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Abstract. A system of delay differential equations representing a sim-

ple model for a ring of neurons with time delayed connections between

the neurons is studied. Conditions for the linear stability of fixed points

of this system are represented in a parameter space consisting of the sum

of the time delays between the elements and the product of the strengths

of the connections between the elements. It is shown that both Hopf

and steady state bifurcations may occur when a fixed point loses sta-

bility. Codimension two bifurcations are shown to exist and numerical

simulations reveal the possibility of quasiperiodicity and multistability

near such points.

1 Introduction

Hopfield [1984] considered a simplified neural network model in which each
neuron is represented by a linear circuit consisting of a resistor and capacitor,
and is connected to the other neurons via nonlinear sigmoidal activation functions.
Assuming instantaneous updating of each neuron and communication between the
neurons, Hopfield arrived at a system of first order ordinary differential equations.
Not long afterward Marcus & Westervelt [1989] considered the effect of including
discrete time delays in the connection terms to represent the propagation time
between neurons and/or processing time at a given neuron. Due to the complexity
of the analysis, Marcus & Westervelt [1989] and most subsequent work, for example
Gopalsamy & Leung [1996], Ye, Michel & Wang [1994], Bélair, Campbell & van den
Driessche [1996] (see also references therein), have focussed on the situation where
all connection terms in the network have the same time delay. In the work which
has been done on Hopfield neural networks with multiple time delays the analysis is
usually simplified by either restricting the size of the network (e.g. Olien & Bélair
[1997]), or considering networks with simple architectures (e.g. Baldi & Atiya
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[1994]). A notable exception is Ye, Michel & Wang [1995] who have considered
the global stability of fixed points of an arbitrary sized network with different time
delays in each connection term.

Here we are interested in studying not only the stability of fixed points of the
network but also the bifurcation of new solutions when stability is lost. We thus
consider a Hopfield network of arbitrary size with multiple time delays but with
a simple architecture. Our network consists of a ring of neurons where the jth
element receives two time delayed inputs: one from itself with delay τs, one from
the previous element with delay τj−1. The architecture of this system is illustrated
in fig. 1.
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Figure 1 Architecture of the neural network

The equations for this system are

Cj u̇j(t) = −
1

Rj

uj(t) + Fj(uj(t − τs)) + Gj(uj−1(t − τj−1)), j = 1, . . . , n (1.1)

where Cj > 0, Rj > 0 represent the capacitances and resistances of the individual
neurons, and Fj , Gj are nonlinear functions representing, respectively, the feedback
from neuron j to itself, and the connection from neuron j − 1 to neuron j; and the
index 0 is taken equal to n. Normalizing this equation leads to

u̇j(t) = −djuj(t) + fj(uj(t − τs)) + gj(uj−1(t − τj−1)), j = 1, . . . , n (1.2)

where dj > 0.
The plan for the article is as follows. In section 2 we consider the linear stability

analysis of eq. (1.2) and present some theorems about the region of stability of the
fixed points as a function of the physical parameters in the model. In section 3 we
discuss the codimension one and two bifurcations which can occur when stability
is lost and illustrate these with numerical simulations of a particular system. In
the final section we will discuss the implications of our results and put them in the
context of the related work mentioned above.
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2 Linear Stability Analysis

Fixed points of (1.2) are solutions u(t) = u∗, ∀t, where

u∗ = [u∗
1, u

∗
2, . . . , u

∗
n]T (2.1)

dju
∗
j − fj(u

∗
j ) = gj(u

∗
j−1), j = 1, . . . , n.

The existence of such solutions depends, of course, on the particular functions fj

and gj used in the model. Assuming that such a fixed point exists one can translate
it to the origin via the transformation u(t) = u∗ +x(t). If fj and gj are sufficiently
smooth, one can expand these functions in Taylor series about u(t) = u∗. For x(t)
sufficiently small (solutions close to the fixed point) one can truncate this Taylor
series to obtain the linearization of (1.2) about the fixed point:

ẋj(t) = −djxj(t) + ajxj(t − τs) + bjxj−1(t − τj−1), j = 1, . . . , n, (2.2)

where aj = f ′
j(u

∗
j ), bj = g′j(u

∗
j−1). Physically, the aj and bj can be thought of

as gains or strengths of the connections between neurons. To study the linearized
stability of the fixed point u∗ of (1.2), we consider solutions of (2.2) of the form
x(t) = eλtc, where c = [c1, c2, . . . , cn]T , cj constants. Substituting this expression
into (2.2) yields the matrix equation

