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1 Introduction

In this chapter I will give a overview of the role of time delays in understand-
ing neural systems. The main focus will be on models of neural systems in
terms of delay differential equations. Later in this section, I will discuss how
such models arise. The goal of the chapter is two-fold: (1) to give the reader
an introduction and guide to some methods available for understanding the
dynamics of delay differential equations and (2) to review some of the liter-
ature documenting how including time delays in neural models can have a
profound effect on the behaviour of those models.

1.1 Modelling delay in neural systems

To begin, we will formulate a general model for a network of neurons and
then determine how delays may occur in this model. Consider a network of n
neurons modelled by the equations

ẋi(t) = fi(xi(t)) +

n
∑

j=1

fij(xi(t),xj(t)), i = 1, . . . , n. (1)

The variable xi represents all the variables describing the physical state of
the cell body of the ith neuron in the network. For example, in the standard
Hodgkin-Huxley model, it would represent the membrane voltage and gating
variables: xi = (Vi,mi, ni, hi). The function fi represents the intrinsic dynam-
ics of the ith neuron and the function fij , often called the coupling function,
represents the input to the ith neuron from the jth neuron.

If the jth neuron is connected to the ith via a chemical synapse, then the
coupling function usually represented as

fij(xi(t),xj(t)) = cijgij(xj(t))hij(xi(t)). (2)
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Here gij is a sigmoidal function, usually chosen to have maximum value 1, so
that cij represents the maximum coupling strength (synaptic conductance)
and hij is typically a linear function (e.g. for Hodgkin Huxley type neurons,
hij(xi(t)) = Vi(t) −Kij , where Kij is a constant). Some models set hij = 1,
eliminating the dependence on the post-synaptic neuron. This is commonly
called sigmoidal coupling.

If the neurons are connected via a gap junction, then the coupling function
is usually represented as

fij(xi(t),xj(t)) = cij(xi(t) − xj(t)). (3)

There are several sources of delay in a neural system. Consider first the
delay due to propagation of action potentials along the axon. In the model
above, when an action potential is generated in the cell body of neuron j, it
is immediately felt by all other neurons to which it is connected. However,
in reality, the action potential must travel along the axon of neuron j to the
synapse or gap junction. Conduction velocities can range from the order of 1
m/sec along unmyelinated axons to more than 100 m/sec along myelinated ax-
ons [16, 55]. This can lead to significant time delays in certain brain structures.
There are several ways to incorporate this into the model, such as including
spatial dependence of the variables or multiple compartments representing
different parts of the neuron [37]. However, if we are primarily interested in
the effect of the action potential when it reaches the end of the axon (will it
cause an action potential in another neuron?), then a simpler approach is to
include a time delay in the coupling term. In this case the general coupling
term becomes

fij(xi(t),xj(t− τij)) (4)

where τij > 0 represents the time taken for the action potential to propagate
along the axon connecting neuron j (the pre-synaptic neuron) to neuron i
(the post-synaptic neuron).

The above assumes that the axon of neuron j connects on or close to
the cell body of neuron i. Some cells may have synapses or gap junctions
on dendrites far from the cell body. In this case, there can also be a delay
associated with propagation of the action potential along the dendrite. This
will introduce an additional time delay, viz.,

fij(xi(t− τd
ij),xj(t− τd

ij − τa
ij)) (5)

where τa
ij and τd

ij represent the time delays due to the propagation of the
action potential along the axon and dendrite, respectively.

Another delay can occur in the transmission of the electrical signal across
the synapse. That is, once the action potential from neuron j reaches the
synapse, there is some time before an action potential is initiated in neuron
i. A common way to model this is to augment the model equations above
by equations modelling the chemical kinetics of the synapse [36, 37]. Alter-
natively, this can be incorporated into (4) just by increasing the delay τij . I
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will focus on the latter approach, but in section 3 will review some literature
that indicates the qualitative effect on the dynamics can be quite similar using
both approaches. Clearly, the latter approach will yield a simpler model if one
also wants to include the effect of axonal delay.

Equations (4) and (5) assume that the time delays are fixed. In reality, the
delay will likely vary slightly each time an action potential is propagated from
neuron j to neuron i. This may be incorporated into the model putting time
dependence into the delay: τij(t). Many of the methods outlined in section
may be extended to this case, by assuming the delay satisfies some constraints
τ̄ij ≤ τij(t) ≤ 0. Alternatively, one might consider adding some noise to the
delay. Unfortunately, there is very little theory know for such stochastic delay
differential equations.

An alternative approach is to incorporate a distribution of delays, repre-
senting the situation where the delay occurs in some range of values with some
associated probability distribution. In this case, coupling term (4) becomes

∫ ∞

0

fij(xi(t),xj(t− σ))g(σ) dσ. (6)

The function g is called the kernel of the distribution and represents the
probability density function of the time delay. Since g is a pdf it is normalized
so that

