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Analysis of the Chatter Instability
in a Nonlinear Model for Drilling
In this paper we present stability analysis of a non-linear model for chatter vibration in
a drilling operation. The results build our previous work [Stone, E., and Askari, A., 2002,
“Nonlinear Models of Chatter in Drilling Processes,” Dyn. Syst., 17(1), pp. 65–85 and
Stone, E., and Campbell, S. A., 2004, “Stability and Bifurcation Analysis of a Nonlinear
DDE Model for Drilling,” J. Nonlinear Sci., 14(1), pp. 27–57], where the model was
developed and the nonlinear stability of the vibration modes as cutting width is varied
was presented. Here we analyze the effect of varying cutting depth. We show that quali-
tatively different stability lobes are produced in this case. We analyze the criticality of the
Hopf bifurcation associated with loss of stability and show that changes in criticality can
occur along the stability boundary, resulting in extra periodic solutions.
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Introduction
In a metal cutting operation such as turning, a cutting tool is

irected perpendicularly to the cylindrical workpiece that is spin-
ing along its longitudinal axis �the spindle�, shaving a thin piece
f material �a chip� as the spindle turns. Milling involves a similar
ocal geometry, though multiple teeth in a cogged cutting tool
have a chip off a stationary workpiece as they revolve. Drilling is
ore difficult to describe owing to the complex geometry of the

rill bit, but at the bottom of the drill the cutting edges also re-
olve in the hole and remove a thin chip of material as they go.
he twisted grooves in the side of the drill bit are there to direct

he cut chip up and out of the hole being drilled. Understanding
etal cutting and predicting optimal operating conditions has

een a preoccupation of industrial engineers for the past 100
ears, and lately high-speed machining and machining composites
ave renewed interest in the science of metal removal. In the
ircraft industry, drilling holes and filling them comprises a large
art of the effort in manufacturing aircraft, so any gains in drilling
echnology are subsequently amplified.

Chatter in metal cutting is a vibration that is initiated by imper-
ections in the material being cut, and is maintained by the peri-
dic driving force created from the oscillating thickness of the
hip. Typically the cutting process is modeled as a spring-mass
ystem, with the stipulation that the cutting force varies with chip
hickness, and hence depends not only on the position of the cut-
ing tool at a given time, but the position of the tool at the previ-
us revolution of the workpiece. This leads to a delay term in the
pplied force on the oscillator, and chatter in metal cutting opera-
ions has been successfully described and predicted by delay dif-
erential equations �DDEs�. Tlusty and Tobias were the original
ioneers of this work �1�, see also studies by Altintas, Bayly, and
tépán �2–6�.
In this paper we investigate the chatter instability in a model of
etal cutting relevant to drilling operations. In a previous paper

7� the derivation of the model is presented along with linear
tability calculations for the onset of chatter. In another paper �8�
e document the nonlinear stability of chatter in this model, using

pproximate center manifold techniques �9–12�. In both instances
he instability parameter is proportional to the width of cut, the
hatter commences as the cutting width is increased past a critical
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value, sometimes below the linear stability value, if the bifurca-
tion is subcritical. Here we extend this study to include the effect
of varying the cutting depth instead of cutting width, a reasonable
parameter from the standpoint of the physical process. The depth
of cut in drilling is controlled by the feed or the feed rate for the
drill, which is determined by the force with which the drill is in
contact with the material. Linear stability boundaries are calcu-
lated for parameters similar to those used in the drilling models
studied previously, and the nonlinear stability of the resulting os-
cillations is found via an approximate center manifold, computed
using a symbolic algebra implementation based on the work of
Campbell and Bélair �9�. We conclude with studies, using the
branch following package DDE-BIFTOOL �13�, of the periodic orbits
�stable and unstable� and numerical simulations to illustrate the
results.

In the remainder of this section we present background material
from machining literature, a sketch of the stability analysis of
DDEs with constant delay, and an overview of our previous results.
In Sec. 2 we present the linear and nonlinear analysis of the model
with cutting depth as a bifurcation parameter, while varying cut-
ting width. We conclude in Sec. 3 with a discussion of these
results as they relate to the earlier analysis, and to future work.

1.1 Chatter Vibrations and DDEs. Chatter has been mod-
eled as the excitation of linear modes of vibration by the metal
cutting force. If the force is directed perpendicular to the work-
piece the process is known as “orthogonal cutting.” The vibration
modes are determined for the entire apparatus and the frequency
and effective damping ratio of each mode is computed in labora-
tory tests. Generally only the lowest frequency modes are consid-
ered �14�, and most commonly considered is a mode that vibrates
up and down perpendicular to the workpiece. The equation of
motion for this vibration mode excited by an orthogonal cutting
force that depends on the thickness of the chip cut is:

m
d2y

dt2 + c
dy

dt
+ ky�t� = F�f + y�t� − y�t − T�� �1�

Here y�t� is the vertical position of the tool, F is the thrust force
on the tool �in the y direction� and depends on the chip thickness:
�f +y�t�−y�t−T�� where f is the feed �how much the material is
moved toward the tool� per revolution and T is the time required
for one revolution. Thus the basic description is a linear mass-
spring system �m being the mass, and k the spring constant� with
viscous damping �c�, being driven by a forcing function with a

delay. Using conventional techniques the stability diagram for re-
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enerative chatter can be created �14�; we show an example in
ig. 1. The horizontal axis is spindle speed, which is inversely
roportional to the delay, and the vertical axis is width of cut.
elow the lobes the steady cutting solution is stable, upon cross-

ng the boundary a complex conjugate pair of eigenvalues of the
teady state crosses the imaginary axis and the stable fixed point
ecomes an unstable spiral. Similar stability diagrams can be
ound in the papers of �15–19�, which consider a damped har-
onic oscillator with delayed position and/or velocity dependent

eedback.

1.2 Drilling Model. In �7� we report a model for the excita-
ion of two vibration modes seen in twist drills, the lowest fre-
uency bending mode, which we called the “traditional mode,”
nd a higher frequency axial-torsional mode thought to be the
ause of striations formed on the bottom of the hole during high-
peed drilling operations. The vibrations are assumed to be linear,
ith large inertia and stiffness, and small damping. The equation
f motion in �, the modal amplitude, is hence:

m�̈ + c�̇ + k� = F� �2�

here m is the inertial term, c is damping, and k is stiffness. The
orcing function, F�, depends on the chip width, w, and chip
hickness, t1, which are depicted in Fig. 2 and the geometry at the

ig. 1 Stability diagram for regenerative chatter. Steady cut-
ing solution „the trivial solution… is stable in the region beneath
he lobes.

ig. 2 Diagram of the drill geometry, showing the chip width,
, and the chip thickness „nominal cutting depth…, t1. � is the

ngular speed of the drill.
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cutting surface, which is illustrated in Fig. 3. More specifically, F�
is the projection of the cutting force R onto the vibration direction
�see Fig. 3� and R is determined from the Merchant-Oxley model
of steady orthogonal cutting �20,21�. We also incorporated nonlin-
ear friction of the chip sliding on the rake face of the tool,
�through the friction coefficient ��. This friction force depends
critically on the direction of the vibration mode in question, which
is specified by the angle � in Fig. 3. Other parameters are V, the
cutting speed, �, the shear plane angle, Fs, the force projected on
the shearplane, and � the angle the shearplane makes with R.
�� ,Fs and � are used in the calculation of the cutting force, for
more details see �7��.

The cutting force F� is function of both � and �̇, and takes the
form:

F��,�̇� = w��t1 − � cos ���p0 + p1�̇ + p2�̇2� �3�

Note that the force depends on the instantaneous chip thickness
�t1−� cos �� and the penetration rate, �̇. In our calculations we
used values typical of drilling aluminum: �=0.26, w=6.35
�10−3 m, �=276 MPa, k=107 N/m, t1=7.6�10−5 m, V
=400 m/min, and a friction model that yielded expansion coeffi-
cients p0, p1, and p2 in decreasing asymptotic order. The p’s de-
pend on cutting speed, rake angle, and vibration angle in general.
The sign of the p’s depend critically on the vibration angle, both
p0 and p1 are positive for the rake angles we considered in the
case of the traditional vibration. The axial-torsional mode in ques-
tion vibrates at an angle �=1.38=79 deg relative to the vertical
vibration of the traditional mode, a fact uncovered by three-
dimensional vibration analysis. In this case p0 and p1 are less than
zero.

Including the effect of chip thickness variation introduces the
delay, and in �7� and �8� we rescale time by the natural frequency
of the undamped oscillator, and the amplitude by the cutting
depth, t1. This yields

�� + 	�� + � − ��1 − �� − �T�cos ���p0 + p̃1�� + p̃2��2� = 0

�4�

where � is now the rescaled amplitude, and �T=��t−T�. Note that
1 /T is spindle speed in revolutions per unit time, and � is now the
rescaled amplitude variable, and �� is the derivative with respect
to the rescaled time variable. From the nondimensionalization we
have �=w� /k and p̃1 , p̃2 are the rescaled p1 , p2 �p0 is left un-

Fig. 3 Diagram of angles and forces for orthogonal cutting.
The angle � is referred to as the rake angle, � is the friction
angle, � is the shear plane angle. The cutting thickness is t1, V
is the cutting speed, R is the cutting force, and Fs is the cutting
force resolved along the shear plane.
changed by the rescaling�.