[

λI + D − Ae−λτs − B
]

c = 0. (2.3)

Here I is the n×n identity matrix, D = diag(d1, d2, . . . , dn), A = diag(a1, a2, . . . , an)
and B = Bjk where Bjk = bje

−λτj−1 , if k = j−1, Bjk = 0 otherwise. For nontrivial
solutions of (2.3) we require that the determinant of the coefficient matrix be zero,

det
[

λI + D − Ae−λτs − B
]

= 0, (2.4)

which leads to the characteristic equation associated with the delay differential
equation (2.2):

∆(λ) =

n
∏

j=1

(λ + dj − aje
−λτs) −

n
∏

j=1

(bje
−λτj−1) = 0. (2.5)

We note that the latter product in this equation may be expanded giving a simplified
equation

n
∏

j=1

(λ + dj − aje
−λτs) = βe−λτ (2.6)

where

β
def
=

n
∏

j=1

bj and τ
def
=

n
∑

j=1

τj . (2.7)

Thus the connections between the neurons act (so far as the linear stability is con-
cerned) as a single feedback loop with gain β and delay τ . We shall see below that
these are convenient and natural parameters to use in our stability and bifurcation
analysis.

It is well known (see e.g. Kolmanovskii & Nosov [1986] or Stépán [1989]) that
the trivial solution of eq. (2.2) will be asymptotically stable if all the roots of the
characteristic equation (2.6) have negative real parts. This further implies (Hale
& Lunel [1993]) that the fixed point u = u∗ of nonlinear system (1.2) is locally
stable. For brevity, we will say that the network modelled by (2.2) (by (1.2)) is
stable (locally stable) in this case.

Another standard result (Kolmanovskii & Nosov [1986]) tells us that the trivial
solution of (2.2) can only lose stability as parameters are varied by having a root
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of the characteristic equation pass through the imaginary axis. Thus changes of
stability will occur at points in parameter space where (2.6) has roots with zero
real parts. Consider first the zero roots, λ = 0. These will occur where

β =

n
∏

j=1

(dj − aj)
def
= α. (2.8)

Locating the pure imaginary roots is slightly more complicated. Substituting λ = iω

into (2.6) and separating real and imaginary parts yields

FR = β cosωτ

FI = −β sin ωτ
(2.9)

where FR and FI are, respectively, the real and imaginary parts of
∏n

j=1(iω + dj −

aje
−iωτs). These are defined by the following

FR
def
=

n
∏

j=1

(dj − aj cosωτs)

[

1 +

k
∑

l=1

(−1)l

{

n
∑

l1=1

n
∑

l2=1

· · ·

n
∑

l2k=1

ω + al1 sin ωτs

dl1 − al1 cosωτs

ω + al2 sinωτs

dl2 − al2 cosωτs

· · ·
ω + al2k sin ωτs

dl2k − al2k cosωτs

}]

,

l2 6= l1; l3 6= l1, l2; · · · l2k 6= l1, l2, . . . , l(2k − 1).

(2.10)

FI
def
=

n
∏

j=1

(dj − aj cosωτs)

m
∑

l=1

(−1)l−1







n
∑

l1=1

n
∑

l2=1

· · ·

n
∑

l(2m−1)=1

ω + al1 sinωτs

dl1 − al1 cosωτs

ω + al2 sin ωτs

dl2 − al2 cosωτs

· · ·
ω + al(2m−1) sinωτs

dl(2m−1) − al(2m−1) cosωτs

}

,

l2 6= l1; l3 6= l1, l2; · · · l(2m − 1) 6= l1, l2, . . . , l(2m − 2).
(2.11)

Here k = n
2 = m if n is even and k = n−1

2 , m = n+1
2 if n is odd.

Equation (2.9) may be easily solved for τ and β to yield.

