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Abstract. We investigate the clustering dynamics of a network of inhibitory in-
terneurons, where each neuron is connected to some set of its neighbors. We use phase
model analysis to study the existence and stability of cluster solutions. In particular,
we describe cluster solutions which exist for any type of oscillator, coupling and connec-
tivity. We derive conditions for the stability of these solutions in the case where each
neuron is coupled to its two nearest neighbors on each side. We apply our analysis to
show that changing the connection weights in the network can change the stability of
solutions in the inhibitory network. Numerical simulations of the full network model
confirm and supplement our theoretical analysis. Our results support the hypothesis
that cluster solutions may be related to the formation of neural assemblies.

1. Introduction. A neural assembly is a group of neurons which
transiently act together, facilitated by strengthened synapses, to achieve
a particular purpose. The same neuron may participate in different as-
semblies. Experimental evidence for the existence of such assemblies lies
in measurements of transiently synchronized groups of neurons associated
with certain tasks. For example, measurements of neuronal assemblies in
the olfactory systems are thought to be associated with encoding sensory
information [18], while observation of such assemblies in the hippocampus
has been linked to spatial navigation and memory encoding [5, 23]. A key
hypothesis about neural assemblies is that they are formed not just due to
external inputs to the system, but also due to the intrinsic dynamics of the
network [6]. There is experimental evidence in the hippocampus supporting
this hypothesis [14, 22]. Mathematically, the intrinsic dynamics of the net-
work should support multiple different groupings of neurons, with different
neurons able to participate in multiple groupings and switching between
different groupings by changing the connection weights of the network.

Clustering is a type of solution observed in a network of oscillators,
where the elements break into subgroups. Elements within a group are syn-
chronized, while elements in different groups are phase-locked with some
nonzero phase difference. Studies of large networks of identical (or near-
identical), all-to-all coupled oscillators have shown that many possible clus-
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ter solutions exist and that multistability can occur [3, 13, 21]. Other work
on small networks has shown that heterogeneous inputs can cause the net-
work to select particular clustered solutions [19, 20]. Thus clustering in
networks of (near-) identical oscillators seems to have the intrinsic dynam-
ics necessary to be associated with the formation of neural assemblies. For
this reason these two concepts have been linked [12].

Here we investigate the clustering dynamics of a network of inhibitory
interneurons. While all-to-all coupling is appropriate for studying highly
connected networks such as the CA3 region of the hippocampus, other brain
regions, such as hippocampal area CA1 are more sparsely connected. Thus
we focus on coupling structures where each neuron is connected to some
set of its neighbors. Details of the model are given in section 2, which
also contains a derivation of a phase model reduction of the system. In
section 3 we use phase model analysis to study the existence and stability
of cluster solutions in the network and apply our analysis to the interneuron
model. In section 4 we study the original network model using numerical
simulations to support and extend our analysis. In section 5 we summarize
our results and draw conclusions.

2. Model. For our interneuron model we use the single compartment,
conductance-based model of Wang and Buzsáki [25]. This model was de-
veloped by adjusting the parameters of the Hodgkin-Huxley model [15]
to match the action potential shape and spiking properties of fast-spiking
interneurons. The equations for the model are

C
dV

dt
= Iapp − gNam3

∞(V )h(V − VNa)− gKn4(V − VK)− gL(V − VL)

= Iapp − Iion(V, h, n)
dh

dt
= φ(αh(V )(1− h)− βh(V )h) = fh(V, h)

dn

dt
= φ(αn(V )(1− n)− βn(V )n) = fn(V, n)

(2.1)
where V is the cell membrane voltage in mV and t is time in ms. The vari-
ables h and n are dimensionless gating variables representing, respectively,
the inactivation of the sodium current and the activation of the potassium
current. The activation of the sodium current is assumed to be instan-
taneous and thus follows the steady state activation function m∞(V ) =
αm(V )/(αm(V ) + βm(V )), where αm(V ) = −0.1(V + 35)/(exp(−0.1(V +
35))−1), βm(V ) = 4 exp(−(V +60)/18) are the voltage dependent reaction
rates associated with the activation gate with units ms−1. Similarly the
reaction rates associated with the inactivation of the sodium channel and
activation of the potassium channel are αh(V ) = 0.07 exp(−(V + 58)/20),
βh(V ) = 1/(exp(−0.1(V +28))+1), αn(V ) = −0.01(V +34)/(exp(−0.1(V +
34)) − 1), βn(V ) = 0.125 exp(−(V + 44)/80). The constant φ = 5 adjusts
the reaction rates for temperature. Maximal sodium, gNa, potassium, gK ,
and leak, gL, conductances are: 35, 9 and 0.1 mS/cm2 respectively. Rever-
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Fig. 1. Variation of spiking frequency (a) and amplitude (b) with applied current
for the Wang-Buzsáki interneuron model. In (b) solid/dashed lines represent asymptot-
ically stable/unstable equilibrium points, while blue circles represent the maximum and
minimum values on the stable limit cycle. Oscillations emerge via a SNIC bifurcation,
at ISNIC = 0.16, and disappear via a Hopf bifurcation, at IHopf = 25.13.

sal potentials, VNa, VK , VL, are 55, -90 and -65 mV respectively, and the
capacitance, C, is 1 µF/cm2.

This model exhibits periodic spiking for Iapp ∈ (0.16, 25.13) nA. The
variation of the spiking period with Iapp can be seen in Figure 1. Bio-
logically reasonable intrinsic firing rates are less than 60 Hz [25, 17] which
correspond to Iapp < 1. In simulations we use Iapp = 0.4 which corresponds
to a spiking frequency of approximately 25 Hz.