∫ ∞

0 g(σ) dσ = 1. Although distributions of delays are not commonly
used in neural network models, they have been extensively used in models
from population biology [15, 42]. In this literature, the most commonly used
distributions are the uniform distribution:

g(σ) =







0 0 ≤ σ < τmin
1
δ
τmin ≤ σ ≤ τmin + δ

0 τmin < σ
, (7)

and the gamma distribution:

g(σ) =

{

0 0 ≤ σ < τmin
am

Γ (m) (σ − τmin)m−1e−a(σ−τmin) τmin ≤ σ
, (8)

where a,m ≥ 0 are parameters. Γ is the gamma function defined by Γ (0) = 1
and Γ (m+1) = mΓ (m). Both these distributions can be shown to approach a
Dirac distribution in the appropriate limits (δ → 0 for the uniform distribution
and m → ∞ for the gamma distribution), which leads to a discrete delay in
the coupling term. It is usual in the population biology literature ([15, 42])
to take τmin = 0. In this case the gamma distribution can be shown to be
equivalent to a system of m ordinary differential equations, which is amenable
to the analysis described in elsewhere in this volume [6]. However, as pointed
out by Bernard et al. [5], it makes more biological sense to take τmin > 0, since
the probability of having zero delay is effectively zero in most applications. In
this case, the gamma distribution is equivalent to a system of m− 1 ordinary
differential equations and one discrete delay differential equation.



4 Sue Ann Campbell

In the next section we will review some tools for analyzing delay differential
equations. To make the theory concrete, we will apply it to a particular ex-
ample. Consider the following representation of the Fitzhugh-Nagumo model
for a neuron [25, 45]

v̇(t) = −v3 + (a+ 1)v2 − av − w + I
ẇ(t) = bv − γw

. (9)

Assume that the parameters are such that there is just one equilibrium point
(v̄, w̄) of this equation, where v̄, w̄ satisfy

v̄3 − (a+ 1)v̄2 + (a+
b

γ
)v̄ + I = 0 (10)

w̄ =
b

γ
v̄ (11)

We shall consider the situation when two of these neurons are joined with
delayed sigmoidal coupling in the following way

v̇1(t) = −v3
1 + (a+ 1)v2

1 − av1 − w1 + I + c tanh(v2(t− τ) − v̄)
ẇ1(t) = bv1 − γw1

v̇2(t) = −v3
2 + (a+ 1)v2

2 − av2 − w2 + I + c tanh(v1(t− τ) − v̄)
ẇ2(t) = bv2 − γw2

(12)

This setup is due to [7]. We will sometimes write (12) in the condensed form

ẋ = f(x(t),x(t − τ)), (13)

where x = (v1, w1, v2, w2).
We will focus on equations with a single discrete delay. The approach is

similar for multiple delays the analysis may just becomes more complicated.
We will discuss some of the differences that arise for distributed delays in the
final section.

There is a very large literature on the effect of time delays on artificial
neural networks (ANNs). An example of such a network is the additive (also
called Hopfield) neural network with delays. This is usually written in the
following form

ẋi(t) = −kixi(t) +

n
∑

j=1

fij(xj(t− τij).

I will not attempt to review all the material related to such equations, but
will try to highlight those results I feel may have implications for biological
neural networks. In particular, networks of the following form

ẋi(t) = −kixi(t) + fii(x(t− τ1)) +
n

∑

j 6=i

fij(xj(t− τ2), (14)

have some parallels with biological neural networks, since the uncoupled units
may behave as type II oscillators [13].
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2 Tools for Analysis

The main tools for studying the behaviour of delay differential equations are
extensions of those for ordinary differential equations which are discussed
elsewhere in this volume [6]. Some familiarity with these tools will be helpful
in reading this section.

To improve the flow of the text, I will not give references for all the stan-
dard results for delay differential equations that I use. For more information
on these, I refer the reader to the fairly accessible books of Kolmanovskii and
Nosov [38] and Stépán [56] which cover the results of section 2 or the books of
Hale and Lunel [31] and Diekmann et al. [18] which give complete, although
not so accessible, accounts of the theory of delay differential equations.

To begin our discussion, consider the types of solutions which occur most
often in neural systems. These are equilibrium solutions (x(t) = v̄, for some
constant v̄) and periodic solutions (x(t) = x(t + T ) for some T > 0). The
fundamental questions we would like to answer in order to understand the
behaviour of a model with time delays are the following

1. What equilibrium solutions occur in the system?

2. What periodic solutions occur in the system?

3. Are these stable or unstable? That is, do we expect to observe them in

experiments and numerical simulations?

4. How do the answers to these questions change as parameters are varied?

Question 1 is easily answered: the equilibrium solutions of a system with
time delays are the same as those of the corresponding system with zero delay.
Thus for (13) these correspond to constant vectors x̄ such that f(x̄, x̄) = 0.

Example. For system (12) the equilibrium points are given by
(v1, w1, v2, w2) = (v̄1, w̄1, v̄2, w̄2) where v̄j , w̄j are constants, found by solving
the following equations

0 = −v̄3
1 + (a+ 1)v̄2

1 − av̄1 − w̄1 + I + c tanh(v̄2 − v̄)
0 = bv̄1 − γw̄1

0 = −v̄3
2 + (a+ 1)v̄2

2 − av̄2 − w̄2 + I + c tanh(v̄1 − v̄))
0 = bv̄2 − γw̄2

(15)

It is easy to check that one solution of these equations is (v̄1, w̄1, v̄2, w̄2) =
(v̄, w̄, v̄, w̄). We will focus on this solution as we pursue this example further.

Question 2 is difficult to answer with any completeness analytically. A
partial answer can be obtained by determining the bifurcations that occur in
the system which lead to the creation of periodic solutions. More detail can
be found in subsection 2.2. This question can also be addressed through the
use of numerical tools, which are discussed in subsection 2.5.

