n

)
sin(ωτ).

(13)

In particular, if we fix three of the parameters, this gives two equations that may be solved
for the critical value of the fourth parameter and the corresponding imaginary part of the
eigenvalue, ωc. Here we will focus on using network connection strength, β, as the bifurcation
parameter. In fact all the results hold (and are proved similarly) if any of the other parameters
is used instead.

Taking the ratio of the two equations of (13) yields an implicit equation for ωc:

tan(ωcτ ) +
ωc + α sin(ωcτs)

1 − α cos(ωcτs)
= 0. (14)

Squaring and adding the equations of (13) yields an equation for the corresponding critical
value of β (for the j th factor of the characteristic equation):

βcj (ωc) =




β̂cj (ωc) if (1 − α cos(ωcτs)) cos

(
2πj

n

)
cos(ωcτ ) > 0,

−β̂cj (ωc) if (1 − α cos(ωcτs)) cos

(
2πj

n

)
cos(ωcτ ) < 0,

(15)



Ring of identical cells with delayed coupling 2831

where

β̂cj (ωc) = 1

2| cos(2πj/n)|
√

1 + α2 + ω2
c + 2αωc sin(ωcτs) − 2α cos(ωcτs).

In [31] we give a complete characterization of when solutions to these equations exist.
To carry out our work we need some background from the theory of functional

differential equations. Let h = max(τs, τ ) and C def= C([−h, 0], R
n) denote the Banach space

of continuous mappings from [−h, 0] into R
n equipped with the supremum norm ‖φ‖h =

sup−h�θ�0 ‖φ(θ)‖ where ‖ · ‖ is the usual Euclidean norm on R
n. Let x(t) be a solution of (1)

and define xt (θ) = x(t + θ), −h � θ � 0. If x(t) is continuous, then xt (θ) ∈ C. With this
structure, we may write the model as the following functional differential equation:

ẋ(t) = F(xt ), (16)

where F : C → R
n is defined via

Fi(φ) = −φi(0) + αf (φi(−τs)) + β[g(φi−1(−τ)) + g(φi+1(−τ))], i(mod n). (17)

Similarly, the linearized equation (8) may be written as

u̇(t) = L(β)ut , (18)

where the linear operator L(β) : C → R
n is defined via

L(β)φ = −Iφ(0) + αIφ(−τs) + βMφ(−τ). (19)

It is well known [17] that a linear functional differential equation such as (18) generates a
strongly continuous semigroup of linear operators with infinitesimal generator A(β) given by

A(β)φ = φ̇, φ ∈ Dom(A),

Dom(A) = {φ ∈ C|φ̇ ∈ C, φ̇(0) = L(β)φ}. (20)

Further, the eigenvalues of A(β) correspond to the roots of the characteristic equation (11).
Finally, to discuss the spatial symmetry of (1) we need some notation from the theory of

compact groups.

• Zn is the cyclic group of order n, which corresponds to rotations of 2π/n. Denoting the
generator of this group by ρ, then its action on R

n is given by (ρx)i = xi+1.
• Let κ be the flip of order 2 or reflection. It acts on R

n by (κx)i = xn+2−i .
• Dn is the dihedral group of order n, which corresponds to the group of symmetries of an

n-gon. It can be shown that Dn is generated by ρ and κ .

Definition. Let F : C → R
n and  be a compact group. The system ẋ(t) = F(xt ) is said to

be -equivariant if F(γ xt ) = γ F(xt ) for all γ ∈ .

Lemma 2.1. The nonlinear system (16) and the linear system (18) are Dn equivariant.

Proof. We begin with (16), i.e. we let F be as in (17) and φ ∈ C. We need only check the
equivariance condition on the generators, ρ, κ , of Dn.

Fi(ρφ) = −(ρφ)i(0) + αf ((ρφ)i(−τs)) + β[g((ρφ)i−1(−τ)) + g((ρφ)i+1(−τ))]

= −φi+1(0) + αf (φi+1(−τs)) + β[g(φi(−τ)) + g(φi+2(−τ))]

= Fi+1(φ)

= ρFi(φ)
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and

Fi(κφ) = −(κφ)i(0) + αf ((κφ)i(−τs)) + β[g((κφ)i−1(−τ)) + g((κφ)i+1(−τ))]

= −φn+2−i (0) + αf (φn+2−i (−τs)) + β[g(φn+3−i (−τ)) + g(φn+1−i (−τ))]

= Fn+2−i (φ)

= κFi(φ).

Thus (16) is Dn equivariant.
For (18), we begin by noting that L may be written component-wise as follows:

Li(β)φ = −φi(0) + αφi(−τs) + β[φi−1(−τ) + φi+1(−τ)], i(mod n).

The rest of the proof is similar to that for (16). �

3. Equivariant Hopf bifurcation

With the structure described above we are now able to state and prove some lemmas which
will ultimately lead to our Hopf bifurcation theorem.

To begin with we define

vj = (1, χj , χ2j , . . . , χ(n−1)j )T, (j = 0, 1, . . . , n − 1), χ = e(2π/n)i (21)

and note the following properties of the vj :

Mvj = (χj + χ−j )vj = 2 cos
2πj

n
vj ,

vi · vj =
{
n i = j,

0 i �= j,
(22)

v̄j = vn−j , (j = 0, 1, . . . , n − 1).