The oscillations in this model are created in a saddle node on an in-
variant circle (SNIC) bifurcation at I = ISNIC = 0.16 and are destroyed
in a supercritical Hopf at I = IHopf = 25.13. As can be seen in Figure 1,
at I = ISNIC the oscillations appear with finite amplitute and frequency
0. Thus close to this point, and in particular at I = 0.4, the model may be
considered to be a Type I oscillator. See [11, section 3.4] for more dicussion
of bifurcations and the emergence of oscillations in neural models.

We consider a network of identical neurons coupled with inhibitory
synapses. The synapses are modelled using first order kinetics following
[4], giving the model

C
dVi
dt

= Iapp − Iion(Vi, hi, ni)− gsyn(Vi − Vsyn)

N∑
j=1

wijsij

dhi
dt

= fh(Vi, hi)

dni
dt

= fn(Vi, ni)

dsij
dt

= − sij
τinh

+ αinh(Vj)(1− sij)

(2.2)
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where i is modulo N and

αinh(V ) = α0/(1 + exp(−V/5)).

The reversal potential, maximal synaptic conductance and time constant
of activation for the synapse are Vsyn = −75 mV, gsyn = −0.2 mS/cm2

and α0 = 4 ms−1, respectively, which are appropriate for a GABA synapse
[1, 25]. We consider τinh in the range 1 − 10 ms, which is consistent with
experiments [2, 25]. The coupling matrix W = [wij ] determines if there
is a synapse from the jth neuron to the ith. In particular, we will take
wii = 0 (no self-coupling), and assume that the neurons are arranged in a
1-dimensional ring with each neuron coupled to r of its nearest neighbors
on each side:

wij =



w1 > 0 j = i− 1, i+ 1
w2 > 0, j = i− 2, i+ 2

...
wr > 0, j = i− r, i+ r

0, otherwise

j mod N, (2.3)

Thus r will be called the connectivity radius. In the analysis we will pri-
marily focus on the cases r = 1 (nearest neighbor coupling) and r = 2 (two
nearest neighbors coupling).

2.1. Reduction to a phase model. Consider a system of ordinary
differential equations

dX

dt
= F(X(t)) (2.4)

which has an exponentially asymptotically stable periodic orbit given by
X = X̂(t), 0 ≤ t ≤ T = 2π/Ω. For example the model (2.4) is in this
form with X = (V, h, n), and has an exponentially asymptotically stable
periodic orbit when ISNIC < I < IHopf as shown in Figure 1. Linearizing
(2.4) about this solution gives the periodic system

dX

dt
= DF(X̂(t))X.

The system adjoint to this is

dZ

dt
= −[DF(X̂(t))]TZ. (2.5)

Let Z = Ẑ(t), 0 ≤ t ≤ T be the unique periodic solution of (2.5) satisfying
the normalization condition

1

T

∫ T

0

Ẑ(t) · F (X̂(t)) dt = 1.
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Now consider a network of identical oscillators given by

dXi

dt
= F(Xi(t)) + ε

N−1∑
j=0

wijG(Xi,Xj), 0 ≤ i ≤ N − 1, (2.6)

where ε is the coupling strength, G is the coupling function and W = [wij ]
is the coupling matrix.

Assuming that ε is sufficiently small and the wij are of order 1 with
respect to ε, one can apply weakly coupled oscillator theory [9, 10, 11, 16]
to show that the phases of the oscillators of (2.2) satisfy

dθi
dt

= Ω + ε

N−1∑
j=0

wijH(θj − θi) +O(ε2), i mod N,

where the interaction function, H, is given by

H(θj − θi) =
1

T

∫ T

0

Ẑ(t)G[X̂(t), X̂(t+ (θj − θi)/Ω)] dt, (2.7)

with Ẑ, X̂ as defined above. Note that H is a 2π periodic function of its
argument.

Neglecting the higher order terms in ε, introducing the phase differ-
ences

φi = θi+1 − θi, i mod N, (2.8)

and using coupling described by equation (2.3) gives rise to the following
phase difference model

dφi
dt

= ε

r∑
k=1

wk

[
H

(
k−1∑
s=0

φi+s+1

)
−H

(
k−1∑
s=0

φi+s

)

+H

(
−
k−1∑
s=0

φi−s

)
−H

(
−
k−1∑
s=0

φi−s−1

)]
,

(2.9)

where i is modulo N . Note that the phase differences are not independent,
but satisfy the constraint

N−1∑
i=0

φi = 0. (2.10)

This can be used to reduce the dimension of the system (2.9) to N − 1;
however it also results in a loss of symmetry in the system. In our analysis
below, we choose to work with the full system and the constraint in order
to take advantage of this symmetry.
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Recall that cluster solutions correspond to periodic solutions of (2.2)
where the neurons are phase-locked with some fixed phase difference be-
tween different neurons. Such solutions correspond to equilibrium solutions
of (2.9). In the next section we will study the existence and stability of
such solutions via the phase difference model (2.9). This analysis will be
used to make predictions about what kind of cluster solutions can occur in
the full model (2.2).

3. Phase Model Analysis.

3.1. Existence of Cluster Solutions. Equilibrium solutions of the
phase difference equations (2.9) must satisfy the following N equations

0 = ε

r∑
k=1

wk

[
H

(
k−1∑
s=0

φi+s+1

)
−H

(
k−1∑
s=0

φi+s

)

+H

(
−
k−1∑
s=0

φi−s

)
−H

(
−
k−1∑
s=0

φi−s−1

)]
, 0 ≤ i ≤ N − 1,

(3.1)
and the constraint (2.10).