For equilibrium solutions, question 3 can be addressed via linear stability
analysis (see subsection 2.1) and via Lyapunov theory (see subsection 2.3). For
periodic solutions this question generally must be answered using numerical
tools, as discussed in subsection 2.5.
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Answering question 4 is the main goal of bifurcation theory. Analytical
methods for studying bifurcations will be discussed in subsection 2.2 and
numerical methods in subsection 2.5.

2.1 Linear stability

One way to study the stability of an equilibrium solution is through lineariza-
tion. This is constructed in a similar way as for ordinary differential equations.
The linearization of (13) about x̄ is given by

ẋ(t) = Ax(t) +Bx(t − τ) (16)

where A is a the Jacobian matrix of f(y, z) with respect to y, i.e. the matrix
with entries aij = ∂fi

∂yj
, and B is the Jacobian matrix of f(y, z) with respect

to z. If the system has multiple delays, then there will be a term in the
linearization corresponding to each delay.

It can be shown that, under the right conditions, equation (16) describes
the behaviour of solutions close to x̄. This will in turn determine the the
stability of x̄. To study this behaviour, we assume that there are solutions
of (16) of the form x(t) = eλtk where λ is a complex number and k is an
n-vector of complex numbers, to be determined. Substituting this into (16)
we obtain

[

−λI +A+Be−λτ
]

k = 0. (17)

For solutions with k 6= 0 to exist, we require

det[−λI +A+Be−λτ ] = 0. (18)

If (13) is an n-dimensional system, then (18) can be written in the form

∆(λ) = λn+λn−1(δn−1,0+δn−1,1e
−λτ )+· · ·+λ

n−1
∑

j=0

δ1,je
−jλτ+

n
∑

j=0

δ0,je
−jλτ = 0,

(19)
where the δi,j depend on the elements of the matrices A and B.

Equation (19) is called the characteristic equation of the linearization
of (13) about x̄. Any complex number λ which satisfies (19) will give rise to
a solution of (16) (k is found by solving (17) with the particular value of λ
substituted in). In practice, we are mostly concerned with the λ values for the
reasons outlined below.

Example: For our coupled Fitzhugh-Nagumo model (12) the linearization
about the equilibrium point (v̄, w̄, v̄, w̄) is given by (16) where

A =









α −1 0 0
b −γ 0 0
0 0 α −1
0 0 b −γ









with α = −3v̄2 + 2(a+ 1)v̄ − a, and B =









0 0 c 0
0 0 0 0
c 0 0 0
0 0 0 0









.
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Note that α depends on all the intrinsic neuron parameters (a, b, γ, I), since v̄
is a solution of (10). It follows that the characteristic equation for this example
is

∆+(λ)∆−(λ) = 0 (20)

where
∆±(λ) = (λ+ γ)(λ− α± ce−λτ ) + b.

Fact: If all the roots of the characteristic equation of the linearization of
(13) about x̄ have negative real part, then x̄ is stable in the sense that all
solutions which start sufficiently near to x̄ will tend toward it as t increases.

Fact: If at least on root of the characteristic equation of the linearization
of (13) about x̄ has positive real part, then x̄ is unstable in the sense that
some solutions which start near to x̄ will tend away from it as t increases.

So we see that to determine the stability of an equilibrium point we need
to determine the roots, λ of the characteristic equation (19). These are of-
ten called the eigenvalues of the equilibrium point. For ordinary differential
equations, the characteristic equation is a polynomial in λ and hence there
are a finite number of solutions all of which may be calculated or numeri-
cally approximated. For delay differential equations, however, the presence of
the e−λτ terms means that there are an infinite number of solutions of the
characteristic equation. This means we must rely on other methods to deter-
mine whether an equilibrium point is stable. Several methods are outlined in
the book of Kolmanovskii and Nosov [38], here we will focus a particular one
which relies on the following result.

Fact: The zeros of ∆(λ) depend continuously on τ and the δi, j, and hence
on the elements of A and B. Thus as any of these parameters is varied, the
number of zeros of ∆(λ) with positive real part can only change if a root
passes through the imaginary axis.

The most common way of using this fact in coupled neural systems, is
outlined in the following procedure.

1. Set the delay, τ , equal to zero. This will change the delay differential
equation into an ordinary differential equation with the same equilibrium
points as the delay differential equation.

2. Determine the stability of an equilibrium point for the ODE system, i.e.
determine the number of eigenvalues with positive real parts.

3. Determine the values of the delay, τ1 < τ2 < · · · for which the characteris-
tic equation (19) has eigenvalues with zero real parts. These are the values
of the delay where the stability of the equilibrium point may change.

4. Calculate the rate of change of the real part of an eigenvalue with respect
to τ when τ is equal to one of the critical values found in the previous
step, i.e., calculate

dRe(λ)

dτ

∣

∣

∣

∣

τ=τk

= − Re

(

∂∆

∂τ
/
∂∆

∂λ

)
∣

∣

∣

∣

τ=τk

.
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If dRe(λ)
dτ

> 0, then the number of roots with positive real parts is increas-
ing, if it is negative, then the number of roots is decreasing.

5. Due to the fact above, the number of roots of the characteristic equation
with positive real part will be constant for 0 ≤ τ < τ1 and equal to the
number found in step 2. For each subsequent interval, τk < τ < τk+1,
the number can be determined from the number in the previous interval
τk−1 < τ < τk, the number of roots with zero real part at τk and the rate
of change calculated in step 4.