We can now state our first lemma.

Lemma 3.1. Eigenvalue conditions. Let α, τs, τ be fixed and such that there is a solution,
(ωc, βcj (ωc)) of (13), for some j ∈ {1, 2, . . . , [(n − 1)/2]}, j �= n/4. Then

• The characteristic matrix, Mn(λ), is continuously differentiable with respect to β.
• The infinitesimal generator, A(β), of the linear operator (19) has a repeated pair of

eigenvalues, ±iωc, at β = βcj .
• The generalized eigenspace, P , of A(βcj ) for ±iωc is spanned by the eigenvectors

{eiωcθvj , eiωcθ v̄j , e−iωcθ v̄j , e−iωcθvj }.

Proof. The differentiability of Mn(λ) follows from its definition (10).
It is clear from the discussion of the previous section that, under the conditions of the

lemma, �j(±iωc) = 0 and hence the characteristic equation (11) has a repeated pair of roots
±iωc. This implies from [17] that A(βc) has a repeated pair of eigenvalues ±iωc.

Using the properties (22) of the vj , we have

Mn(λ)vj = (λ + I − αe−λτs I )vj − βe−λτMvj

=
(

λ + 1 − αe−λτs − 2 cos
2πj

n
βe−λτ

)
vj

= �j(λ)vj
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and

Mn(λ)vn−j = (λ + I − αe−λτs I )vn−j − βe−λτMvn−j

=
(

λ + 1 − αe−λτs − 2 cos
2π(n − j)

n
βe−λτ

)
vn−j

=
(

λ + 1 − αe−λτs − 2 cos
2πj

n
βe−λτ

)
vn−j

= �j(λ)vn−j .

Thus, under the conditions of the lemma,

Mn(iωc)vj = Mn(iωc)vn−j = Mn(−iωc)v̄j = Mn(−iωc)v̄n−j = 0.

Noting that vn−j = v̄j and using a standard result from [17] it follows that
{eiωcθvj , eiωcθ v̄j , e−iωcθ v̄j , e−iωcθvj } are eigenvectors of A(βcj ) corresponding to ±iωc. Since
there are four linearly independent eigenvectors for the four eigenvalues, the generalized
eigenspace P is spanned by these eigenvectors. �

Lemma 3.2. Nonresonance condition. Let α, τs, τ be fixed and such that there is a solution,
(ωc, βcj (ωc)) of (13), for some j ∈ {1, 2, . . . , [(n − 1)/2]}, j �= n/4. If α, τs, τ, βcj are such
that for each m = 2, 3, . . . , and each k = 0, 1, . . . , [(n − 1)/2] at least one of the following
is satisfied.

1 − α cos(mωcτs) �= 2βcj cos

(
2π k

n

)
cos(mωcτ),

mωc + α sin(mωcτs) �= −2βcj cos

(
2πk

n

)
sin(mωcτ),

(23)

then all other eigenvalues of A(βcj ) are not integer multiples of ±iωc.

Proof. It is clear from (11)–(13) that for β = βcj , �k(±iωc) �= 0 for k �= j . Thus one-to-one
resonances are not possible. Other resonances are possible and occur when there is an integer
m > 1 such that equations (13) are satisfied for ω = ωc and ω = mωc with possibly different
values of j but with the same values of the parameters, α, τs, β, τ . Equations (23) preclude
this from happening. �

Lemma 3.3. Transversality condition. Let α, τs, τ be fixed and such that there is a solution,
(ωc, βcj (ωc)) of (13), for some j ∈ {1, 2, . . . , [(n − 1)/2]}, j �= n/4. If

cos(ωcτ ) + 2τβcj cos

(
2πj

n

)
ατs cos(ωc(τ − τs)) �= 0, (24)

then Re(dλ/dβ)|λ=iωc
�= 0.

Proof. Define the characteristic quasi-polynomial via S(λ, β) = ∏n−1
k=0 �k(λ) where �k(λ) is

as in (12). Since dS/dβ = (∂S/∂β) + (∂S/∂λ)(dλ/dβ) = 0, we have

dλ

dβ
= −∂S/∂β

∂S/∂λ
. (25)

Now for n odd,

∂S

∂λ
= ∂�0

∂λ

(n−1)/2∏
k=1

�2
k + 2

(n−1)/2∑
k=1

�0�k

∂�k

∂λ

(n−1)/2∏
i=1
i �=k

�2
i
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and

∂S

∂β
= ∂�0

∂β

(n−1)/2∏
k=1

�2
k + 2

(n−1)/2∑
k=1

�0�k

∂�k

∂β

(n−1)/2∏
i=1
i �=k

�2
i .

Putting these in (25), cancelling the common factor �j from the numerator and denominator,
and using �j(iω) = 0, then yields

dλ

dβ

∣∣∣∣
λ=iω

= −∂�j (iωc)/∂β

∂�j (iωc)/∂λ
,

= 2 cos(2πj/n)e−iωcτ

1 + ατse−iωcτs + 2τβe−iωcτ cos(2πj/n)
.