We will focus on equilibrium solutions which are independent of the
function H, the weights wj and the connectivity radius r. Clearly such a
solution is given by φi = ψ, i = 0, . . . , N − 1. Applying the constraint
equation (2.10) and the 2π-periodicity of the φ gives the extra condition

Nψ = 0 mod 2π. (3.2)

The choice of ψ determines the type of solution. We can immediately see
one simple choice: ψ = 0. This means the oscillators are phase-locked with
no phase difference between them. In the original model this corresponds to
all the neurons firing at the same time. This is called the synchronous or
in-phase solution. A second simple choice is ψ = 2π

N which corresponds to
the oscillators being phase-locked with the same phase difference between
any two adjacent neighbors in the network. This is an example of a splay
solution. In original model, a splay solution is one where the firing of the
neurons is equally distributed over the period. Recall that an n-cluster
solution is one where the oscillators are phase-locked so that n groups
are formed. Oscillators in the same group are synchronized (the phase
difference between them is zero) and oscillators in different groups have
some fixed phase difference. Note that the synchronized solution can be
thought of as a 1-cluster solution and the splay solution as an N -cluster
solution.

More generally we have the following.
Theorem 3.1. The phase difference equations (2.9) admit N solu-

tions of the form φi = ψ, i = 0, . . . , N − 1. These solutions are of three
types. The one-cluster or synchronized solution is given by ψ = 0. The
N -cluster or splay solutions are given by ψ = 2kπ/N where k and N are
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relatively prime. The other cluster solutions are determined by the non-
trivial factors of N . For 1 < n < N where n divides N evenly there are
n-cluster solutions given by ψ = 2mπ/n, where m < n and m,n are rela-
tively prime. Solutions come in pairs. If ψ̄ is a solution then 2π − ψ̄ is a
solution of the same type.

Proof. The constraint (3.2) can be written

Nψ = 2kπ, (3.3)

where k is an integer. We need only consider k = 1, . . . , N as larger values
of k give solutions which are equivalent to those with k ≤ N . Thus there
are N solutions.

Let gcd(N, k) = p. If p = 1, i.e., k,N are relatively prime, then the
corresponding solution is

ψ =
2kπ

N
.

This is a splay state where the oscillators are equally distributed over k
periods. Note that k = 1 corresponds to the simple splay state discussed
before. Now 2π − ψ = (N − k)2π/N . Since N, k are relatively prime so
are N and N − k. Clearly N − k < N thus (N − k)2π/N is also a splay
solution.

If p > 1, let N = np. Then gcd(N, k) = p and k < N if k = mp where
m < n. Clearly one choice is m = 1. Others may exist depending on the
value of N . In any case, then the corresponding solution is ψ = m2π/n.
Now in terms of the original phases this solution satisfies

θi+1(t)− θi(t) = 2mπ/n, i mod N

It follows that

θn(t)− θ0(t) = φn−1 + · · ·+ φ0 = 2mπ.

Thus oscillators 0 and n are synchronized. In a similar way one can show
oscillators 0, n, 2n, ..(p − 1)n form a synchronized group (cluster) and the
rest of the oscillators break into n − 1 other clusters. Thus, ψ = m2π/n
corresponds to a clustered solution with n clusters.

Note that 2π − ψ = (n−m)2π/n. Since n,m are relatively prime, so
are n and n − m. Clearly N − k < N thus (n − m)2π/n is an n-cluster
solution.

Corollary 3.1. If N is prime then (2.9) only admits the synchro-
nized solution and splay states. If N is even then (2.9) always admits the
2-cluster solution (anti-phase state) φi = π, i = 0, . . . , N − 1.

In a splay state the phase difference between adjacent cells in the
network is given by ψ = 2πk/N . However, adjacent cells do not neces-
sarily fire in successive order. The firing order of the neurons is given by
{i1, i2, . . . , iN} where is = (s− 1)l mod N with lk = 1 mod N .
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Number of clusters, n Nearest neighbors phase difference, ψ
2 π
4 1

2π,
3
2π

5 m
5 2π, m = 1, 2, 3, 4

10 l
5π, l = 1, 3, 7, 9

20 l
10π, l = 1, 3, 7, 9, 11, 13, 17, 19

25 m
252π, m = 1, 2, 3, 4, 6, 7, 8, 9, 11, . . . , 24

50 l
25π, l = 1, 3, 7, 9, 11, . . . 49

Table 1
Clustered states for a network with 100 neurons

Consider the n-cluster state corresponding to the solution ψ = m2π/n,
where N = np. We number the clusters so that neuron j belongs to cluster
Cj for j = 0, . . . , n− 1:

C0 = {0, n, . . . , (p− 1)n}, C1 = {1, n+ 1, . . . , (p− 1)n+ 1}, . . .

Then the phase difference between clusters i and i+1 is m
n 2π and the firing

order of the clusters is determined by the firing order of neurons 0, . . . , n−1.
Let {j1, j2, . . . , jn} be the firing order. Then ji = (i − 1)l mod n where
lm = 1 mod n.

For example, for N = 100 the clustered states are as shown in Table 1.
Aside from the synchronous state all other states are splay states.

3.2. Stability Analysis of Cluster Solutions. Now we consider
the stability of the solutions derived above. If we take all N of the phase
model equations (using indices mod N), the nature of the coupling and the
form of the solution mean that the Jacobian matrix will be circulant. We
do not require N equations to define the system, but the circulant form is
very convenient for computing eigenvalues, as seen in [21].

In other words, the Jacobian has the form, J = εĴ , where

Ĵ =



c0 cN−1 · · · c2 c1
c1 c0 cN−1 c2
... c1 c0

. . .
...

cN−2
. . .

. . . cN−1
cN−1 cN−2 · · · c1 c0

 .