Example. Consider our coupled Fitzhugh-Nagumo model (12). We will
follow the procedure outlined above.

1. When τ = 0 the factors of the characteristic equation (20) become

∆± = λ2 + λ(γ − α± c) + γ(−α± c) + b.

2. By analyzing the roots of this equation, it can be shown that if γ2 < b

the trivial solution is stable for |c| < γ − α
def
= cH , and for c outside this

region the equilibrium point has two complex conjugate eigenvalues with
positive real part, i.e. it is unstable. (In fact the two points c = ±cH are
Hopf bifurcation points for the system with zero delay.)

3. To find the parameter values where the characteristic equation (20) has
eigenvalues with zero real part, we substitute λ = iω into (20) and separate
into real and imaginary parts. This yields

−α+
bγ

γ2 + ω2
± c cosωτ = 0

ω

(

1 −
b

γ2 + ω2

)

∓ c sinωτ = 0.

Note that we choose the + in the first equation and − in the second for
the parameter values for ∆+ to have a pair of complex conjugate roots
and the opposite for ∆−. Some rearrangement of these equations gives

(bγ − α(γ2 + ω2))2 + ω2(γ2 + ω2 − b)2 − c2(γ2 + ω2)2 = 0 (21)

and

tanωτ =
ω(γ2 + ω2 − b)

bγ − α(γ2 + ω2)
. (22)

Thus, for given values of the parameters a, b, γ, I (which determine α)
and c one can find ω from the first equation and the corresponding τ
values from the second equation. Alternatively, we can think of these two
equations as defining the coupling parameters τ and c in terms of the
intrinsic neuron parameters and ω. Then these equations define curves in
the c, τ parameter plane. These curves are shown in Figure 1 for a specific
set of intrinsic parameter values.
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4. Taking the appropriate derivatives, we find

dλ

dτ
=

±λce−λτ

1 ∓ τce−λτ − b
(λ+γ)2

.

5. Putting together the results of all steps, allows us to fill in the number
of eigenvalues with positive real part in each of the subregions of the c, τ
plane as shown in Figure 1.

τ

c
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2

2

4

4
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Fig. 1. Illustration of the stability and bifurcation results for the example of equa-
tion (12). The equilibrium solution is stable in the region contiguous with the τ

axis. The number of eigenvalues with positive real part is shown in each subre-
gion of the plane. Thick/thin curves correspond to Hopf bifurcations giving rise to
synchronous/anti-phase oscillation

An alternative way to use the procedure outlined above is to set the cou-
pling coefficient (c in (12)) to zero in step 1 and follow the procedure but
varying the coupling coefficient instead of the delay. In systems with multiple
delays, the procedure can be followed by setting one of the delays to zero (see
e.g. [12, 13] for examples of this.

To close, we note the work of Olgac and Sipahi [46, 47] who have found a
way to automate this procedure using a transformation of the characteristic
equation.
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2.2 Bifurcations

As noted in the previous subsection, points in parameter space where the
characteristic equation has an eigenvalue with zero real part are points where
the stability of an equilibrium point may change. These are places where
a bifurcation may occur. As discussed in [6], bifurcations may lead to the
creation of other equilibrium points or of a periodic orbit.

Recall that the equilibrium points of (13) with τ > 0 are the same as
those with τ = 0. Thus for the neural model (13) with τ > 0, the bifurcations
involving only equilibrium points (saddle-node, pitchfork, transcritical) will
be the same as those for (13) with τ = 0.

There are two main bifurcations involving periodic orbits. Consider first
the Hopf bifurcation, which involves the creation of a periodic orbit as an equi-
librium point changes stability. There are simple criteria to check to determine
if a Hopf bifurcation occurs in a delay differential equation at a particular pa-
rameter value, say τ = τc.
Hopf Bifurcation Test

Assume that system (13) has an equilibrium point x̄. If the following are
satisfied, then system (13) undergoes a Hopf bifurcation at x̄ as τ passes
through τc.

1. The characteristic equation (19) of the linearization of (13) about x̄ has
a pair of pure imaginary eigenvalues, ±iω when τ = τc, that is,

∆(±iω)|τ=τc
= 0.

2. As τ passes through τc the rate of change of the real part of this eigen-

value(s) is nonzero, that is, dRe(λ)
dτ

6= 0.
3. The characteristic equation (19) of the linearization of (13) about x̄ has

no other eigenvalues with zero real part.

Other than some exceptional cases, this is enough to guarantee that a periodic
orbit is created as τ passes through τc.

Whether the periodic orbit is stable or unstable depends on the nonlinear
terms in the equation. There are two main approaches for determining this
analytically, both of which require intensive computations and are best done
with a symbolic algebra package such as Maple. The centre manifold con-
struction reduces the system of delay differential equations to a system of two
ordinary differential equations from which the stability of the periodic orbit
(for τ close to τc) may be deduced. See [4, 66, 67] for examples of how this
is done. Perturbation methods, such as averaging and the method of multiple
scales, find an approximate expression for the periodic solution and for the
corresponding Floquet exponents. See [12, 29, 65] for examples of how this is
done.