Repeating the procedure with n even yields the same equation. It follows that

Re

(
dλ

dβ

∣∣∣∣
λ=iωc

)
= 2 cos(2πj/n)(K1 cos(ωcτ ) + K2 sin(ωcτ ))

K2
1 + K2

2

,

where

K1 = 1 + ατs cos(ωcτs) + 2τβ cos

(
2πj

n

)
cos(ωcτ ),

K2 = ατs sin(ωcτs) + 2τβ cos

(
2πj

n

)
sin(ωcτ ).

(26)

It is then clear that the transversality condition is

cos

(
2πj

n

)
(K1 cos(ωcτ ) + K2 sin(ωcτ )) �= 0.

Note that this implies that K1, K2 are not both zero simultaneously. Using the definitions (26)
of K1 and K2 this simplifies to (24). �

From lemmas 2.1, 3.1, 3.2 and 3.3, conditions (H1), (H2) and (H4) of the equivariant Hopf
bifurcation theorem [29, theorem 2.1] are satisfied. Further, since the symmetry group and
eigenvectors for our model are the same as for the model with τs = τ it follows from [16, lemma
4] that all other conditions of this theorem are also satisfied. This gives the following theorem.

Theorem 3.4. Let α, τs, τ be fixed and such that there is a solution, (ωc, βcj (ωc)) of (13), for
some j ∈ {1, 2, . . . , [(n − 1)/2]}, j �= n/4. If conditions (23), (24) hold then system (1)
undergoes an equivariant Hopf bifurcation as β varies through βcj .

4. Centre manifold reduction

From the discussion of the previous subsection, we know that the characteristic equation (11)
has a repeated pair of purely imaginary eigenvalues ±iω under condition (13). In this section
we will obtain explicit analytical expressions for the stability condition of equivariant Hopf
bifurcation solutions by reducing system (1) to its centre manifold. To do this we first express
the delay equation as an abstract evolution equation on the phase space C, namely,

ẋt = A(β)xt + G(xt ), (27)

where A(β) is defined in (20) and the nonlinear operator G : C → C is in the form of

G(φ)(θ) =
{

0 for θ ∈ [−h, 0),

F̂(φ) for θ = 0,
(28)

with F̂(φ) = F(φ) − (A(β)φ)(0) and F is defined by (17).
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We must also restrict our parameter values more than in theorem 3.4. In particular we
need to ensure that A(βcj ) has no other eigenvalues with zero real part. This can be done
by assuming that α, τs, τ are such that when β = βcj there is no ω �= ωc such that (13) are
satisfied, for any j ∈ {0, 1, 2, . . . , [(n − 1)/2]}. We note that this eliminates a set of parameter
values of measure zero from the four-dimensional parameter space. Under these conditions,
C can be split into two subspaces as C = P ⊕ Q, where P is as defined in lemma 3.1, while
Q is the complementary space of P .

It follows from lemma 3.1 that we can choose the basis of P as

�(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ))

= (eiωcθvj , e−iωcθ v̄j , eiωcθ v̄j , e−iωcθvj ), (29)

where vj is given in (21).
Then for u ∈ C and v ∈ C∗, we can define a bilinear operator:

〈v, u〉 = v̄T(0)u(0) −
∫ 0

−h

∫ θ

0
v̄T(ξ − θ)[dη(θ)]u(ξ) dξ, (30)

where the matrix η(θ) is given by

η(θ) =




−δ0 + αδτs
βδτ 0 · · · 0 βδτ

βδτ −δ0 + αδτs
βδτ 0 · · · 0

...

βδτ 0 · · · 0 βδτ −δ0 + αδτs




= (−δ0 + αδτs
)I + βδτM (31)

and δu = δ(θ + u) is the Dirac distribution at the point θ = −u.
Now �̄T(ξ − θ)η(θ)�(ξ) can be simplified to

�̄T(ξ − θ)η(θ)�(ξ) =
[
−δ(θ) + αδ(θ + τs) + 2β cos

2πj

n
δ(θ + τ)

]
�̄T(ξ − θ)�(ξ).

Thus from K = 〈�̄T, �〉, we can construct the basis for the subspace in C∗ corresponding to P :

�(ξ) = K−1�̄T(ξ)

= 1

n




ā−1e−iωξ v̄T
j

a−1eiωξvT
j

ā−1e−iωξvT
j

a−1eiωξ v̄T
j


 (32)

where a = 1 − α(τ − τs)(cos(ωτs) + i sin(ωτs)) + (1 − iω)τ .
Therefore,

�(0) = 1

n




ā−1v̄T
j

a−1vT
j

ā−1vT
j

a−1v̄T
j


 . (33)

Define z ≡ (z1, z2, z3, z4)
T where z2 = z̄1, z4 = z̄3 is the local coordinate system on the

four-dimensional centre manifold induced by the basis �. With the aid of equations (29) and
(32), one can decompose xt into two parts:

xt = xP
t + xQ

t = �〈�, xt 〉 + xQ
t = �z + xQ

t , (34)
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which implies that the projection of xt on the centre manifold is �z. Using the decomposition
(34) in (27) results in