OCTOBER 2006, Vol. 1 / 295

 license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



s
t
t

w
p
w
s
s
s

w

A
l
�
s
e

N
w
N
f
c
r
h

p
t
m
r
i

m
s
l
s
l
b
t
m
f

T
f

w
t

F
p
a
�
=

f
�

2

Downlo
1.3 Linear and Nonlinear Stability Background. Equations
uch as �4� and many other models for metal cutting can be writ-
en in the following form, after translating the equilibrium point to
he origin,

���t� + 
1���t� + ��t� + 
2���t� − ��t − T��

= f���t� − ��t − T�,���t�� �5�

here f is a nonlinear function and the 
 j depend on various
hysical parameters in the system. For example, when Eq. �4� is
ritten in the form �5� then 
1=	−�p̃1 and 
2=�p0cos �. We

hall see in Sec. 2 that using a different rescaling of the variables
till yields an equation of the form �5� but with different expres-
ions for the 
 j.

To study the linear �or local� stability of the equilibrium point
e consider the linearization of the model �5�

���t� + 
1���t� + ��t� + 
2���t� − ��t − T�� = 0 �6�
s is the case for ordinary differential equations, solutions of this

inear delay differential equation may be expressed in the form
�t�=�e�t, where � ,��C. Some simple algebra shows that such
olutions will exist if and only if � is a root of the characteristic
quation

�2 + 
1� + 1 + 
2�1 − e−�T� = 0 �7�

ote that, due to the delay, this is a transcendental equation in �,
hich means it will have a countable infinity of complex roots.
evertheless, it can be shown �22,23� that the stability results

rom ordinary differential equations hold here as well. Specifi-
ally, if all the roots of Eq. �7� have Re����0 then the equilib-
ium point is locally asymptotically stable and if at least one root
as Re���0 the equilibrium point is unstable.

In a physical problem, one is, of course, interested in the de-
endence of the stability on the parameters of the system. Using
echniques from complex variable theory and continuity argu-

ents, one can describe regions of parameter space where all the
oots of the characteristic equation have negative real parts. This
s usually called the stability region of the equilibrium point.

In the study of chatter, we are particularly interested in deter-
ining the parameter values where the equilibrium point loses

tability, this corresponds to parameter values where there is at
east one root of Eq. �7� that satisfies Re���=0. Such points are
aid to define the boundary of the region of stability of the equi-
ibrium point, or the stability boundary. These points can be found
y putting �=0 or �= i� into the characteristic equation. For chat-
er problems, the former does not generally occur for physically

eaningful parameter values. The latter, however, gives rise to the
ollowing �after separating into real and imaginary parts�

1 − �2 + 
2�1 − cos �T� = 0 �8�


1� + 
2sin �T = 0 �9�

hese can be further rearranged to give an equation for T as a
unction of � and the other parameters:

T =
2

�
�arctan�1 − �2


1�
� + N�� �10�

here N=0,1 ,2 , . . . determines the branch of the arctangent func-
ion, and another equation which is independent of T

�1 − �2 + 
2�2 + 
1
2�2 − 
2

2 = 0 �11�

rom this last equation, we can solve for one of the physical
arameters as a function of � and the other parameters. For ex-
mple, if Eq. �11� is derived from the model �4�, one can solve for

in terms of the other parameters, since 
1=	−�p̃1 
2
�p0cos �.
For our general setup, let � be the physical parameter we solve

or. Thus, for fixed values of the other parameters, Eqs. �10� and

11� yield parametric equations, T=T���, �=����, describing
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curves in the T, � parameter space. Along these curves, the char-
acteristic equation has a pair of pure imaginary roots, thus one
may expect that a Hopf bifurcation occurs. To show that this is
indeed the case, one needs to check the transversality and non-
resonance conditions of the Hopf bifurcation Theorem for DDEs

�22�. These conditions may be checked via manipulation of the
characteristic Eq. �7�. For an example, see the Appendix of �8�.

Assuming that a Hopf bifurcation does take place as either T or
� is varied through the curves described by Eqs. �10� and �11�, we
now discuss how to determine whether this is a supercritical or
subcritical bifurcation.

To study the criticality of the Hopf bifurcation, it is useful to
rewrite the model �5� as a first order system, viz.,

x��t� = A0x�t� + A1x�t − T� + f�x�t�,x�t − T�� �12�

where

x�t� = � ��t�
���t�

�, A0 = � 0 1

− �1 + 
2� − 
1
�, A1 = � 0 0


2 0
�

�13�

and

f = � 0

f�x1�t� − x1�t − T�,x2�t�� � �14�

The linearization of this equation about the trivial solution is

x��t� = A0x�t� + A1x�t − T� �15�
It can be shown �22� that the solution space of equations such

as Eqs. �12� and �15� is infinite dimensional and thus the appro-

priate phase space for Eq. �12� is C =
def

C��−T ,0�, R2�, the space of
continuous functions mapping the interval �−T ,0� into R2. The
equation may be recast in terms of this phase space by defining
the function

xt��� =
def

x�t + ��, − T � � � 0

to be the “phase point” at time t. Note that this represents the
value of the state x at time t together with its past history to t
−T.