Example. Applying this test to our coupled Fitzhugh-Nagumo model
shows that the system has a Hopf bifurcation along each of the curves where
the pair of pure imaginary eigenvalues. That is along the curves defined by
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(21)–(22) and shown in Figure 1. By analyzing the solutions of the lineariza-
tion (16) that correspond the roots, one can show that some of the Hopf
bifurcations give rise to synchronous or in-phase oscillations (i.e. v1(t) = v2(t)
and w1(t) = w2(t) for all t) and some to anti-phase solutions (i.e. the spikes
in v1 and v2 are half a period apart and similarly for w1 and w2).

One important thing to note about Hopf bifurcation in systems of delay
differential equations is the there are always multiple branches of Hopf bifur-
cation. This can be seen in our example. The τ value where a Hopf bifurcation
occurs corresponds to a τ value satisfying (22). Clearly if a given value of τ
satisfies this equation, then so does τ + kπ, k = ±1,±2, . . ..

Another bifurcation commonly associated with the creation of periodic
orbits in neural systems, is the infinite period bifurcation. As described in [6]
this bifurcation occurs when a saddle-node bifurcation occurs on an invariant
circle. As indicated above, the conditions for the saddle-node bifurcation to
occur are the same as for the corresponding system with no delay. Whether or
not this bifurcation occurs on a limit cycle is not easily determined analytically
(even without delays), thus these bifurcations are often investigated using
numerical tools (see below).

2.3 Lyapunov Theory

The basic idea of Lyapunov theory is to use an auxiliary function to determine
the dynamics of a nonlinear system. A very simple example is the total energy
in a mechanical system with damping, such as the pendulum model:

θ̈ + γθ +
g

l
sin θ = 0.

The total energy of this system is

E(θ, θ̇) =
1

2
θ̇2 + gl(1 − cos θ).

A simple calculation, keeping in mind that θ and θ̇ depend on t, show that
dE
dt

< 0. This means that as t increases, E must tend to a minimum value.
This in turn determines what the solutions of the nonlinear model can do.
In particular, one can show that this implies that all solutions must tend
to one of the equilibrium points (θ, θ̇) = (2kπ, 0), k ∈ ZZ as t → ∞, i.e.
the pendulum swings with smaller and amplitude until it is hanging straight
down. Lyapunov theory generalizes this idea, to arbitrary auxiliary functions
which have similar properties to the energy function in the above example.
These properties are:

1. V (x) > 0, x 6= 0;V (0) = 0 (V positive definite)
2. dV

dt
< 0, x 6= 0 (dV

dt
negative definite).

These properties can be used to show that the equilibrium point x = 0 is
asymptotically stable. By modifying the properties above, one can also use
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Lyapunov functions to show that an equilibrium point is unstable, that all
solutions are bounded or that all solutions synchronize as t→ ∞.

There are two ways of extending the Lyapunov theory for ordinary dif-
ferential equations to delay differential equations such as (13). Lyapunov

functionals are auxiliary functions which depend on the value of the state
over an interval in time: xt(θ) = x(t + θ), −τ ≤ θ ≤ 0. The conditions for
showing an equilibrium point is stable are basically the same as those out-
lined for the ODE case, above. The main difference comes in showing those
conditions are satisfied, which can be more complicated. The Razumikhin

approach uses an auxiliary function V (x(t)), but the second condition is re-
laxed to dV

dt
< 0 whenever x(t) > x(t + θ), −τ ≤ θ ≤ 0. Essentially this just

requires that V not increase for time intervals longer than the delay.

2.4 Phase Models

Many of the analytical tools I have discussed so far are useful for studying
the stability of equilibrium points and the creation of oscillatory solutions as
parameters are varied. These can be very useful for studying systems where
the individual neurons do not exhibit oscillatory behaviour when they are
uncoupled. For systems which are inherently oscillatory, i.e. systems where
the individual neurons exhibit oscillatory behaviour when they are uncoupled,
one of the primary tools available is the phase model. The basic idea of this
approach is that for a group of oscillating neurons with small coupling between
them, the the key variable of importance in understanding how the neurons
affect each other is the phase of the oscillator associated with each neuron.
Thus a system of k model neurons, each represented by an n-dimensional
system of differential equations, can be reduced to a system of k equations for
the phases of the k oscillators. Typically these are in the form

θ̇i(t) = Ω + hi(φ1(t), φ2(t), . . . , φk−1(t))

where Ω is the network frequency and φi = θi−θi−1 is the ith phase difference.
The procedure to calculate the phase model for a particular differential

equation is described in [32]. In most cases it is not possible to carry out this
procedure analytically, however, a numerical implementation is available in the
package XPPAUT [23] and described in the book of Ermentrout [22]. The
numerical implementation yields a numerical approximation of the functions
hi. A Fourier series representation of these functions can also be calculated.

There are two main results concerning phase models for equations such
as (13) which have an explicit time delay in the coupling. The analysis of
Ermentrout [21, 39] indicates that explicit time delays will produce phase
shifts in the corresponding phase models provided that the delay is not a
multiple of the oscillation period. In particular, the models will have the form

θ̇i(t) = Ω + hi(φ1(t) − ψ, φ2(t) − ψ, . . . , φk−1(t) − ψ),
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where ψ = τΩ mod2π.
Izhikevich [33] has refined this analysis. He has shown that while Ermen-

trout’s analysis holds for delays as large as the order of the oscillation period,
for larger delays, i.e. on the order of 1/ǫ where 0 < ǫ ≪ 1 is the size of the
coupling, an explicit delay will also occur in the phase model. In this case the
phase model will consist of a set of k − 1 delay differential equations of the
form

θ̇i(t) = Ω + hi(φ1(t− ζ) − ψ, φ2(t− ζ) − ψ, . . . , φk−1(t− ζ) − ψ),

where ζ = ǫτ .
For equations with a distributed delay in the coupling, Ermentrout [21, 39]

has shown that the phase model will be of the form

θ̇i(t) = Ω +

∫ ∞

0

g(s)hi(φ1(t− s), φ2(t− s), . . . , φk−1(t− s)) ds.