〈�, �〉ż = 〈�, A(βcj )�〉z + 〈�, G(t, �z + x
Q
t )〉

then, to lowest order, the dynamical system describing the flow on the centre manifold can be
written as

ż(t) = Bz(t) + �(0)F̂(�(θ)z(t)), (35)

where

B =




iωc 0 0 0
0 −iωc 0 0
0 0 iωc 0
0 0 0 −iωc


 . (36)

Under the conditions (2) and (3) the nonlinear part of the system is

F̂i(xt ) = 1

3!
[αδ1x

3
t,i (−τs) + βcj δ2x

3
t,i−1(−τ) + βcj δ2x

3
t,i+1(−τ)] + O(‖x‖4)

for i(mod n), where δ1 = f ′′′(0) and δ2 = g′′′(0). Further,

�(θ)z(t) = (eiωcθ z1 + e−iωcθ z4)vj + (e−iωcθ z2 + eiωcθ z3)v̄j

= A1vj + A2v̄j , (37)

so the kth component in (�(θ)z(t))3 is

(�(θ)z(t))3
k = (A1vj + A2v̄j )

3
k

= (A1χ
(k−1)j + A2χ̄

(k−1)j )3

= A3
1χ

3(k−1)j + A3
2χ̄

3(k−1)j + 3A2
1A2χ

(k−1)j + 3A1A
2
2χ̄

(k−1)j (38)

and

F̂i(�(θ)z(t)) = 1

3!
[αδ1(�(−τs)z)3

i + βδ2(�(−τ)z)3
i−1 + βδ2(�(−τ)z)3

i+1] + O(‖z‖4),

for i(mod n).
In vector form, this can be written as

F̂(�(θ)z(t)) = 1

3!
{αδ1[A3

1(−τs)v
3
j + 3A2

1(−τs)A2(−τs)v
2
j v̄j + 3A1(−τs)A

2
2(−τs)vj v̄

2
j

+A3
2(−τs)v̄

3
j ] + βδ2[A3

1(−τ)Mv3
j + 3A2

1(−τ)A2(−τ)Mv2
j v̄j

+3A1(−τ)A2
2(−τ)Mvj v̄

2
j + A3

2(−τ)Mv̄3
j ]}.

Thus it follows that

�(0)F̂(�z) = 1

2




ā−1

(
αδ1A2

1A2 + 2βδ2 cos
2πj

n
B2

1B2

)

a−1

(
αδ1A1A2

2 + 2βδ2 cos
2πj

n
B1B2

2

)

ā−1

(
αδ1A1A2

2 + 2βδ2 cos
2πj

n
B1B2

2

)

a−1

(
αδ1A2

1A2 + 2βδ2 cos
2πj

n
B2

1B2

)




, (39)
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where Ak, Bk (k = 1, 2) come from Ak when θ is −τs or −τ , respectively. That is

A1 = e−iωcτs z1 + eiωcτs z4, A2 = eiωcτs z2 + e−iωcτs z3,

B1 = e−iωcτ z1 + eiωcτ z4, B2 = eiωcτ z2 + e−iωcτ z3.
(40)

Therefore, the dynamical system on the centre manifold is


ż1

ż2

ż3

ż4


 =




iω 0 0 0
0 −iω 0 0
0 0 iω 0
0 0 0 −iω







z1

z2

z3

z4




+
1

2




ā−1

(
αδ1A2

1A2 + 2βδ2 cos
2πj

n
B2

1B2

)

a−1

(
αδ1A1A2

2 + 2βδ2 cos
2πj

n
B1B2

2

)

ā−1

(
αδ1A1A2

2 + 2βδ2 cos
2πj

n
B1B2

2

)

a−1

(
αδ1A2

1A2 + 2βδ2 cos
2πj

n
B2

1B2

)




+ O(‖z‖4). (41)

After normal form transformation of the cubic terms, the coefficients of the resonant
monomial (in this case, it includes the terms yi

1 y
j

2 yk
3 yl

4 where i, j, k, l satisfy{
i + j + k + l = 3,

i − j + k − l = ±1,

‘+’ in equations ẏ1, ẏ3, ‘−’ in equations ẏ2, ẏ4) are unchanged [4]. Therefore the normal form
truncated to degree three is:

ẏ1 = iωy1 + ā−1b̄(y1y2 + 2y3y4)y1,

ẏ2 = −iωy2 + a−1b(y1y2 + 2y3y4)y2,

ẏ3 = iωy3 + ā−1b̄(y3y4 + 2y1y2)y3,

ẏ4 = −iωy4 + a−1b(y3y4 + 2y1y2)y4,

(42)

where b = 1
2 [δ2(1 − iω) + (δ1 − δ2)αeiωτs ].