The eigenvalues of this matrix are given by

λj =

N−1∑
k=0

ck[exp(2πij/N)]N−k
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where i =
√
−1 and j = 0, . . . , N − 1. For stability analysis, we are

concerned with the sign of the real parts of these eigenvalues:

Re(λj) = c0 + cN−1 cos(2πj/N) + cN−2 cos(4πj/N) + · · ·
+c2 cos(2(N − 2)πj/N) + c1 cos(2(N − 1)πj/N)

= c0 + (c1 + cN−1) cos(2πj/N) + (c2 + cN−2) cos(4πj/N) + · · ·

Second nearest neighbors
Consider the case that w1, w2 > 0. Recall that our solution is given

by φi = ψ, i = 0, . . . , N − 1 where ψ is a constant (and an integer multiple
of 2π/N). Define the odd part of the function H as given by g(x) =
1
2 [H(x)−H(−x)]. Then the nonzero entries of Ĵ are given by

c0 = −w1 [H ′(−ψ) +H ′(ψ)]− w2 [H ′(2ψ) +H ′(−2ψ)]

= −2w1g
′(ψ)− 2w2g

′(2ψ),

c1 = w1H
′(−ψ) + w2 [H ′(−2ψ)−H ′(−2ψ)] = w1H

′(−ψ),

c2 = w2H
′(2ψ),

cN−2 = w2H
′(−2ψ),

cN−1 = w1H
′(ψ) + w2 [H ′(2ψ)−H ′(2ψ)] = w1H

′(ψ).

Note that λ0 =
∑
ck = 0, i.e., there is always a zero eigenvalue. Thus

to guarantee stability of the solution we need only find a condition that
makes Re(λj) < 0 for j = 1, . . . , N − 1. Now the zero eigenvalue is due to
the fact that the variables are not independent but satisfy the constraint
(2.10). Thus solutions must lie on the N−1 dimensional invariant subspace
defined by this constraint. The eigenvalue conditions above give asymptotic
stability within this subspace. Now

Re(λj) = −2w1g
′(ψ)− 2w2g

′(2ψ) + 2w1g
′(ψ) cos(2πj/N)

+2w2g
′(2ψ) cos(4πj/N)

= −2w1g
′(ψ)[1− cos(2πj/N)]− 2w2g

′(2ψ)[1− cos(4πj/N)]

= −2 [1− cos(2πj/N)] [w1g
′(ψ) + 2w2g

′(2ψ) (1 + cos(2πj/N))] .

Noting that cos (2πj/N) = cos (2π(N − j)/N) yields the conditions for
(asymptotic) stability:

w1g
′(ψ) + 2w2g

′(2ψ) (1 + cos(2πj/N)) > 0, 1 ≤ j ≤ bN/2c, (3.4)

where bN/2c is the greatest integer less than or equal to N/2. This set of
inequalities can be reduced to one as follows

w1g
′(ψ) + 2w2g

′(2ψ) (1 + cos(2πbN/2c/N)) > 0 if g′(2ψ) ≥ 0
w1g

′(ψ) + 2w2g
′(2ψ) (1 + cos(2π/N)) > 0 if g′(2ψ) < 0.

(3.5)

Recall that if ψ is a solution then so is 2π − ψ. In fact these solutions are
strongly related.
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Theorem 3.2. The solutions ψ and 2π − ψ have the same stability.
Proof. Since g(ψ) is an odd, 2π-periodic function, g′(ψ) is an even,

2π-periodic function. It follows that

g′(2π − ψ) = g′(−ψ) = g′(ψ)

and

g′(2(2π − ψ)) = g′(4π − 2ψ) = g′(−2ψ) = g′(2ψ).

Thus the stability conditions (3.5) are identical for the solutions ψ and
2π − ψ.

The stability conditions (3.5) simplify in some special cases as we now
discuss. Recall that the synchronous solution corresponds to ψ = 0. In
this case, the real part of the jth eigenvalue is given by

Re(λj) = −2g′(0) [1− cos(2πj/N)] [w1 + 2w2(1 + cos(2πj/N))] .

We conclude that in order to have (asymptotic) stability, we need only
require g′(0) > 0. Thus the stability of the synchronous solutions is in-
dependent of the size of the network and the connection strengths. We
conjecture that this will hold for an arbitrary number of connections. It
can be shown for all-to-all coupling using the results of [21].

If N is an even number, the conditions for stability become:
• g′(ψ) > 0, and

• w1

w2
> −2g′(2ψ) (1 + cos(2π/N))

g′(ψ)
, if g′(2ψ) < 0.

The second condition can be replaced by the following size independent
condition

w1

w2
> −4g′(2ψ)

g′(ψ)
, if g′(2ψ) < 0.

Nearest neighbors
If the neurons are only connected to their nearest neighbors then w2 =

0 and the eigenvalues for the solution become

Re(λj) = c0 + (c1 + cN−1) cos(2πj/N)

= −g′(ψ)
w1

2
(1− cos(2πj/N)).

Thus the solution is asymptotically stable if

g′(ψ) > 0. (3.6)

This has several consequences. First, the stability of the solution is inde-
pendent of the network size. Second, if two solutions have the same phase
difference ψ then the stability will be the same. In particular, the stabil-
ity of the n cluster solution ψ = m2π/n in a network with N = pn, is
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the same as the stability of the corresponding splay solution in a network
with n neurons. The simplest example of this is that the stability of the
2-cluster solution in any network with N even is the same as the stability
of the anti-phase solution in a network with 2 elements.

Finally, we compare the stability of solutions in networks with single
and two nearest neighbors. Recalling the conditions for stability for a net-
work with N even, it is clear that if a solution is unstable for a network with
single nearest neighbor connections then it is unstable for a network with
two nearest neighbor connections. However, if N is odd then a solution
ψ which is unstable for any network with single nearest neighbor connec-
tions (g′(ψ) < 0) will be stable for a network with two nearest neighbor
connections only if g′(2ψ) > 0 and the first condition of (3.5) is satisfied.