2.5 Numerical Tools

There are two basic numerical tools which can aid in the study of delay differ-
ential equations such as (13): numerical simulation and numerical bifurcation
analysis.

In numerical simulation one attempts to determine an approximate solu-
tion of a differential equation given a particular initial state. Note that to
solve such a problem for a delay differential equation such as (13), one needs
to specify the value of the variable x not just at the start time t = 0, but for
the whole interval [−τ, 0]. Thus an initial condition for (13) is

x(t) = φ(t), −τ ≤ t ≤ 0.

Typically φ is taken to be a constant, i.e.,

x(t) = x0, −τ ≤ t ≤ 0,

which is reasonable for most experimental systems. It should be noted that
only solutions which are asymptotically stable can be accurately approximated
using numerical integration.

There are two main programs available for the numerical integration of
delay differential equations. The widely-used (and free) package XPPAUT
[23] can perform numerical integration using a variety of fixed step numerical
methods, including Runge-Kutta. It has a good graphical user interface for
visualizing the results. Perhaps the most useful aspect of this program is the
ease with which parameters and initial conditions can be changed. The re-
cent book of Ermentrout [22] gives a overview of the package including many
examples. Information on how to download the package as well as documenta-
tion and tutorials are available at www.math.pitt.edu/~bard/xpp/xpp.html.
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Within Matlab there is the function DDE23 [53] which is a variable step size
numerical integration routine for delay differential equations. A tutorial is on
this routine available at www.mathworks.com/dde_tutorial. Results maybe
visualized using the extensive graphing tools of Matlab.

Numerical bifurcation analysis consists of two parts, the approximation of
a solution and the calculation of the stability of this solution. The approx-
imation of a solution in a numerical bifurcation package is not done using
numerical integration, but rather using numerical continuation. Numerical
continuation uses a given solution for a particular parameter value to find a
solution for a different (but close) parameter value. This is most useful for
studying equilibrium and periodic solutions. Both stable and unstable solu-
tions can be found. Once an equilibrium solution is found to a desired accuracy,
a finite set of the eigenvalues with the largest real part can be determined,
which will determine the stability of the equilibrium point. The stability of
periodic orbits can be numerically determined in a similar way. Numerical
bifurcation packages generally track the stability of equilibrium points and
periodic orbits, indicating where bifurcations occur.

There is one package available that does numerical bifurcation analysis
for delay differential equations, DDE-BIFTOOL [20]. This package runs on
Matlab. An overview of the numerical methods used in this package and some
examples applications can be found in the paper of Engelborghs et al. [19]. The
user manual and information on how to download the package are available at
www.cs.kuleuven.ac.be/cwis/research/twr/research/software/delay/

3 Effects of delay

In this section we will try to outline some of the effects of delay that have
been documented in the literature.

3.1 Creation of Oscillations

Time delays are commonly associated with type II oscillations, i.e. oscillations
created by a Hopf bifurcation [6], for the following reason. There are many
examples of system that have a stable equilibrium point if the time delay is
zero (or sufficiently small), but have oscillatory behaviour if the delay is large
enough. In these systems, the oscillation is created via a Hopf bifurcation at
a critical value of the delay. This is sometimes referred to as a delay-induced

oscillation. One of the simplest example of this is the following model for
recurrent inhibition due to Plant [48]:

v̇(t) = v(t) −
1

3
v3(t) − w(t) + c(v(t − τ) − v0)

ẇ(t) = ρ(v(t) + a− bw(t)).
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This is a Fitzhugh-Nagumo model neuron with a delayed term which repre-
sents recurrent feedback. Plant considered parameters such that the system
with no feedback has a stable equilibrium point and showed that this stability
is maintained for the system with feedback and sufficiently small delay. He
then showed that when c < 0 (i.e. the recurrent feedback is inhibitory), there
is a Hopf bifurcation at a critical value of the delay, leading to oscillations.

3.2 Oscillator Death

One of the most publicized [57] effects of time delays is the fact that the
presence of time delays in the coupling between oscillators can destroy the
oscillations. This phenomenon, usually called oscillator death or amplitude

death was first noted by Ramana Reddy et al. [49], in their analysis of a simple
model of type II oscillators with gap junctional coupling. They subsequently
[51] observed this phenomenon experimentally in a system of two intrinsically
oscillating circuits with the same type of coupling. There are many papers
related to delay induced oscillator death in the coupled oscillator literature,
which I will not attempt to review here. Instead I will focus the discussion on
results relevant to neural models.