Noting that y1 = ȳ2 and y3 = ȳ4 and using the transformation

ξ1(t) = y2(s),

ξ2(t) = y4(s),
(43)

with s = ((1 + p)ω)−1t , where p is the period of the bifurcating solutions, the normal form
up to the third order can be written as

(1 + p)ξ̇1 = −iξ1(t) + a−1bω−1(|ξ1(t)|2 + 2|ξ2(t)|2)ξ1(t),

(1 + p)ξ̇2 = −iξ2(t) + a−1bω−1(2|ξ1(t)|2 + |ξ2(t)|2)ξ2(t).
(44)

In vector form this becomes

(1 + p)ξ̇ + h(ξ) = 0,

where ξ = (ξ1, ξ2) ∈ C ⊕ C and

h(ξ) =
(

iξ1 − a−1bω−1(|ξ1(t)|2 + 2|ξ2(t)|2)ξ1

iξ2 − a−1bω−1(2|ξ1(t)|2 + |ξ2(t)|2)ξ2

)
.
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From [29], we know that the bifurcations of small-amplitude periodic solutions are determined
by the zeros of the equation

h(ξ) − i(1 + p)ξ = 0 (45)

and that their (orbital) stability is determined by the sign of eigenvalues of

Dh(ξ) − i(1 + p)I = 0.

More precisely, we rewrite (45) as

A

(
ξ1

ξ2

)
+ B

(
ξ 2

1 ξ̄1

ξ 2
2 ξ̄2

)
= 0

with

A = A0 + AN(|ξ1(t)|2 + |ξ2(t)|2), B = B0,

where A0 = −ip, AN = −2 a−1bω−1, B0 = a−1bω−1. Now,

Re(B0) = Re(a−1bω−1)

= ω−1Re(a−1b)

= ω−1

2

m

[1 + τ − α(τ − τs) cos(ωτs)]2 + [ωτ + α(τ − τs) sin(ωτs)]2
≡ W, (46)

where

m = δ2[1 + τ(1 + ω2) − α(τ − τs)(cos(ωτs) − ω sin(ωτs))]

+ (δ1 − δ2)α[(1 + τ) cos(ωτs) − α(τ − τs) − ωτ sin(ωτs)]. (47)

But AN = −2B0, so

Re(AN + B0) = Re(−B0) = −W, (48)

Re(2AN + B0) = Re(−3B0) = −3W. (49)

From the results of [12] the criticality and stability of the bifurcating solutions depend on the
signs of Re(B0), Re(AN + B0) and Re(2AN + B0). Clearly, for our model there are only two
cases to consider:

(i) if m < 0, then Re(B0) < 0, Re(AN + B0) > 0 and Re(2AN + B0) > 0;
(ii) if m > 0, then Re(B0) > 0, Re(AN + B0) < 0 and Re(2AN + B0) < 0.

Combining the discussion above and the results given in [16] and [30] we have the
following theorem.

Theorem 4.1. Suppose that for some j ∈ {1, 2, . . . , [(n − 1)/2], j �= n/4} conditions (13)
are satisfied, i.e. the parameters are such that the characteristic equation has a repeated pair
of imaginary roots ±iω given by �j(±iω) = 0. Then there exists 2(n + 1) branches of
asynchronous periodic solutions of period p near 2π/ω bifurcated from the zero solution of
the system. In particular, there are

(1) 2 phase-locked oscillations: xi(t) = xi+1(t ±(jp/n)) for i(mod n); when m < 0, they are
supercritical and have the stability the trivial solution had before the bifurcation; when
m > 0, they are subcritical and orbitally unstable;

(2) n unstable mirror-reflecting waves: xi(t) = xn+2k−i (t) for i(mod n) and k = 1, 2, . . . , n;
when m < 0, they are supercritical, whereas when m > 0, they are subcritical;

(3) n unstable standing waves: xi(t) = xn+2k−i (t −(p/2)) for i(mod n) and k = 1, 2, . . . , n;
when m < 0, they are supercritical, whereas when m > 0, they are subcritical.
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Although the expression for m is complicated, we have the following general result.

Theorem 4.2. Let α, τs, δj be fixed with δ = δ1/δ2. If α < 0, δ2 < 0, τs <

(π/2) min(1, 1/(δ − 2)) and |α| < min(1, 1/τs, 1/|δ − 1|, 1/|δ − 2|τs), then m < 0.

Proof. Rewrite m in the following manner

m = δ2{[1 + α2(δ − 1)τs + (δ − 1 + τs)α cos ωτs] + τ [1 − α2(δ − 1) + (δ − 2)α cos ωτs]

+ ω[τ(ω − α(δ − 2) sin ωτs) − ατs sin ωτs]}.
It is easy to show the first two terms are positive as follows.

1 + α2(δ − 1)τs + (δ − 1 + τs)α cos ωτs � 1 + α2(δ − 1)τs − |δ − 1 + τs ||α|

=
{

((δ − 1)|α| − 1)(τs |α| − 1) if δ − 1 + τs � 0

((δ − 1)|α| + 1)(τs |α| + 1) if δ − 1 + τs < 0

> 0

since |α| < min(1/τs, 1/|δ − 1|).
τ [1 − α2(δ − 1) + (δ − 2)α cos ωτs] � τ [1 − α2(δ − 1) − |δ − 2||α|]

=
{−τ((δ − 1)|α| − 1)(|α| + 1) if δ − 2 � 0
−τ((δ − 1)|α| + 1)(|α| − 1) if δ − 2 < 0

> 0

since |α| < min(1, 1/|δ − 1|).
Now consider the third term, ω[τ(ω − α(δ − 2) sin ωτs) − ατs sin ωτs]. Since |α| <

1/|δ − 2|τs ,

ω − α(δ − 2) sin ωτs � ω(1 − |α||δ − 2|τs) > 0.