Despite the infinite dimensionality of this phase space, many of
the properties of solutions of delay differential equations such as
Eq. �12� are similar to those for ordinary differential equations
�22�. In particular, at a Hopf bifurcation point, there exists a two-
dimensional center manifold in the solution space. Further, if all
the other roots of the characteristic equation of the linearization
about the equilibrium have negative real parts, then the center
manifold is attracting and the long term behavior of solutions to
the nonlinear delay differential equation is well approximated by
the flow on this manifold. As discussed in �9–12� the criticality of
the Hopf bifurcation can be determined by studying the evolution
of solutions on the center manifold. We note that since the mani-
fold is finite dimensional, this evolution will be described by a
system of ordinary differential equations. In the following we will
outline the steps needed to find this system of ordinary differential
equations. Details of the computations for Eq. �4� and the theory
behind them can be found in the Appendix of �8�.

A standard result from the theory of DDEs �22� indicates that
the characteristic equation �7� has at most a finite number of roots
with positive real parts. Thus at points along the curves described
by Eqs. �10� and �11�, the trivial solution of Eq. �12� has a two-
dimensional “center eigenspace,” N, with basis

���� = ��1���,�2���� = � cos���� sin����
− � sin���� � cos���� �

�16�
an infinite dimensional “stable eigenspace,” S, and a finite dimen-
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ional “unstable eigenspace,” U.
The corresponding center manifold is given by

Mf = 	� � C
� = �u + h�u��

here u= �u1 ,u2�T are coordinates on N and h�u��S � U. Solu-
ions to the DDE �12� on Mf are given by xt���=����u�t�
h�� ,u�t��, which can be expressed as

x ��� = � cos����u1�t� + sin����u2�t� �
t − � sin����u1�t� + � cos����u2�t�

bove the boundaries, and stable below.
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+ �h11
1 ���u1�t�2 + h12

1 ���u1�t�u2�t� + h22
1 ���u2�t�2

h11
2 ���u1�t�2 + h12

2 ���u1�t�u2�t� + h22
2 ���u2�t�2 � + O��u�3�

where the hjk
i ��� are found by solving an ordinary differential

equation �ODE� boundary value problem as described in the Ap-
pendix of �8�.

The dynamics on the center manifold are given by the evolution
in time of the coordinates u1�t�, u2�t�. This is governed by the
system of ODEs
u̇1 = �u2 + �12�0��f11u1
2 + f12u1u2 + f22u2

2 + f111u1
3 + f112u1

2u2 + f122u1u2
2 + f222u2

3�
u̇2 = − �u1 + �22�0��f11u1

2 + f12u1u2 + f22u2
2 + f111u1

3 + f112u1
2u2 + f122u1u2

2 + f222u2
3�

+ O��u�4�
The �ij�0� are functions of the physical parameters of the sys-
em, and of the Hopf frequency, �. The f ij, f ijk are functions of
hese and the center manifold coefficients hjk

i �0� and hjk
i �−T�.

Using the result given in �24�, it is easily shown that the criti-
ality of the Hopf bifurcation is determined by the sign of the
ollowing quantity

a =
1

8
��12�0��3f111 + f122� + �22�0��f112 + 3f222�� −

1

8�
���12�0�2

− �22�0�2�f12�f11 + f22� + 2�12�0��22�0��f22
2 − f11

2 �� �17�

f a�0 then the Hopf bifurcation is supercritical and if a0 it is
ubcritical. If a=0 the criticality is not determined by the third
rder terms of the equation.

Although these computations are long, they can be automated
n a symbolic algebra package such as MAPLE �9�. From this one
btains an expression for a as a function of the physical param-
ters and the Hopf frequency, �. This expression can then be
valuated at points along the curves described by Eqs. �10� and

ig. 4 Stability diagram for the traditional case: �=0.5,
0cos �=0.8, p̃1=0.2. Moving from top to bottom zooms out

rom the area near the lower part of the boundary for lower
utting speeds. The trivial solution is unstable in the region
�11�, and in particular along the stability boundary, to determine if
the Hopf bifurcation is super- or subcritical.

1.4 Overview of Previous Results. In �7� we determined lin-
ear stability boundaries for the drilling model for both the axial-
torsional and traditional vibration mode. There we solved Eq. �4�
for T and � as functions of �, and in terms of these variables Eqs.
�11� and �10� are written

p1
2�2�2 − ���2 − 1��2p0cos �� + 2	p1�2�� + �	2�2 + ��2 − 1�2� = 0

�18�
and

T��� =
2

�
�arctan� 1 − �2

�	 − �p1��� + N�� �19�

For the axial-torsional case positive solutions for � occur for
values of � between zero and 1, and for the traditional case, for
values of � greater than 1, indicating that the steady solution loses
stability to a vibration with frequency above or below the natural
frequency of the mode in question. Examples of these boundaries
are shown in Figs. 4 and 5.