The work of Ramana Reddy et al. [49, 50] shows that when two or more
intrinsically oscillating elements are connected with gap junctional coupling of
sufficient strength with a sufficiently large delay then the oscillations may be
destroyed. Their work focussed on systems where the elements were identical
except for the frequency of the intrinsic oscillations and the coupling was all-
to-all and symmetric (all the coupling coefficients were the same). Their model
oscillator was just the normal form for the Hopf bifurcation. This behaviour
has also been seen for a delayed, linearly coupled (i.e. (3) with no xi(t) term)
pair of van der Pol oscillators [65], which are similar to Fitzhugh- Nagumo
oscillators. To my knowledge this has yet to be observed for other biophysical
models of neural oscillators, however, it may be expected to occur for most
type II oscillators. Atay [2] extended these results to a network of weakly
nonlinear oscillators with a symmetric connection matrix. He shows that if
the intrinsic frequency of the oscillations is sufficiently similar then oscillator
death can still occur.

Several studies have shown that the type of oscillator death described
above does not occur for type II oscillators with sigmoidal coupling [8, 10,
54]. However, a different type of oscillator death can occur [8, 7, 10, 54]: for
elements which are intrinsically excitable (i.e. not oscillating when decoupled),
oscillations induced by instantaneous coupling may be lost if a time delay is
introduced.

The work of Burić et al. [7] has shown that for the type I oscillator of
[58], there is no oscillator death of this latter type with either gap junctional
or sigmoidal coupling. Their work also suggests that delay induced oscillator
death of the first type is not possible.
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The study of type II oscillator death in coupled neural systems combines
various techniques of section 2. Oscillator death can occur when increasing the
time delay causes the stabilization of an equilibrium point. Values of the delay
where this occurs will correspond to places where the characteristic equation

(19) has an eigenvalue with zero real part and dRe(λ)
dτ

< 0. To have oscillator
death, however, one must also show that the periodic orbit is eliminated. This
means that at the value of τ where the equilibrium point stabilizes, there is
a “reverse” Hopf bifurcation destroying the stable limit cycle. This may be
checked via numerical simulations or numerical continuations (see subsection
2.5), or by showing, as outlined in subsection 2.2, that the Hopf bifurcation
is subcritical. Burić et al. [7, 8, 9] have shown that for excitable Fitzhugh-
Nagumo neurons, the restabilization of the equilibrium point is not always
accompanied by oscillator death. In the case that the Hopf bifurcation is
subcritical, the stable oscillator may persist with the stable equilibrium point
giving a region of bistability. In their model, for larger values of τ the periodic
orbit is eliminated in a saddle-node bifurcation of limit cycles, leading to
oscillator death.

The results of Burić et al. on type I oscillator death are primarily based on
numerical simulations. To my knowledge there has been virtually no mathe-
matical study of this situation. Recall that type I oscillators are those where
the oscillation is created by an infinite period bifurcation [6]. If such a bifurca-
tion takes place in the coupled system with no time delay, introducing a time
delay will not change the presence of the saddle-node bifurcation, however,
it may affect whether this bifurcation occurs on an invariant circle. Continu-
ity arguments would suggest that for sufficiently small delay, the saddle-node
bifurcation will still occur on the invariant circle, leading to the creation of
a periodic orbit a exactly the same bifurcation point as for the undelayed
system. What happens for large delay remains to be investigated.

3.3 Attractor switching and multistability

A significant observation about ANNs of the form (14), is that many intersec-
tions between different Hopf bifurcation curves and between Hopf bifurcation
curves and pitchfork bifurcation curves can occur [4, 54, 68]. Figure 1 shows
that this occurs in our coupled Fitzhugh-Nagumo model as well. These inter-
section points are called codimension two bifurcation points. Such points
can lead to more complicated dynamics including: the existence of solutions
with multiple frequencies (quasiperiodicity), the coexistence of more than one
stable solution (multistability) or the switching of the system from one type of
solution to another as a parameter is varied [30, Chapter 7], [41, Chapter 8].
In ordinary differential equation models, such points are quite rare. In delay
differential equations such points are more common as the time delay forces
there to be multiple branches of Hopf bifurcation.

In the ANN models, the following behaviour associated with the codimen-
sion two points has been observed [4, 13, 54, 68]: (i) multistability between a
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periodic solution and one or more equibrium points; (ii) bistability between
two periodic solutions (both synchronous or one synchronous and one asyn-
chronous); and (iii) switching from one stable solutions to another as the delay
is changed for a fixed coupling strength or as the coupling strength is changed
for a fixed delay. The switching may take place through a region of bistability
or a region where the trivial solution is stable. Note that the first situation
leads to a different type of oscillator death than that discussed in the previ-
ous subsection: a slight perturbation can cause the system to switch from the
stable oscillatory solution to the stable equilibrium solution, with no change

in the parameter values.
Some of this behaviour has been confirmed for networks consisting of two

relaxation oscillators with delayed coupling. In an experimental circuit system,
Ramana Reddy et al. [51] have observed the sequence: in-phase oscillations
→ no oscillations → anti-phase oscillations as the time delay in the (gap-
junctional) coupling is increased. Rand et al. have both numerically observed
[52] and analytically proven [65] the sequence in-phase oscillations → bista-
bility between in-phase and anti-phase oscillations → anti-phase oscillation
as the time delay is increased. They also observed the reverse sequence for
different values of the coupling strength. In these articles, the coupling was
linear (i.e. (3) with no xi(t) term).