Recalling that α < 0 and τs � 0, it follows that the third term is positive if sin ωτs � 0.
Rewriting the third term as ω[ωτ − ((δ − 2)τ + τs) α sin ωτs], it is clear that the third term is
also positive if sin ωτs < 0 and (δ − 2)τ + τs � 0.

It remains to consider the third term when sin ωτs < 0 and τ(δ − 2) + τs > 0. Note
that this implies ωτs ∈ ((2k + 1)π, (2k + 2)π), k = 0, 1, . . . . Consider first the case when
β cos(2πj/n) < 0. From (13) it is easy to see that this implies cos ωτ < 0 and sin ωτ > 0;
thus ωτ ∈ ((2k + 1

2 )π, (2k + 1)π), k = 0, 1, . . . . Thus on the kth interval we have

ωτ − ((δ − 2)τ + τs)α sin ωτs �
{

ωτ − τs if δ − 2 � 0

ωτ − [τs + (δ − 2)τ ] if δ − 2 > 0

=




ωτ − τs if δ − 2 � 0

ωτ − τs

[
1 + (δ − 2)

ωτ

ωτs

]
if δ − 2 > 0

>




(
2k +

1

2

)
π − τs if δ − 2 � 0(

2k +
1

2

)
π − τs

[
1 + (δ − 2)

(2k + 1)π

ωτs

]
if δ − 2 > 0

> 0,

since 0 < α sin ωτ < 1, τs < (π/2) min(1, 1/(δ − 2)) and ωτs > π . The proof for
β cos(2πj/n) > 0 is similar. �
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Figure 2. Bifurcation set for (1) with n = 3, α = −1.5, τs = 1, f (u) = tanh(u) and
g(u) = (1/γ ) tanh(γ u) and γ = 0.4. Thin/thick curves correspond to standard/equivariant
Hopf bifurcations; thin/thick vertical lines to standard/equivariant pitchfork bifurcations.
Supercritical/subcritical bifurcations (as predicted by the theory) are indicated by solid/dashed
lines.

5. Comparison with numerical continuation: an example

To supplement our theoretical work, we consider a particular example and compare the
predictions of theorem 4.1 with the stability and criticality predicted by the program
DDE-BIFTOOL [10]. This program performs numerical continuation of a periodic orbit
emanating from a Hopf bifurcation of a delay differential equation and numerical computation
of the Floquet multipliers of the periodic orbit. To perform the numerical computations, we
must specify the nonlinearities; thus we take f (u) = tanh(u) and g(u) = (1/γ ) tanh(γ u).
With these functions the critical quantity m becomes

m = −2γ 2[1 + τ(1 + ω2) + α2(τ − τs) − α cos ωτs − α(2τ − τs)(cos ωτs − ω sin ωτs)]

− 2α[(1 + τ) cos ωτs − α(τ − τs) − ωτ sin ωτs].

As shown in [6,31], for fixed n, α, τs the locus of Hopf bifurcations of the trivial solution
of (1) can be represented as curves in the β, τ parameter space. Figure 2 shows what these
curves look like for n = 3, α = −1.5 and τs = 1. Thick lines correspond to equivariant
bifurcations and thin lines to standard bifurcations. Note that these curves are identical for all
values of γ . The trivial solution is asymptotically stable in the region contiguous with the τ

axis. To evaluate the sign of m we specify γ , a point of equivariant Hopf bifurcation (i.e. a point
(β, τ ) on one of the thick curves) and the corresponding value of ω. The latter two can be done
by specifying τ and solving equations (14) and (15) for ω and β. Taking n = 3, α = −1.5 and
τs = 1 and evaluating m at each point of the equivariant Hopf bifurcation curves we find the
following. With γ = 1, m < 0 everywhere on the curves, whereas with γ = 0.4, m is positive
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Figure 3. Numerical continuation of periodic solutions emanating from Hopf bifurcations of (1)
with n = 3, α = −1.5, τs = 1, f (u) = tanh(u) = g(u), i.e. γ = 1. Branches from standard
Hopf are indicated by ‘sync’, branches from equivariant Hopf are indicated by ‘PL’ (phase-locked),
‘MR’ (mirror reflecting) and ‘SW’ (standing waves). Solid/dashed lines indicate stable/unstable
solutions.

at some points and negative at others. The sign of m for γ = 0.4 is indicated in figure 2, with
solid thick lines corresponding to m < 0 and dashed thick lines to m > 0.

Recall from theorem 4.1 that m < 0 corresponds to the branches of asynchronous periodic
orbits being supercritical and m > 0 corresponds to the branches being subcritical. The mirror-
reflecting and standing waves are predicted to be always unstable at bifurcation. The phase-
locked oscillations are predicted to be stable when m < 0 and the bifurcation is at parameter
values which lie on the boundary of the stability region of the trivial solution; otherwise it is
unstable. Thus for γ = 1 we expect that all branches will be supercritical and those branches
which border on the stability region will give rise to stable phase-locked oscillations. For
γ = 0.4 the branches may be super- or subcritical depending on the values of β, γ where the
Hopf bifurcation occurs.