β = β+ def
=
√

F 2
R + F 2

I (2.12)

τ = τ+ def
=























1

ω

[

Arctan

(

−FI

FR

)

+ 2lπ

]

, FR > 0

1

ω

[

Arctan

(

−FI

FR

)

+ (2l + 1)π

]

, FR < 0

(2.13)

and

β = β− def
= −

√

F 2
R + F 2

I (2.14)

τ = τ− def
=























1

ω

[

Arctan

(

FI

−FR

)

+ 2lπ

]

, FR < 0

1

ω

[

Arctan

(

FI

−FR

)

+ (2l + 1)π

]

, FR > 0.

(2.15)

Here l = 0, . . . , 1 and Arctan denotes the inverse tangent function which has range
(−π

2 , π
2 ). For fixed aj , dj and τs eqs. (2.12)–(2.13) and (2.14)–(2.15) describe curves

which lie in the right and left half of the β, τ plane, respectively, and which are
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parameterized by ω. If n is large, FR and FI may be quite complicated func-
tions of ω and the physical parameters aj , dj , τs. Nevertheless, we can still make
some assertions about the parameter values for which the trivial solution of (2.2)
is asymptotically stable. We begin with some preliminary results about limiting
cases.

Lemma 2.1 (Single Element) Suppose there is just one element in the net-
work. If

−d1 < a1 < d1 and τs ≥ 0

or

a1 < −d1 and τs <

{

1
√

a2
1 − d2

1

[

Arccos

(

d1

a1

)]

}

,

then the network is stable.

Proof If n = 1 then the characteristic equation reduces to

λ + d1 − a1e
−λτs = 0. (2.16)

This equation has been studied by many authors, most recently in the books by
Kolmanovskii & Nosov [1986] and Stépán [1989]. For clarity we repeat the results
here. When a1 = 0 the equation has one negative real root λ = −d1 and thus the
trivial solution is stable. The trivial solution can only lose stability for a1 6= 0 by
having a root which passes through the imaginary axis. Equation (2.16) has a zero

root when a1 = d1 and pure imaginary roots, ±iω = ±i
√

a2
1 − d2

1, when

τs = τ+
s

def
=

1
√

a2
1 − d2

1

[

(2l + 1)π − Arccos

(

d1

a1

)]

, 0 < d1 < a1

or

τs = τ−
s

def
=

1
√

a2
1 − d2

1

[

2lπ + Arccos

(

d1

a1

)]

, a1 < −d1 < 0.

Here l = 0, 1, 2, . . . and Arccos denotes the inverse cosine function which has range
[0, π]. For fixed d1 the curves τ+

s are monotone decreasing in a1 with lima1→d
+

1

τ+
s =

∞ and the τ−
s are monotone increasing in a1 with lima1→d

−

1

τ−
s = ∞. Thus the

trivial solution will lose stability for a1 positive when a1 = d1 and for a1 negative
when a1 crosses the τ−

s curve closest to a1 = −d1. The result follows.

Corollary 2.2 (Chain of Neurons) Suppose the network is a chain, i.e. at
least one of the bj = 0. If for each j

−dj < aj < dj and τs ≥ 0

or

aj < −dj and τs <







1
√

a2
j − d2

j

[

Arccos

(

dj

aj

)]







,

then the network is stable.

Proof If one of the bj = 0 then β = 0 and the characteristic equation (2.6) for
the network becomes

n
∏

j=1

(λ + dj − aje
−λτs) = 0.
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All the roots of this equation will have negative real parts if and only if, for each
j, all the roots of

λ + dj − aje
−λτs = 0

have negative real parts. This is exactly the equation studied in Theorem 2.1 with
j = 1. The result follows.

Thus a chain of neurons with unidirectional connections will be stable if each ele-
ment in the chain is stable when it is isolated. Note that under the conditions of
this theorem, α as defined by (2.8) is always positive.

Lemma 2.3 For fixed aj , dj and τs, if β± as defined by (2.12) and (2.14) are
monotone in ω then there are no intersection points of the curves defined by (2.12)–
(2.13) or of the curves defined by (2.14)–(2.15). If β+ is increasing in ω then there
are no intersection points of the line (2.8) with the curves defined by (2.12)–(2.13).

Proof Consider first intersections of the curves defined by (2.12)–(2.13) or
between the curves defined by (2.14)–(2.15). Since these curves are defined para-
metrically in terms of ω intersection points of two different curves will occur when
the same values of β and τ occur for two different values of ω. If β± is monotone
in ω then this is impossible.