Fig. 5 Stability diagram for axial-torsional vibration: �=0.5,
p0cos �=−0.8, p̃1=−0.4. Moving from bottom to top zooms in on
the area near the lower part of the boundary for lower cutting
speeds. The trivial solution is unstable in the region above the

boundaries, and stable below.
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We evaluated the Hopf coefficient �17� along the boundary of
he stability regions for both the traditional case and the axial-
orsional case. In the traditional case, the Hopf bifurcation is sub-
ritical for large values of T �small turning speeds� then switches
o supercritical at some intermediate value of T and remains so for
mall values of T �large turning speeds�. Increasing the damping
oves the point of change of criticality to smaller values of T.
he results are illustrated in Figs. 6 and 7. Hatched lines denote
ubcritical Hopf bifurcation and solid lines supercritical. In the
xial-torsional case, the Hopf bifurcation is always subcritical.

We also examined the high-speed limit where the delay differ-
ntial equation becomes an ordinary differential equation that can
e analyzed by conventional techniques. We found that the vector
eld for this system influences the structure of the flow in the
mall delay case, and that the criticality coefficient for the Hopf
ifurcation is zero, indicating degeneracy. Numerical simulations
f the delay differential equation in this limit show a global bifur-
ation leading to a large scale limit cycle whose period increases
ith increasing speed, reminiscent of a heteroclinic bifurcation in
on-delayed systems.

Fig. 6 Stability boundary showing
diagram is a blow-up of the bottom
subcritical Hopf bifurcation, solid lin
with p0cos„�…=0.8, p̃1=0.2, p̃2=0.1, �

Fig. 7 Stability boundary showing
diagram is a blow-up of the bottom
subcritical Hopf bifurcation, solid lin

˜ ˜
with p0cos„�…=0.8, p1=0.2, p2=0.1, �=2
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2 Stability With Respect to Depth of Cut
In this section we present the derivation and analysis of the

drilling model rescaled so that we can use the depth of cut, t1, as
the bifurcation parameter, rather than the width of cut, w.

The equation of motion prior to rescaling is obtained by com-
bining Eqs. �2� and �3� to yield

m�̈ + c�̇ + k� = w��t1 − � cos ���p0 + p1�̇ + p2�̇2� �20�

After rescaling time with respect to the natural frequency of the
undamped oscillator ��0=k �m � we obtain

�� + 	�� + � =
w�

k
�t1 − � cos�����p0 + p̃1�� + p̃2��2� �21�

where p̃1=�0p1 and p̃2=�0
2p2. The natural rescaling of the ampli-

tude by t1 is not done here, in order to examine the stability of the
trivial solution with respect to the chip thickness.

Accounting for variation in chip thickness adds the delay, T,
and we have

icality of Hopf bifurcation. The top
gram, and hatched lines indicate a
supercritical Hopf. Traditional case

.5.

icality of Hopf bifurcation. The top
gram, and hatched lines indicate a
supercritical Hopf. Traditional case
crit
dia

es a
=0
crit
dia

es a

.0.
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�� + 	� + � =
w�

k
	t1 − ���t� − ��t − T��cos�����p0 + p̃1�� + p̃2��2�

�22�

inearizing about the fixed point �0=�t1p0cos �, where �
w� /k, and z=�−�0 produces the following equation

z� + �	 − �p̃1t1�z� + z = − �p0cos����z�t� − z�t − T�� �23�

he linear stability curves are defined by the parametric equations

T��� =
2

�
�arctan� 1 − �2

�	 − �p̃1t1��
� + N�� �24�

here N=0,1 ,2 , . . . counts the branches of the arctangent func-
ion, generating the separate lobes of the diagram. To solve for T,
1 must first be found by solving the following quadratic equation

˜

Fig. 8 Linear stability boundaries varyi
parameters
Eq. �11� with 
2=�p0cos �, and 
1=	−�p1t1�,

ournal of Computational and Nonlinear Dynamics
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�1 − �2 + �p0cos ��2 + �	 − �p̃1t1�2�2 − ��p0cos ��2 = 0

�25�

Conditions for a real solution to this quadratic in t1 determine
allowable ranges of the parameter �, and depend on the values of
� , p̃0, and 	. Specifically,

t1
± =

	

p̃1�
±

��2 − 1��1 + 2�p0cos��� − �2�
p̃1��

�26�

so that t1 will be a real valued function of � when either �2−1
0 and 1+2�p0cos���−�20, or when both expressions are
�0. The former implies the range 1��2�1+2�p0cos���, hence
also requires that p0cos���0, which occurs in the traditional
vibration case. The latter set of inequalities combines to give 1
+2�p0cos�����2�1, which can be satisfied if p0cos����0,
which occurs in the axial-torsional vibration case. Plots of the

	, t1 versus 1 �T , traditional vibration
ng
stability boundaries in each case, for varying �, are shown in Figs.
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and 9. The region below the 1/T axis is not physically relevant,
ince the cutting depth is negative there, we include it to show the
tructure of the loops.