3.3. Application to the Inhibitory Network. The results above
apply to any network of identical oscillators with two nearest neighbor
coupling. We now apply those results to predict when clustering can occur
in our model of an inhibitory network.

The interaction function H may be calculated from equation (2.7)
given a numerical representation of the periodic solution of the single cell
model. This computation may be done in the numerical simulation package
XPPAUT as described in [8]. The shape of the function depends on the
periodic solution and also the coupling in the network. We computed H
with the parameters as described in Section 2, but varying Iapp and τinh.
For each set of parameters, we then used XPPAUT to find a representation
of H as a truncated Fourier series containing 30 terms. Note that it is
only the derivative of the odd part of H, i.e., g′, that is relevant to the
stability. We used the Fourier series to calculate g′ and then plotted this
as a function of φ to obtain Figure 2. Varying Iapp has a small effect on the
stability. This is not too surprising. As seen from Figure 1, varying Iapp
in the range [0, 5] has a large effect on the period of the limit cycle, but a
small effect on the shape as it has no effect on the coupling. Varying τinh
only affects the coupling. It can have a profound effect as it determines
how long the inhibition of the postsynaptic neuron persists after a spike
from the presynaptic neuron. Based on these computations we can make
the following predictions.

Recall that with single nearest neighbor coupling, a solution with all
phase differences equal to ψ will be stable if g′(ψ) > 0. This is easy to check
just by looking at Figure 2, which was generated by using the Fourier series
for g′ as described above. We can make the following observations based
on the Fourier series for g′.

1. The synchronous or 1-cluster solution (corresponding to φ = 0) is
unstable for fast synaptic decay (small τinh) and stable for slow
synaptic decay (large τinh).

2. The 2-cluster solution (corresponding to φ = π) is stable with
nearest neighbor coupling for all values of the parameters we have

11



(a) Varying the applied current. (b) Varying the decay time of the synapse

Fig. 2. Effect of two parameters on the derivative of the odd part of the interac-
tion function, g′(φ). Other parameters are as described in section 2. The results are
displayed for φ between 0 and π because g′(φ) is symmetric with respect to φ = π.

considered. Note that this solution only exists if the number of
neurons in the network is even.

3. If 11
16π < ψ < 21

16π then the solution is stable with Iapp = 0.4 for
all τinh ≤ 20 that we checked.

4. If 0 < ψ < π
2 then the solution is unstable if τinh ≤ 5.

5. The stability of the splay state depends on the number of neurons
in the network. If N is large then 2π/N is small and the stability
is similar to that of the synchronous solution.

We illustrate our results for the n-cluster solutions with n ≤ 10, with
both single nearest neighbor (w1 = 1, w2 = 0) and two nearest neighbor
(w1 = 1 = w2) coupling. The variation of the stability with the synaptic
decay constant and the coupling type is shown in Table 2. To begin, we
note that for both single and two nearest neighbors there is multistability.
The 2-cluster and 3-cluster solutions are stable for large ranges of τinh
with both types of coupling, while others are stable for smaller ranges
of τinh and/or only with single nearest neighbor coupling. As shown in
Figure 2(b) increasing τinh stabilizes the synchronous solution; this can
also destabilize a stable solution (ψ = 4π

7 ,
10π
7 ). Further, changing from

single nearest neighbor to two nearest neighbor coupling can either cause
stability (ψ = 4

7π, τinh = 5) or cause instability (ψ = 6π
7 ,

8π
7 , all τinh).

Solutions with phase difference close to 0 have 2ψ ≈ ψ, thus their stability
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n ψ Nearest Neighbor Two Nearest Neighbors
1 0 unstable τinh ≤ 2 unstable τinh ≤ 2
2 π stable all τinh ≤ 20 stable all τinh ≤ 20
3 2π

3 ,
4π
3 stable τinh ≤ 15 stable τinh ≤ 15

4 π
2 ,

3π
2 stable τinh ≤ 0.05 stable τinh ≤ 0.05

5 2π
5 ,

8π
5 unstable all τinh ≤ 20 unstable all τinh ≤ 20

4π
5 ,

6π
5 stable all τinh ≤ 20 unstable all τinh ≤ 20

6 π
3 ,

5π
3 unstable all τinh ≤ 20 unstable all τinh ≤ 20

7 2π
7 ,

12π
7 unstable all τinh ≤ 20 unstable all τinh ≤ 20

4π
7 ,

10π
7 stable τinh ≤ 2 stable τinh ≤ 5

6π
7 ,

8π
7 stable all τinh ≤ 20 unstable all τinh ≤ 20

8 π
4 ,

7π
4 unstable all τinh ≤ 20 unstable all τinh ≤ 20

3π
4 ,

5π
4 stable all τinh ≤ 20 stable τinh ≤ 2

9 2π
9 ,

16π
9 unstable all τinh ≤ 20 unstable all τinh ≤ 20

4π
9 ,

14π
9 unstable all τinh ≤ 20 unstable all τinh ≤ 20

8π
9 ,

10π
9 stable τinh ≤ 15 unstable all τinh ≤ 20

10 π
5 ,

9π
5 unstable all τinh ≤ 20 unstable all τinh ≤ 20

3π
5 ,

7π
5 stable τinh ≤ 5 stable τinh ≤ 5

Table 2
Phase model prediction of stability for n-cluster solution of the inhibitory network

model corresponding to solution with ψ as given. Note that solution 2π − ψ must have
same stability. Nearest neighbor coupling corresponds to w1 = 1, w2 = 0 in (2.9), while
two nearest neighbor coupling corresponds to w1 = w2 = 1. Stability was explicitly
checked for the values of τinh shown in Figure 2(b) and extrapolated to other values
based on the variation of g′ with respect to τinh shown in that figure.

is not affected much by the switch from single to two nearest neighbor
coupling. As is clear from the expression for the eigenvalues (3.5), if more
weighting is put on the second nearest neighbor coupling (w2 > w1) then
the addition of this coupling can have more effect on the stability. For large
enough w2 the 2-cluster solution can be destabilized.