Now consider the curves defined by (2.12)–(2.13). Consideration of (2.10)–
(2.11) and (2.12) shows that limω→0+ β+(ω) = |α|+, thus if β+ is increasing with
ω then there can be no intersection points of the line (2.8) with these curves.

Theorem 2.4 Let aj , dj , τs, be fixed and let the conditions of Corollary 2.2 be
satisfied. If β+ is monotone increasing with ω and β− is monotone decreasing with
ω then the stability region of the network modelled by (2.2) is given by the following:

−α ≤ β < α and 0 < τ,

β < −α and 0 < τ <























1

ω

[

Arctan

(

FI

−FR

)]

if FR < 0

1

ω

[

Arctan

(

FI

−FR

)

+ π

]

if FR > 0

,

where α > 0 is defined as in (2.8).

Proof From Corollary 2.2 the trivial solution of (2.2) will be asymptotically
stable for β = 0. For β 6= 0 it can lose stability only when one of the roots of the
characteristic equation (2.6) passes through the imaginary axis. Recall that these
roots lie along the line (2.8) and the curves defined by (2.12)–(2.13) and (2.14)–
(2.15). From Lemma 2.3 there can be no intersection points of the curves defined by
(2.12)–(2.13) and (2.14)–(2.15) or of the line (2.8) and the curves defined by (2.12)–
(2.13). From (2.10)–(2.11), limω→0+ FR = α = limω→0+ FI ; thus limω→0+ β±(ω) =
±α± and limω→0+ τ± = ∞. It follows that the curves will be nested and the
boundary of the stability region will be defined by the line β = α in the right half
plane and the curve defined by (2.14)–(2.15) closest to β = −α in the left half
plane. The result follows.

In general, β± may be quite complicated functions of ω, however, we can es-
tablish the following theorem about their monotonicity.
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Theorem 2.5 For fixed aj and dj if

τs < min
j

1

dj

(√

1 +
dj

|aj |
− 1

)

,

then β+ is monotone increasing in ω and β− is monotone decreasing in ω.

Proof From (2.12) and (2.14) we have

β±2 = F 2
R + F 2

I

=





n
∏

j=1

(dj − aj cosωτs) + i(ω + aj sin ωτs)









n
∏

j=1

(dj − aj cosωτs) − i(ω + aj sin ωτs)





=

n
∏

j=1

[

(dj − aj cosωτs)
2 + (ω + aj sinωτs)

2
]

Taking the derivative with respect to ω yields

β± dβ±

dω
=





n
∑

j=1

(dj − aj cosωτs)(ajτs sin ωτs) + (ω + aj sin ωτs)(1 + ajτs cosωτs)





×





n
∏

k=1,k 6=j

(dk − ak cosωτs)
2 + (ω + ak sin ωτs)

2





= β2
n
∑

j=1

hj(ω)

(dj − aj cosωτs)2 + (ω + aj sin ωτs)2

where

hj(ω) = ω + ajdjτs sin ωτs + ajωjτs cosωτs + aj sin ωτs

Note from eqs. (2.12) and (2.14) that β+ is strictly positive and β− strictly negative.
Thus if each of the hj(ω) is of the same sign for all ω then β± will be monotone in
ω. Now,

hj(ω) = ω + aj(djτs + 1) sinωτs + ajωjτs cosωτs

≥ ω − |aj |(djτs + 1)ωτs − |aj |ωτs

= ω(1 − 2|aj |τs − |aj |djτ
2
s )

> ω

[

1 − 2|aj |
1

dj

(√

1 +
dj

|aj |
− 1

)

− |aj |
1

dj

(

2 +
dj

|aj |
− 2

√

1 +
dj

|aj |

)]

= 0

Since hj(ω) > 0 for each j, β+ is monotone increasing in ω and β− is monotone
decreasing in ω.