In both cases the boundaries oscillate for smaller values of �,
orming overlapping loops with increasing branch number N. The
xact criteria for the loops will depend in a complicated manner
n the interplay between the expression for 1 /T and t1 and will

ig. 9 Linear stability boundaries varying 	, t1 versus 1/T,
xial-torsional vibration parameters

Fig. 10 Extrema envelope of t1 boun

tion parameters
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not be calculated here. We do note, however, that in the axial-
torsional case the branches will diverge for large enough �. The
critical value of � is given by the point when the lower boundary
for �, 1+2�p0cos �, is zero, or �c=1/ �2 
 p0cos � 
 �. Then �→0 is
the lower boundary and t1→ ±� in this limit. This divergence is
illustrated in the bottom plots of Fig. 9.

From the small delay/large speed limit we can determine the
stability of the region immediately above and below the entire
boundary. The equation of motion in this case is simply

�� + 	�� + � = �t1�p0 + p̃1�� + p̃2��2�

and the stability of the trivial solution is defined by the sign of
linear damping term:

	 − �t1p̃1

The N=0 branch will asymptote on the value t1=	 / ��p̃1� in the
limit as 1 /T→�. which will be negative when p̃1�0, positive
when p̃10. Above the boundary the damping will be positive if
p1�0, i.e., the axial-torsional case, and negative if p̃10, in the
traditional case. Consequently, the region above the zeroth branch
will be stable to axial-torsional vibrations, and the region below it
is stable to traditional vertical vibrations. By continuity the real
parts of the roots of the quasi-polynomial �7� will be the same in
that region until another branch is encountered, at which point a
complex conjugate pair of roots crosses the imaginary axis. We
note here that increasing cutting depth has the somewhat non-
intuitive result of damping axial-torsional vibrations, consistent
with the presence of t1 in the linear damping term. The sign of the
damping due to the nonlinear friction determines if increasing t1
will be stabilizing or destabilizing.

It is clear from Fig. 8 and 9 that the maximum value of the
lobes shifts with increasing �, up in the axial-torsional case, and
down in the traditional case. This reflects the high-speed stability
result, where increasing � decreases the region of stability, which
is below the curve in the traditional case, and above the curve in
the axial-torsional case. The minima follow the maxima until ei-
ther they both tend toward zero �in the traditional case� or they
diverge �in the axial-torsional case�. This can be illustrated by
computing the maximum and minimum values of the lobes as a
function of �. To do so we first solve Eq. �25� for t1 as a function
of �, where the plus root forms the top part of the lobes, and the
minus root forms the bottom in the traditional case, vice versa in

ry as function of 	, traditional vibra-
da
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Fig. 11 Extrema envelope of t1 boundary as function of 	, axial-torsional
vibration parameters
Fig. 12 Stability boundary showing criticality of Hopf bifurcation in the
traditional case for „a… 	=0.1 and „b… 	=0.4. Other parameter values are:
p0cos„�…=0.8, p̃1=0.2, p̃2=0.1, �=0.1. Thin lines indicate a subcritical Hopf

bifurcation, thick lines a supercritical Hopf.
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he axial-torsional case. To determine the extrema we solve for the
ritical points of each, �c, and evaluate t1 at these points. For the
lus t1 branch this yields

t1crit =
	A1/2 + 2�A�1 + �p0cos �� − 1 − 2�p0cos ��

p̃1�A1/2 �27�

here A=1+2�p0cos �. For the parameter values used in the
raditional case the envelope comprised of both the maximum and
he minimum values of the lobes varies with � according to the
raph shown in Fig. 10, confirming the observation that the tops
f the lobes move down with increasing �. In this case it is
traightforward to show that in the limit as � goes to zero both the
aximum and minimum diverge, and as � goes to infinity they

end to zero.
In Fig. 11 the variation of both the maxima and minima of the

obes for the axial-torsional case is shown. Recall that for �
1/ �2 
 p0cos � 
 � the boundary uncoils and the branches diverge

o ±� as �→0, so no local maximum or minimum exist. For the

Fig. 13 Stability boundary showin
axial torsional case for „a… 	=0.1 and
p0cos„�…=−0.8, p̃1=−0.2, p̃2=−0.1, �
Hopf bifurcation, thick lines a super
arameter values in question this occurs when �=0.625, at which
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point both expressions cease to exist, since 1+2�p0cos ��0. It
can be shown that as �→0 both the maxima and the minima tend
to −�.