4. Numerical Simulations. Numerical simulations of the full model
(2.2) were carried out in MATLAB (The MathWorks Inc., Natick, MA),
using a 2nd-order Runge Kutta algorithm (ode23) that implements a vari-
able time step, with the parameter values as described in section 2. In the
following we show several numerical simulations that verify the predictions
of the phase model. Then we show some behaviour not predicted by the
phase model.

We studied networks with N = 2 − 10 neurons, τinh = 2 ms and one
or two nearest neighbor coupling. As an example, consider a network with
N = 5 neurons. Since N is prime, the network has the synchronous solution
and four splay solutions. These latter are described in Table 3 with stability
for τinh ∈ [0.5, 20] as predicted by the phase model using Figure 2(b). The
numerical simulations agreed with these predictions. The splay states with
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Phase difference, ψ Firing sequence Phase model Numerics
2π
5 0, 1, 2, 3, 4 unstable not found
4π
5 0, 3, 1, 4, 2 stable found
6π
5 0, 2, 4, 1, 3 stable found
8π
5 0, 4, 3, 2, 1 unstable not found

Table 3
Stability of splay states for a network of 5 neurons with single nearest neighbor

coupling and synaptic decay time τinh = 2 ms.

ψ = 4π
5 ,

6π
5 were found but not the other two. See Figure 3.
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Fig. 3. Raster plots for two splay (5-cluster) solutions in a network with 5 neurons
and synaptic connections between first nearest neighbors.

Numerically, we were able to verify the stability of the majority of the
n-cluster solutions predicted by the phase model for N = 2− 10 as shown
in Table 2. We were not able to find the 4-cluster solutions numerically
even with very short synaptic decay rates (τinh ≤ 0.05) that the phase
model predicted was necessary for stability. In the N = 4 network, the
cells tended to the 2-cluster solution with ψ = π. We were also unable to
numerically obtain the ψ = 4π

7 ,
10π
7 solutions and the 3π

5 ,
7π
5 solutions with

single nearest neighbor coupling, and the ψ = 3π
4 ,

5π
4 solutions with two

nearest neighbor coupling. For the ψ = 8π
9 ,

10π
9 solution with single nearest

neighbor coupling and the ψ = 3π
5 ,

7π
5 solution with two nearest neighbor

coupling, instead of a 9-cluster and 10-cluster solution, respectively, in
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which each cell fired one spike per cluster cycle, we found cluster solutions
in which each cell fired two spikes, or a doublet, during each cluster cycle.
Below we discuss these doublet solutions in more detail.

In networks with larger numbers of cells, N = np, we were able to
numerically find all the n-cluster solutions that we found with N = n.
For example, consider a network with N = 200 neurons. Our analysis
predicts that there should be stable 5-cluster solutions corresponding to the
stable splay states in the 5 neuron network, i.e., ψ = m

5 2π with m = 2, 3.
In these solutions, each cluster contains 40 cells with clusters given by
C0 = {0, 5, 10, . . . , 195}, C1 = {1, 6, 11, . . . , 196}, C2 = {2, 7, 12, . . . , 197},
C3 = {3, 8, 13, . . . , 198} and C4 = {4, 9, 14, . . . , 199}. The phase difference
between clusters is 2π

5 . In the 5-cluster solution corresponding to m = 2,
the cluster firing order is {C0, C3, C1, C4, C2} and ψ = 2 2π

5 = 4
5π. For m =

3, the cluster firing order is {C0, C2, C4, C1, C3} and the phase difference
between nearest neighbor cells is ψ = 3 2π

5 = 6
5π. See Figure 4(a).

Our analysis of the phase model predicts that in this same network,
two stable 8-cluster solutions exist with phase difference between near-
est neighbors ψ = 3π

4 ,
5π
4 (see Table 2). In these solutions, each cluster

contains 25 cells: C0 = {0, 8, 16, . . . , 192}, C1 = {1, 9, 17, . . . , 193}, C2 =
{2, 10, 18, . . . , 194}, C3 = {3, 11, 19, . . . , 195}, . . ., C7 = {7, 15, 23, . . . , 199}.
For the 8-cluster solution corresponding to ψ = 3π

4 , the cluster firing order
is {C0, C3, C6, C1, C4, C7, C2, C5}. For ψ = 5π

4 , the clusters fire in the fol-
lowing order {C0, C5, C2, C7, C4, C1, C6, C3}. The phase difference between
successively firing clusters is π

4 . See Figure 4(b).

There were some cases where the numerically observed stability of n-
cluster solutions did not agree with that predicted by the phase model.
While the 3-cluster solution was numerically stable in networks with N =
3p cells and single nearest neighbor coupling, with two nearest neighbor
coupling, the maximal synaptic conductance gsyn had to be weaker (0.1
instead of 0.2 mS/cm2) to numerically find these solutions. Additionally,
recall that the phase model predicted that the 2-cluster solution is stable
for all networks with an even number of neurons and either single or two
nearest neighbor coupling. This solution corresponds to the network break-
ing into two clusters C0 = {0, 2, 4, . . . , N−2} and C1 = {1, 3, 5, . . . , N−1},
with phase difference ψ = π between nearest neighbors. We found this so-
lution numerically in networks with single nearest neighbor coupling and
N = 2, . . . , 200. However, with two nearest neighbor coupling we did not
find this solution numerically. Closer consideration of the eigenvalues in
this case shows that the stability is weaker, in the sense that the mag-
nitude of the real part of the eigenvalues is smaller. Thus it is possible
that the solution has a smaller basin of attraction and is harder to find
numerically. Alternatively, the phase model may no longer accurately pre-
dict the network behaviour as the coupling is too strong. In these net-
works, a different 2-cluster solution was found when N = 4p in which
C0 = {0, 1, 4, 5, . . . , N − 4, N − 3} and C1 = {2, 3, 6, 7, . . . , N − 2, N − 1}.
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Fig. 4. Raster plots showing evolution to stable 5-cluster solution (a) and 8-cluster
solution (b) in a network with N = 200 and synaptic connections between first nearest
neighbors. The cell order was re-permuted such that the cluster solutions are clearly
visualized.