This result is illustrated in the following figures which display the region of
stability of the trivial solution of (2.2) in the β, τ plane for various values of the
parameters aj , dj and τs. Figs. 2–4 show the results for a two element ring (n = 2)
with dj = 1, j = 1, 2 and a1 = −0.1, a2 = −0.2 (Fig. 2), a1 = 0.1, a2 = −0.2
(Fig. 3), and a1 = 0.1, a2 = 0.2 (Fig. 4). The stability plots for two values of τs

are shown, illustrating the difference when the β± are monotone in ω from when
they are not. The critical value of τs predicted by Theorem 2.5 is τs ≈ 1.45 for all
cases.
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Figure 2 Region of stability in the β, τ plane for a two element network with
negative self connections.(a) τs = 2 (b) τs = 6. Other parameter values are
give in the text. Dashed lines indicate where the fixed point is stable.
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Figure 3 Region of stability in the β, τ plane for a two element network with
one positive and one negative self connection.(a) τs = 5 (b) τs = 9. Dashed
lines indicate where the fixed point is stable.

Figs. 5 and 6 show the results for a three element ring (n = 3) with dj = 1, j =
1, 2, 3 and a1 = −0.1, a2 = −0.2, a3 = −0.3 (Fig. 5) and a1 = 0.1, a2 = 0.2, a3 =
0.3 (Fig. 6). The stability plots for two values of τs are shown, illustrating the
difference when the β± are monotone in ω from when they are not. The critical
value of τs predicted by Theorem 2.5 is τs ≈ 1.08 for both cases.

It is clear from Figs. 2(b)–6(b) that when β± are not monotone in ω the bound-
ary of the stability region can be quite complicated as it is made up of pieces of the
line (2.8) and arcs of the the curves defined by (2.12)–(2.13) and (2.14)–(2.15). It
would be quite difficult to define this boundary analytically, however, we can state
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Figure 4 Region of stability in the β, τ plane for a two element network with
positive self connections.(a) τs = 2 (b) τs = 6. Other parameter values are
give in the text. Dashed lines indicate where the fixed point is stable.
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Figure 5 Region of stability in the β, τ plane for a three element network
with negative self connections. (a) τs = 1.5 (b) τs = 6. Other parameter
values are given in text. Dashed lines indicate where the fixed point is stable.

the following theorem about the region where the stability is independent of the
delays τs and τ .

Theorem 2.6 Let aj , dj , be fixed. If |aj | < dj , j = 1, . . . n then the trivial
solution of (2.2) is stable for −βmin < β < βmin and all τs > 0, τ > 0, where

βmin
def
=
√

∏n

j=1(dj − |aj |)2. If |aj | > dj for at least one j then there is no such

region of delay independent stability.
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Figure 6 Region of stability in the β, τ plane for a three element network
with positive self connections. (a) τs = 2 (b) τs = 6. Other parameter values
are given in text. Dashed lines indicate where the fixed point is stable.

Proof Recall from Theorem 2.5 that

β±2 =

n
∏

j=1

[

(dj − aj cosωτs)
2 + (ω + aj sin ωτs)

2
]

.

Now if |aj | < dj , j = 1, . . . n, then

(dj − aj cosωτs)
2 + (ω + aj sin ωτs)

2 ≥ (dj − |aj |)
2, j = 1, . . . n,

and

β±2 ≥

n
∏

j=1

(dj − |aj |)
2.

Using a similar argument to that of Theorem 2.4 we see that the trivial solution of
(2.2) is stable for −βmin < β < βmin and all τs > 0, τ > 0.

However, if |aj | > dj for some j, then β±2 = 0 when ω =
√

a2
j − d2

j , and

τs =























1
√

a2
j − d2

j

[

(2l + 1)π − Arccos

(

dj

aj

)]

, 0 < dj < aj

1
√

a2
j − d2

j

[

2lπ + Arccos

(

dj

aj

)]

, aj < −dj < 0
,

for l = 0, 1, 2, . . .. Hence there is no region for which the trivial solution is stable
for all positive values of τs and τ .

Remark 2.7 Suppose that |aj | < dj , j = 1, . . . n. Note that if aj > 0, j =
1, . . . , n then βmin = α and this line will be the boundary of the region of stability
for β > 0 for all values of τs. This situation is shown in Figs. 4(b) and 6(b).
Alternatively, if at least one aj < 0 then dj − |aj | < dj − aj for this j and βmin <

α. In this case the boundary of the region of stability for β > 0 will be more
complicated. This situation is shown in the other figures.
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3 Bifurcations