2.1 Nonlinear Stability. As discussed in Sec. 1, along each of
the curves shown in Figs. 8 and 9, the characteristic equation has
a pair of pure imaginary eigenvalues. Some straightforward cal-
culations show that, for fixed T, Eq. �22� undergoes a Hopf bifur-
cation as t1 is varied through the curve. We also showed in Sec. 1
that the criticality of this bifurcation is determined by the coeffi-
cient a given by Eq. �17�. We calculated a using the symbolic
algebra package MAPLE in a manner similar to that described in
�8�, and evaluated this coefficient along the curves defining the
stability region for both the traditional case and the axial-torsional
case.

In the traditional case, the Hopf bifurcation is supercritical for
small values of T �large turning speeds� then switches to subcriti-
cal at some intermediate value of T. After this it undergoes several
switches from sub- to super-critical and back again. Figure 12

riticality of Hopf bifurcation in the
… 	=0.5. Other parameter values are
1. Thin lines indicate a subcritical
ical Hopf.
g c
„b

=0.
crit
shows a plot of the curves which define the stability boundary for
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=0.1, 0.4. Note that the lower parts of the lobes are subcritical
hile the upper parts are supercritical. As � is increased, more of

ach curve becomes subcritical.
In the axial-torsional case, the Hopf bifurcation is subcritical

or small values of T �large turning speeds� then switches to su-
ercritical at some intermediate value of T. After this it undergoes
everal switches from super- to subcritical and back again. Figure
3 shows a plot of the curves which define the stability boundary
or �=0.1, 0.5. Note that the lower parts of the lobes are super-
ritical while the upper parts are subcritical. As � is increased,
ore of each curve becomes subcritical. Note also that, other than

t �=0.1, the Hopf bifurcation appears to always be subcritical
long the boundary of the stability region.

To verify these predictions we performed numerical simulations
n the full model �22�, with the equilibrium shifted to zero. The
imulations were performed using the package XPPAUT �25� which

Fig. 14 Numerical simulations of E
bifurcation for the traditional vibratio
criticality. Shown is 
̇ versus 
 for tw
values: 	=0.1,�=0.1,1/T=0.4,p0=0.
bifurcation, t1=5. „b… After Hopf bifu
ses a fourth order Runge-Kutta integrator adapted for delay dif-
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ferential equations. In all cases, the simulations confirmed our
predictions. However, some simulations showed additional behav-
ior not predicted by our center manifold calculations. For ex-
ample, in Fig. 14, we show simulations at a point where the Hopf
bifurcation is predicted to be supercritical, but close to where it is
predicted to change from supercritical to subcritical. Before the
bifurcation �Fig. 14�a��, initial conditions close enough to zero
lead to solutions which converge to zero �solid line�, while initial
conditions far enough from zero lead to solutions which grow
without bound �dashed line�. After the bifurcation �Fig. 14�b��,
initial conditions close enough to zero lead to solutions which
converge to a limit cycle �solid line�, while initial conditions
which are far enough from zero still lead to solutions which grow
without bound �dashed line�. This suggests that a large amplitude
unstable limit cycle surrounds the stable limit cycle. The behavior
close to zero is consistent with the prediction of our center mani-

12… illustrating a supercritical Hopf
ode, close to the point of change in
ifferent initial conditions. Parameter
1=0.2,p2=0.1,�=0. „a… Before Hopf

tion, t1=7.
q. „
n m
o d
8,p
rca
fold analysis: a stable limit cycle is created by the supercritical
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opf bifurcation. The unstable limit cycle is not predicted by our
enter manifold analysis, but is consistent with theoretical predic-
ions of what may occur near a point in parameter space where the
riticality of a Hopf bifurcation changes ��24�, Sec. 7.1�, �26,27�.

Let us now consider the points where the criticality switches in
ore detail. At such points, the coefficient a is 0, which means

hat the cubic terms of the nonlinearity do not determine the be-
avior of the system. It has been shown �26,27� that from such
oints there emerges a secondary bifurcation curve, which is a
addle-node bifurcation of limit cycles. This branch may either
esult in a large amplitude stable limit cycle surrounding the un-
table limit cycle produced by the subcritical part of the Hopf

Fig. 15 Numerical continuation of b
Hopf bifurcation when 	=0.1. Othe
−0.8, p̃1=−0.2, p̃2=−0.1, �=0.1; „b… p
The curves show the maximum amp
the corresponding value of 1/T. „a
case.
ifurcation curve or a large amplitude unstable limit cycle sur-
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rounding the stable limit cycle produced by the supercritical part
of the Hopf bifurcation curve. The numerical simulations of Fig.
14 appear to fall into the latter category.