In this solution, the phase difference between every nearest neighbor is not
the same. We discuss these 2-cluster solutions in more detail below.

4.1. Further investigation. In some networks we observe a different
type of N -cluster/splay solution in which there is 1 cell in each cluster but
the cells fire 2 consecutive spikes (doublets), rather than single spikes in
each cluster cycle (see Figure 5(b)). These solutions can be characterized
by the fixed phase difference, ψ, between the first spikes fired by nearest
neighbor cells. The doublet N -cluster solution has the same character as
the single spike N -cluster solution with the same ψ. The cells fire in the
same order but they are able to fire off 2 spikes before inhibition from
other cells arrives to suppress their firing. The phase difference between
the first spikes of cells that fire consecutively is 2π

N . The doublet splay
solutions were only observed when the corresponding regular (single spike)
splay solutions were predicted to be stable by the phase model. In some
networks we observed the doublet and regular splay solutions corresponding
to the same ψ coexisting (Figure 5). In other networks only the doublet
splay solution was observed, as noted above for the ψ = 8π

9 ,
10π
9 solution

with single nearest neighbor coupling and the ψ = 3π
5 ,

7π
5 solution with two

nearest neighbor coupling.

Numerically, we observe different 2-cluster solutions in networks with
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Fig. 5. Single spike firing and doublet spike firing splay solutions in a network
with N = 7 and synaptic connections between first nearest neighbors. Raster plots for
7-cluster solutions associated with ψ = 8π

7
for single spike firing (a) and doublet spike

firing (b).

N = 4k where k is an integer, as shown in Figure 6. These are not in the
form of the solutions discussed above as the phase difference between left
and right nearest neighbors is not the same. They are described by the
following.

Theorem 4.1. If N = 4k for some integer k, then the system (2.9)
admits solutions of the form

φ1 = φ3 = · · · = φN−1 = ψ, φ2 = φ4 = · · · = φN = π − ψ. (4.1)

Proof. Substitution shows that the form (4.1) satisfies the equilibrium
equations (3.1). Applying the constraint shows

N

2
(ψ + π − ψ) = 2kπ

which is only satisfied if N = 4k.
The solutions in Figure 6 are described by ψ = 0. Thus these solutions

have the two clusters

Ĉ0 = {0, 1, 4, 5, . . .}, Ĉ1 = {2, 3, 6, 7 . . .}.

Another 2-cluster solution is given by ψ = π with clusters

C̄0 = {0, 3, 4, 7, . . .}, C̄1 = {1, 2, 5, 6, . . .}.

It is easy to see that four 4-cluster solutions also exist and are given by

ψ =
π

4
,

3π

4
,

5π

4
,

7π

4
.
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Fig. 6. Two cluster solutions of the form (4.1) with ψ = 0 for N = 8 and N = 12.

The stability of these cluster solutions cannot be determined by the analysis
of section 3 as the Jacobian matrix is not circulant. However, the 2-cluster
solutions seem quite robustly stable in networks with both single and two
nearest neighbor coupling.

To supplement our analysis, we investigated the addition of further
connections to the network. Our simulations showed that adding more
connections could stabilize unstable N -cluster or splay solutions. For ex-
ample, in a network with N = 9 neurons, the 9-cluster solutions defined by
ψ = 4π

9 ,
14π
9 which the theory predicted and numerics confirm are unstable

with single nearest and two nearest neighbor coupling, were numerically
found with three nearest neighbor coupling. Similar results for N -cluster
solutions in other networks with N > 5 led to the following.

Conjecture 4.1. Consider an N cell network with N odd. Let
p1 = N−1

2 and p2 = N+1
2 . If gcd{p1, N} = 1 and gcd{p2, N} = 1, then

two N -cluster solutions exist and are stable when the connectivity radius
r = N−3

2 . The N -cluster solutions have the following properties:

• Associated with p1: firing order {i1, i2, . . . , iN} where is = (s−1)p1
(mod N), ψ = (N − 2) 2π

N
• Associated with p2: firing order {i1, i2, . . . , iN} where is = (s−1)p2

(mod N), ψ = 2 2π
N

In these cluster solutions, these specific values p1 and p2 dictate a fir-
ing order and the connectivity radius r is sufficiently large so that during
the majority of the cluster solution cycle, a cell in the network is inhib-
ited by successively firing cells. For example, consider the cluster solution
associated with p1. The firing order starting at cell 0 is the following:

1: 0
2: p1 = N−1

2

3: 2p1 = 2N−12 = N − 1

4: 3p1 = 3N−12 = 3N−3
2 (mod N) = N−3

2

5: 4p1 = 4N−12 = 4N−4
2 (mod N) = N − 2

...
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N-1: (N − 2)p1 = (N − 2)N−12 = N N−1
2 − N + 1 = N(N−32 ) + 1 = 1

(mod N)

N: (N − 1)p1 = (N − 1)N−12 = (N−1)N
2 − N−1

2 = −N−12 (mod N) = N+1
2

(mod N)
With connectivity radius r = N−3

2 , each cell in the network sends
synaptic inhibition to every other cell in the network except for itself and
the cells N−1

2 and N+1
2 steps away from it. Cell 0, for example, receives

inhibition from all cells except for cell N−1
2 and cell N+1

2 . Thus, in this
solution, cell 0 is inhibited as every cell in the network fires except the
cells that fire immediately after and immediately before it. The symmetry
in the network and the firing order guarantees that this is true for every
cell in the network. The firing order dictated by p1 ensures that every cell
receives continuous inhibition except in a short time window around the
time when the cell is supposed to fire.