One can verify that the roots of the characteristic equation as described above
are simple and that they cross the imaginary axis with non zero speed. To do
this we consider the following derivatives of the characteristic polynomial ∆(λ) as
defined by (2.5):

d∆

dλ
= βe−λτ



τ +

n
∑

j=1

1 + τsaje
−λτs

λ + dj − aje−λτs



 and
d∆

dβ
= −e−λτ , (3.1)

where β and τ are as defined in (2.7). Consideration of these derivatives where the
characteristic equation has a zero root, i.e. along the line β = α yields:

d∆

dλ

∣

∣

∣

∣

λ=0

= α



τ +

n
∑

j=1

1 + τsaj

dj − aj



 (3.2)

and

dλ

dβ

∣

∣

∣

∣

λ=0

= −

[

d∆

dλ

∣

∣

∣

∣

λ=0

]−1

(3.3)

Thus for fixed aj , bj , τs the roots are simple and pass through zero with non zero
speed everywhere on the line β = α except possibly for one isolated point given by

τ = −
n
∑

j=1

1 + τsaj

dj − aj

. (3.4)

Consideration of the derivatives (3.1) when the characteristic equation has a
pure imaginary root, i.e. along the curves defined by (2.12)–(2.13) and (2.14)–(2.15)
yields:

Re

[

dλ

dβ

∣

∣

∣

∣

λ=iω

]

= −
1

βS2

[

τ

+

n
∑

j=1

dj − τsa
2
j + (djτs − 1)aj cosωτs − ωτsaj sin ωτs

K2
j





(3.5)
where

S2 =





n
∑

j=1

dj − τsa
2
j + (djτs − 1)aj cosωτs − ωτsaj sin ωτs

K2
j

+ τ





2

+





n
∑

j=1

ω + (djτs + 1)aj sin ωτs + ωτsaj cosωτs

K2
j





2

K2
j = (dj − aj cosωτs)

2 + (ω + aj sin ωτs)
2

Thus the pure imaginary roots will pass through the imaginary axis will nonzero
speed everywhere except at isolated points (β±(ωs), τ

±(ωs)) where ωs is found by
solving

τ±(ω) = −
n
∑

j=1

dj − τsa
2
j + (djτs − 1)aj cosωτs − ωτsaj sin ωτs

K2
j

,
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β± are given by (2.12) and (2.14), τ± are given by (2.13) and (2.15). From (3.1)

if Re
[

dλ
dβ

∣

∣

∣

λ=iω

]

6= 0 then d∆
dλ

∣

∣

λ=iω
6= 0 also, thus the pure imaginary roots will

certainly be simple if they cross the imaginary axis with nonzero speed.
We conclude that if the nonlinearities of equation (1.2) satisfy appropriate

non-degeneracy conditions, the curves (2.12)–(2.13) and(2.14)–(2.15) define Hopf
bifurcation curves in the β, τ plane, and the vertical line β = α defines a steady
state bifurcation. The exact nature of these bifurcations, i.e. whether the Hopf
bifurcations are supercritical or subcritical, and what type of steady state bifurca-
tion occurs, would depend on the nonlinearities fj , gj . As an example, consider
the case when n = 2 and the nonlinearities are given by fj(u) = aj tanh(u),
gj(u) = bj tanh(u). Then u∗ = 0 and it can be shown (Shayer [1998]) that the
steady state bifurcation is a supercritical pitchfork. One way to determine the na-
ture of the Hopf bifurcations is to analyze the center manifold for equations. In
Campbell & Bélair [1995] we describe a Maple program which will carry out such
an analysis. Applying our program to this example shows that for fixed dj , aj and
τs the criticality of the Hopf bifurcation may vary with ω along the curves shown
in Figs 2–Figs 6. More significantly, even if τ and β are fixed, corresponding to a
particular point on one of these curves, the criticality may still change if bj or τj

change.
Codimension two bifurcation points occur when two of these different bifur-

cations happen simultaneously. Points of Hopf-Hopf interaction exist when the
characteristic equation has two pairs of pure imaginary roots ±iω1, ±iω2. For
the system we are considering these points can occur for any set of values of the
parameters aj , dj , τs such that β±(ω1) = β±(ω2) and τ±

j (ω1) = τ±
k (ω1), for some

j, k ∈ ZZ. These points cannot, in general, be solved for in closed form. They can,
however, be computed numerically and are easily seen in Figs. 2(b)–6(b), where
they appear as intersection points of two of the Hopf bifurcation curves. Hopf-
steady state interactions exist when the characteristic equations has both a zero
root and a pure imaginary pair. For our system these points may be found by
solving β(ω) = α for ω and substituting in τ+ as given by (2.13). Again these are
readily visible in Figs. 2(b)–6(b) where they appear as intersection points of the
Hopf bifurcation curves with the line β = α. From Theorem 2.5 it is clear that
neither type of codimension two point can occur in our system if

τs < min
j

1

dj

(
√

1 +
dj

|aj |
− 1

)

.