The stability and criticality of the standard Hopf bifurcation (which gives rise to
synchronous oscillations) was studied in [31]. With the parameters n = 3, α = −1.5, τs = 1,
it can be shown that for γ = 1 the standard Hopf is always supercritical. For γ = 0.4, the
standard Hopf is supercritical for some values of β and τ (shown by solid thin lines in figure 2)
and subcritical and unstable for others (shown by dashed thin lines in figure 2). At a point
(β, τ ) where the bifurcation is supercritical the resulting oscillatory solution is stable if the
point lies on the boundary of the stability region of the trivial solution, otherwise it is unstable.

We performed numerical continuation studies of (1) using β as the continuation
(bifurcation) parameter. The other parameters were fixed at n = 3, α = −1.5, τs = 1, γ = 1
or 0.4 and various values of τ . The results are shown in figures 3 and 4. Each plot
shows a measure of the amplitude of the periodic solution versus β. The measure used is
1
3 (maxt∈[0,T ] x1(t) + maxt∈[0,T ] x2(t) + maxt∈[0,T ] x3(t)), where T is the period of the orbit.
Branches of stable/unstable periodic solutions are indicated by solid/dashed lines.

Figure 3 shows the results for γ = 1 (which corresponds to f = g = tanh) and two values
of τ . As predicted by the theory, all branches are supercritical, and the mirror reflecting and
standing wave branches are unstable. Figure 3(a) corresponds to τ = 1 where the equivariant
Hopf bifurcation lies on the boundary of the stability region of the trivial solution (at β ≈ 0.75)
and the standard Hopf lies to the right of this (at β ≈ 3.25). As predicted, the branch of phase-
locked oscillations is stable at bifurcation, while the branch of synchronous oscillations is
unstable. Figure 3(b) shows the reverse situation. It also shows a second equivariant bifurcation
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Figure 4. Numerical continuation of periodic solutions emanating from Hopf bifurcations of (1)
with n = 3, α = −1.5, τs = 1, τ = 1, f (u) = tanh(u), g(u) = (1/γ ) tanh(γ u) and γ = 0.4.
Branch labelling is as in figure 3.

and a second standard Hopf which give rise to unstable oscillations since they occur at larger
values of β.

Figure 4 shows the results when γ = 0.4 and τ = 2.8. The predictions of the theory
in this case may be checked by drawing a horizontal line in figure 2 at τ = 2.8. This line
crosses four curves as β increases from zero, corresponding to four points of Hopf bifurcation.
At β ≈ 0.3 there is a supercritical standard Hopf, at β ≈ 1.6 there is subcritical equivariant
Hopf, at β ≈ 2.2 there is a second equivariant Hopf which is supercritical and at β ≈ 2.5
there is a second standard Hopf which is subcritical. Since the first standard Hopf bifurcation
point is the only one that lies on the stability boundary of the trivial solution, its corresponding
branch of periodic solutions is the only one that can be stable. This is exactly what we see in
figure 4(a). Figure 4(b) shows a close-up of the subcritical equivariant Hopf. Note that the
branch turns over quite quickly. This is not unexpected, since this value of τ is close to the
point where the bifurcation curve changes from being subcritical to supercritical.

6. Discussion

We established conditions under which an equivariant Hopf bifurcation occurs in the ring
neural network (1) and showed that for a ring with n elements there are [(n − 1)/2] of
these bifurcations. Using centre manifold reduction, normal form analysis and equivariant
bifurcation theory, we showed that each of these bifurcations gives rise to 2(n + 1) branches of
periodic orbits: 2 phase-locked oscillations, n mirror reflecting waves and n standing waves.
We described a quantity, a complicated function of the system parameters, which determines
whether the bifurcation is supercritical or subcritical. Finally, we showed that the mirror
reflecting waves and standing waves are always unstable, while the phase locked oscillations
are stable if (i) the bifurcation is supercritical and (ii) the bifurcation occurs on the boundary
of the region of stability of the trivial solution.

Putting this together with our previous work [31], which studied the region of stability
of the trivial solution of our model and the criticality of standard Hopf bifurcations, our
theoretical results give an accurate picture of the bifurcation structure, in the neighbourhood
of the bifurcation point, for any set of parameter values and nonlinearities (satisfying the
conditions (2) and (3)). By contrast, numerical continuations such as those of section 5 give
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Figure 5. Bifurcation set for (1) with n = 3, α = −1.5, τs = 2. Thin/thick curves correspond to
standard/equivariant Hopf bifurcations; thin/thick vertical lines to standard/equivariant pitchfork
bifurcations. All curves are supercritical with γ = 1. Regions where the synchronized/phase-
locked oscillations are stable are indicated by S/P. Stability close to the bifurcation curves is
predicted by the theory. Stability further from the curves is verified by numerical simulations.
Regions where bistability between the two oscillations is observed in numerical simulations are
indicated by B.

us information corresponding to a specific nonlinearity and set of parameter values, but can
tell us about the stability of periodic orbits for values of the bifurcation parameter far from the
bifurcation point. These results are complementary and show that the system exhibits some
interesting behaviour as described below.