To investigate this phenomenon further, we performed numeri-
cal continuations of the periodic solutions of our system, using the
package DDE-BIFTOOL �13�. Among other things, this package al-
lows one to find periodic solutions of delay differential equations,
calculate their stability and determine how this changes as param-
eters are varied. Figure 15 shows the results of numerically con-
tinuing the branch of periodic solutions produced by the Hopf
bifurcation when �=0.1, for both the traditional and axial-

ches of periodic solutions from the
arameter values are „a… p0cos„�…=
s„�…=−0.8, p̃1=−0.2, p̃2=−0.1, �=0.1.
de of 
 on the periodic solution for
raditional case. „b… Axial-torsional
ran
r p
0co
litu
… T
torsional cases. The curves plot the maximum amplitude of � for
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he periodic solution as a function of t1. For the traditional case
e show continuations for three different values of T. Recall that

he trivial solution is stable for t1 less than the Hopf bifurcation
alue in this case. Thus one can see the transition from subcritical
1 /T=1/3� to supercritical with an additional large amplitude un-
table limit cycle �1/T=0.387� to supercritical �1/T=0.445�. This
onfirms the results of the numerical simulations of Fig. 14. Con-
inuations for other values of 1 /T were similar to these: values of
/T where the Hopf bifurcation is subcritical produce branches

ike Fig. 15�a� top, places where the Hopf bifurcation is super-
ritical and 1/T�0.4 produce branches like Fig. 15�a� middle, for
/T0.4 the bifurcation is supercritical and numerical continua-

ions produce branches like Fig. 15�a� bottom. For the axial-
orsional case, we show continuations for four values of 1 /T. Re-
all that the trivial solution is stable for t1 greater than the Hopf
ifurcation value in this case. Here one sees the changes in the
eriodic solution branches near two different criticality switches
n Fig. 13, at 1 /T�0.155 and 1/T�0.28. Specifically, at 1 /T
0.15 the Hopf bifurcation is subcritical with an additional large
mplitude limit cycle, at 1 /T=0.16 it is subcritical, at 1 /T=0.25 it
s supercritical with an additional large amplitude limit cycle and
t 1 /T=0.3 it is subcritical. Thus the axial-torsional case exhibits
oth types of behavior associated with switches of criticality.

Discussion and Conclusions
For the purposes of machining, system parameters that can be

aried easily are cutting width, thickness and cutting speed. We
llustrate the effect of varying thickness and speed with linear
tability boundaries in the �1/T , t1� plane, and consider the way
his changes with varying cutting width. While the standard analy-
is of the delay differential equation that describes chatter in metal
utting shows similar stability lobes, they are created by varying
he cutting width.

Adding nonlinear forcing due to nonlinear friction on the rake
ace of the tool, and introducing varying angle of vibration gen-
rates significantly different stability lobes than usually studied,
ost easily seen is the presence of closed loops. This, while in-

eresting mathematically, is not as pertinent as the effect of vary-
ng vibration angle on the whole picture, which leads to such
bservations as the frequency of induced vibration must be less
han the natural frequency of the axial-torsional mode, and the
everse for the traditional vertical vibration mode. Close to the
oundaries either a stable or unstable limit cycle will exist, and
he nonlinear stability analysis we perform here uncovers this dis-
inction. We find that the traditional case is supercritical for large
utting speed, with several switches between super- and subcriti-
al for smaller cutting speeds. The axial-torsional case also has
witches between super- and subcritical, but these all occur for
egative values of t1, thus the Hopf bifurcation is always subcriti-
al for physically reasonable values of t1.

The switch from sub- to supercritical bifurcation along a
oundary indicates a degeneracy in the Hopf coefficient, meaning
hat higher order terms are needed to determine the stability at that
oint. A numerical continuation package can give some indication
f global picture during these transitions, however, and we see a
addle-node bifurcation of the limit cycle occurs at intermediate
arameter values. This is validated by numerical simulations of
he DDE which show a stable limit cycle enclosed by an unstable
ycle for appropriate parameter values in the traditional case.

Numerical continuation can also show that phenomena that oc-
ur for nonphysical parameter values influence the behavior for
hysically relevant parameter values. The most striking example
e found is a situation where linear stability analysis indicates the

quilibrium solution is stable for t10, i.e., all physically reason-
ble values of the cutting thickness. Since the stability boundary

nd associated Hopf bifurcation lie in the region t1�0, one might
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assume that it has no influence on the behavior of the physical
system. However, numerical continuations show that unstable pe-
riodic solutions which are generated by Hopf bifurcations for t1
�0 persist when t10 and thus can affect the behavior of the
physical system.

The implications of switching from a supercritical to subcritical
Hopf from a machining standpoint concern the accuracy of the
stability boundaries in the linear stability diagram. When a super-
critical Hopf is encountered the linear stability boundary deter-
mines where the steady cutting solution goes unstable, but if the
Hopf is subcritical, the existence of the small unstable cycle near
the steady cutting solution means that small perturbations could
push the trajectory out past the cycle and into a region of insta-
bility. Noise in the system then will blur boundaries, rendering
them much less accurate.

This study suggests further mathematical investigation of the
global bifurcations of such DDE systems, which would be needed
to fully explain the switching behavior seen in Fig. 15. The theory
of global bifurcation in DDEs with a constant delay term has not
been mapped out, and the development of such a framework
would be a significant advance in the understanding on non-linear
DDES.
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