Codimension two points can be the source of more complicated dynamics such
as multistability and quasiperiodicity. To illustrate what may occur in the system
we are studying, we performed numerical simulations near one Hopf-Hopf and the
Hopf-steady state interaction points which occur next to the stability region in
Fig. 2(b). We chose our nonlinearities as in the example discussed above. Plots in
the u1, u2 plane of two of these simulations are shown in Fig. 3. Fig. 3(a) shows
the existence of a stable 2-torus near the Hopf-Hopf interaction at τ ≈ 7, β ≈ −1.2.
Fig. 3(b) shows the coexistence of a stable limit cycle with two stable fixed points
near the Hopf-pitchfork interaction at τ ≈ 4, β = 1.32.

4 Conclusions

We have studied a system of delay differential equations representing a simple
model for a ring of neurons with time delayed connections between each neuron
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Figure 7 Numerical simulations of a two element network given by (1.2) with
dj = 1, τs = 6, f1(x) = −0.1 tanh(x),f2(x) = −0.2 tanh(x) and gj(x) =
bj tanh(x). Other parameter values are (a) b1 = 1.2, b2 = −1, (giving β =
−1.2) and τ = 6 (b) b1 = −1.4, b2 = −1 (giving β = 1.4) and τ = 4.

and its immediate predecessor in the ring and time delayed feedback from each
neuron to itself. We showed how conditions for the linear stability of fixed points of
this system may be easily represented in a parameter space consisting of the sum
of the time delays between the elements and the product of the strengths of the
connections between the elements. A connection was made between the stability of
the fixed point in the ring and the stability of fixed points in the individual neurons
which comprise it. It was shown that both Hopf and steady state bifurcations may
take place when a fixed point loses stability. Conditions under which interactions
between these bifurcations may take place were given and numerical simulations
revealed the possibility of quasiperiodicity and multistability near such points.

Our work is complementary to that of Ye, Michel & Wang [1995] who analyzed
the global stability of a general network of n neurons with different time delays in
each connection. One should expect their regions of global stability to lie within
our region of local stability. This has been checked (and found to be true) by Shayer
[1998] in the case n = 2 with nonlinearity fj(u) = aj tanh(u), gj(u) = bj tanh(u).
Olien & Bélair [1997] have made a detailed study of the stability and bifurcations of
a network consisting of two neurons with two time delays. However, as they choose
to identify a particular time delay with a given neuron (representing the processing
time at that neuron) their work is not directly comparable to ours, even in the
case n = 2. Baldi & Atiya [1994] have considered a ring of n neurons with n time
delays. The main difference between their work and our is that we include delayed
self connection terms (represented by fj(uj(t − τs)) in (1.2)). As far as the linear
stability analysis is concerned, their system effectively has one time delay: τ , the
product of the delays in the connections between neurons, whereas ours effectively
has two: τ and τs. Our analysis can be applied to their system by taking aj = 0
for all j. Consideration of Theorems 2.4 and 2.5 shows that the stability diagrams
in this case will always be qualitatively like Fig. 2(a). That is, the stability region
will be bounded on one side by the steady state bifurcation curve and on the other
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by one curve of Hopf bifurcation. As the codimension two points cannot exist one
would not expect more complex dynamics than periodic solutions and fixed points.
This is consistent with the results given by Baldi & Atiya [1994].

While ring networks of are of limited biological relevance, they may be re-
garded as building blocks for networks with more realistic connection topologies.
One approach which seems promising is to decompose larger networks into sets of
connected rings and use studies such as ours to gain insight into the dynamics the
networks. For example, many of our results have shown how stability of the ring de-
pends on the stability of the individual neurons. It is possible this may be extended
to show how the stability of a network depends on the stability of the individual
rings. See Baldi & Atiya [1994] for further discussion and example applications of
similar ideas.
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