Recall from section 5, that for τ = 1 the system exhibits stable phase-locked oscillations
when the trivial solution loses stability, whereas when τ = 2.8 it exhibits synchronous
oscillations. Based on our analytical results and numerical continuations, we postulate that
this behaviour persists in some region close to the stability region of the trivial solution. Thus
we see that by changing the delay, we can change the type of oscillation exhibited by the
system. Figure 5 illustrates this even more dramatically: for a range of values of β we can
observe several switchings between the two types of oscillations as the delay is increased. This
is reminiscent of the delay induced switching between stability and oscillations observed in a
scalar two delay model [2] and a second order, single delay model [9].

Note from figures 2 and 5 that intersections between the various curves of Hopf and
pitchfork bifurcations can occur. Such points correspond to co-dimension two bifurcation
points or points of bifurcation interaction. A complete discussion of these points is beyond
the scope of this paper (see [3]); however, we note that with the choice of nonlinearities made
above (f (u) = tanh(u), g(u) = (1/γ ) tanh(γ u)) most of the bifurcation interactions occur
when the two bifurcations are supercritical. It is thus possible that in the neighbourhood of
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Figure 6. Numerical simulations of equation (1) with n = 3, α = 1.5, τs = 1, β = 1, τ =
1.8, γ = 1.
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Figure 7. Numerical simulations of (1) with n = 3, α = 1.5, τs = 1, γ = 1 and other parameter
values as shown.

such points one should find regions of multistability [15, sections 7.4–7.5]. In fact we do,
as illustrated in figures 6 and 7. Figure 6 shows the coexistence of a stable synchronous
periodic solution (i.e. one with x1(t) = x2(t) = x3(t)) with one of the two stable phase-locked
periodic solutions. This is the result of the standard Hopf/equivariant Hopf interaction point
at n = 3, α = −1.5, τs = 1, β ≈ 0.883, τ ≈ 1.78 (see figure 2). Such multistability is also
observed numerically in the regions (indicated with a letter B) close to Hopf/Hopf interaction
points in figure 5. Figure 7(a) shows the coexistence of a pair of stable synchronous equilibria
with one of the two stable phase-locked periodic solutions. This is the result of the standard
pitchfork/equivariant Hopf interaction point at n = 3, α = −1.5, τs = 1, β = 1.25, τ ≈ 0.661
(see figure 2). Figure 7(b) shows the coexistence of six stable equilibria with a stable
synchronous periodic solution. This is the result of the standard Hopf/equivariant pitchfork
interaction point at n = 3, α = −1.5, τs = 1, β = −2.5, τ ≈ 0.397 (see figure 2). These
numerical simulations were performed using a fourth order Runge–Kutta solver adapted for
delay differential equations, available through the package XPPAUT [11].
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Both the phenomena described above arise because the Hopf bifurcation curves in figures 2
and 5 are nonmonotone. It was shown in [31] that this occurs if τs > |α|/(|α|2+

√
1 + |α|). Thus

the nonmonotonicity is possible because system (1) has two delays. Nonmonotonic bifurcation
curves are not possible in the corresponding system with one delay studied by [16, 30], and
thus we would not expect to find multistability or delay induced switching between different
oscillation types in those systems.

We have shown that for the equivariant bifurcations in our system there are only two
possibilities: all branches of periodic solutions are supercritical or all are subcritical. In fact
these are not the only possible situations for Hopf bifurcation with Dn symmetry. As discussed
in [12, chapter XVIII], there are two other cases where some of the branches are supercritical
and others are subcritical. In our case, these do not occur due to restrictions on the coefficients
of the normal form (cf equations (48) and (49)). We suspect that if we relax the restriction
f ′′(0) = g′′(0) = 0 on our nonlinearities then we might be able to observe these other
behaviours [4].

To close we note that our theoretical predictions could be verified experimentally. Marcus
and Westervelt [23] constructed an electric circuit neural network where each element consists
of a resistor and a capacitor and the elements are connected with nonlinear, delayed amplifiers.
They show that this circuit is quite accurately represented by the model

Cu̇i(t) = −ui

R
+

n∑
j=1

Tij tanh(Bui(t − τ)), i = 1, . . . , n.

They studied circuits with C = 10 nF, R = 100 k�, Tij = Tji ∈ {−1/R, 0, 1/R}, Tii = 0,
n = 2, . . . , 8, were able to achieve delays over the range 0.4–8 RC and to adjust the gain on
the amplifier in the range 3–20 V−1 [24, figure 3]. Clearly, if Tij = T and time is rescaled
via t → (1/RC)t then this model corresponds to our model (1) with α = 0, β = RTB,
γ = B. Thus the range of delay and gain values does cover a large portion of the range of
values included in figures 2 and 5. Assuming that a self-connection with a nonlinear, delayed
amplifier could be added to each element, it should be possible to observe the phenomena
we describe above in this experimental system. For example, one could vary the delay while
holding the other parameters fixed to see if the observed solution switches type (between
synchronous and phase-locked) as predicted by figure 5.
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