The N -cluster solution associated with p2 has the opposite firing order
as the solution associated with p1. Specifically, in the firing order starting at
cell 0, cell N+1

2 fires immediately after cell 0 and cell N−12 fires immediately
before it. Since the network connectivity is the same, the firing order
ensures successive, uninterrupted synaptic inhibition except in the time
window around the time when a cell is supposed to fire.

This N -cluster solution does not seem to be stable numerically for N
even. In this case, with connectivity radius r < N

2 , each cell will not receive

inhibition from the cell N2 places away from it. That cell is also in position
N
2 in the cluster solution firing order. So, in the middle of the cluster
cycle, there will be a break in the inhibition that a cell receives, allowing
a window for it to fire out of turn. We note that if additional connections
were added between cells i and i+ N

2 for i = 0, . . . , N − 1, then the break
in inhibition would not occur and an N -cluster solution could be stable.
We do not further discuss this case as the coupling is not nearest neighbor,
thus the Jacobian matrix would not be circulant and our analysis would
not apply.

5. Discussion. In this paper we considered a network of inhibitory
interneurons with nearest neighbor coupling and periodic boundary condi-
tions. Thus, the cells compose a 1-dimensional ring. We used a phase model
approach to derive conditions for the existence and stability of solutions
in which all cells in the network fire repetitively, so none are completely
suppressed, and all cells have equal phase differences with their nearest
neighbor in ascending order around the network. In particular, we focused
on cluster solutions where the neurons break into subgroups. Elements
within a group are synchronized, while elements in different groups are
phase-locked with some nonzero phase difference.

We first derived conditions that can be applied to any network with
up to two nearest neighbor coupling. Our existence results can be summa-
rized as follows. An network with N elements has N solutions of the form
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described above. The minimum number of clusters is 1 and the maximum
number is N . The network always admits one synchronous or 1-cluster
solution. The network always admits at least two N -cluster or splay so-
lutions. If N is prime then it has the 1-cluster solution and N − 1 splay
solutions. If N is even then it has one 2-cluster solution. For every nontriv-
ial factor n 6= 2 of N the network has at least two n-cluster solutions. Our
stability analysis showed that for a network with single nearest neighbor
coupling the stability depends only on the value, ψ, of the phase difference
between nearest neighbors. For a network with two nearest neighbor cou-
pling the stability depends on the value of the phase difference between
nearest neighbors and next nearest neighbors, the relative sizes of the cou-
pling strengths and the size of the network.

We then applied these conditions to our particular interneuron network
and compared the results to numerical simulations of the full network. For
single nearest neighbor coupling solutions, we found (both analytically and
numerically) that solutions with nearest neighbor phase difference close to
half a period were robustly stable. Solutions where this phase difference was
close to zero were largely unstable. The stability results can be understood
from a biological standpoint as follows. In the splay solution, each cell
fires once in a fixed sequence that then repeats, defining the cluster period
2π. In general, one does not expect nearest neighbor cells in the network
to fire in successive order since they inhibit each another. For this reason
we may expect the synchronous solution and splay solutions which have
a firing order where nearest neighbors fire close together to be unstable
for our inhibitory network. Similarly, one may expect that stable cluster
solutions will not have nearest neighbors in the same cluster. However,
it is well documented that slow synapses may lead to counter-intuitive
synchronization properties [24] and our model is no different. If the decay
time of the synapse is long enough then the synchronous solution and other
solutions one may “expect” to be unstable are stable.

Our analysis shows that changing to two nearest neighbor coupling
could destabilize or stabilize solutions. In the examples we considered
destabilization was more common, but this could be changed if the relative
strengths of nearest and second nearest neighbor synaptic connections were
changed.

This variation of stability with coupling is the key result that supports
the hypothesis that cluster solutions may play a role in cell assemblies. Let
us consider an example to illustrate this. Consider a network with 15 neu-
rons. Our analysis shows that for single nearest neighbor coupling there
are two stable 3-cluster states and two stable 5-cluster states. The 5-cluster
states are more stable in the sense that the real part of the eigenvalue is
larger. With second nearest neighbor coupling the 5-cluster states lose sta-
bility leaving only the 3-cluster state. Thus switching from nearest neighbor
to second nearest neighbor coupling gives a mechanism where the system
can switch from a 5-cluster state to a 3-cluster state, thus reorganizing
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which neurons spike together.

Since our stability results depend on the number of clusters and not
the size of the network, our results for the synchronous (1-cluster) solution
and the 2-cluster solution can be compared to results for synchronous and
anti-phase solutions in pairs of coupled neurons. As mentioned above for
the parameter values we have considered numerically, the model is close
to a SNIC bifurcation and hence can be considered as a Type I oscillator.
Our results are consistent with those for pairs of Type I oscillators found
by Ermentrout [7]. Based on results for pairs of Type II oscillators [24]
we conjecture that in networks of Type II oscillators the stability results
would be different than what we observe for Type I. In particular, we
expect that, for fast synapses, the synchronous solution would be stable
and the antiphase solution unstable, but that this could be reversed for
slower synapses.
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