In their studies of rings of Fitzhugh-Nagumo oscillators with time delayed
gap-junctional or sigmoidal coupling, Burić et al. [8, 7] have documented al-
most all the behaviour observed in the ANN models including switching be-
tween different oscillation patterns and bistability between different oscillation
patterns.

Finally we note that bistability between different types of travelling pulses
has been observed in certain integrate-and-fire networks with delayed excita-
tory synaptic connections [27, 28]. In particular, they observe a switch from
continuous travelling pulses to lurching travelling pulses as the time delay is
increased with a transition region where there is bistability between the two
types. This behaviour does not seem to be associated with a co-dimension two
bifurcation point, but rather a subcritical Hopf bifurcation.

3.4 Synchronization

There are several approaches to studying synchronization. I will not review
the details here, but give some indication which of these have been extended
to delay differential equations and what the results are.

There is a very large literature on synchronization in artificial neural net-
works, some of which addresses systems with time delays [12, 67, 68, 69, 70].
Most of these papers use Lyapunov functionals to show that the all solutions
synchronize as t → ∞, for the appropriate parameter values. Although the
equations of the individual elements are not relevant for modelling biophysi-
cal neurons, the techniques of analysis may be carried over to neural systems.
A common conclusion in many of these papers is that if the strength of the
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coupling is small enough, one can achieve synchronization for all τ ≥ 0. How-
ever, synchronization may mean that all elements asymptotically approach
the same equilibrium point.

As I have mentioned elsewhere in this chapter, a basic principle of delay
differential equations such as (13) is that the behaviour of the system for small
delay is often qualitatively similar to that for zero delay. Thus if the neurons
are synchronized for a given value of the coupling with zero delay they should
remain synchronized for small enough delays in the coupling. Unfortunately,
quantifying “small enough” may be difficult and will generally depend on the
particular neural model involved. Recall the example illustrated in Figure 1.
We showed that for c > 0 large enough (sufficiently large excitatory coupling)
the undelayed system exhibits synchronized oscillations. We expect these os-
cillations to persist for τ > 0 at least until one reaches the first thick Hopf
bifurcation curve where synchronous oscillations are destroyed. (If the Hopf
bifurcation is subcritical, the oscillations may persist above the curve). Thus,
for this particular example, the Hopf bifurcation curve gives a lower bound on
“how small” the delay must be to preserve the synchronization found for zero
delay. Note that this does not preclude synchronization occurring for larger
values of the delay, which is the case in this example. A similar situation is
seen for coupled van der Pol oscillators in [65]. Another example is the work
of Fox et al. [26] who study relaxation oscillators with excitatory time delayed
coupling. They show that synchrony achieved for zero delay is preserved for
delays up to about 10% of the period of the oscillation, for a variety of dif-
ferent models. The one exception is when the right hand side of the is not a
differentiable function, in which case synchronization is lost for τ > 0. Crook
et al. [14] observed a similar phenomenon for a continuum model of the cortex,
with excitatory coupling and distance dependent delays. Namely, they found
for small enough delay the synchronous oscillation is stable, but for larger
delays this oscillation loses stability to a travelling wave.

More complicated situations occur when both excitatory and inhibitory
connections exist. Ermentrout, Kopell and co-authors [24, 40, 35] have studied
a model for hippocampal networks of excitatory and inhibitory neurons where
two types of synchronous oscillation are possible. They show that persistence
of the synchronous oscillations with delays depends subtly on the currents
present in the cells and the connections present between cells.

So far I have discussed synchronization in spite of delays. I now move on to
the more interesting case of synchronization because of delays. This situation
can occur when there are inhibitory synaptic connections in the network. This
has been extensively documented and studied when the delay is modelled by
slow kinetics of the synaptic gating variable [60, 61, 62, 63, 64]. Further, Maex
and De Schutter [44] suggest that the type of delay is not important, just the
fact that it leads to a separation in time between when the pre-synaptic neu-
ron generates an action potential and the post-synaptic neuron receives it.
They confirm this for a network of multi-compartment model neurons with
fast synaptic kinetics and a discrete conduction delay. This idea is further sup-
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ported by the observation of synchronization via discrete delayed inhibition in
a number of artificial neural network models [10, 13, 54]. Finally we illustrate
this with our coupled Fitzhugh-Nagumo model. Consider the part of Figure 1
with c < 0 (inhibitory coupling). For sufficiently large coupling strength and
zero delay the system tends to an asynchronous phase-locked state. This state
persists for τ > 0 sufficiently small, however, for τ large enough a stable syn-
chronous state may be created in the Hopf bifurcation corresponding to the
thin curve.

Only a few studies have looked at synchronization with time delayed gap-
junctional coupling. One example is the work of Dhamala et al. [17] which
shows that for two gap junctional coupled Hindmarsh-Rose neurons synchro-
nization is achieved for smaller coupling strengths if there is a nonzero time
delay in the coupling. Another is the work of Burić et al. [7].

4 Distributed Delays

There are very few results concerning neural systems with distributed delays,
thus I will review some general results, mostly from the population biology
literature, which should carry over to neural systems. What has emerged from
this literature is a general principle that a system with a distribution of delays

is inherently more stable than the same system with a discrete delay. Some
specific results to support this are described below.

Bernard et al. [5] analyzed the linear stability of a scalar system with one
and two delays in terms of generic properties of the distribution g, such as the
mean, variance and skewness. For the uniform and continuous distributions,
they have shown that stability regions are larger than those with a discrete
delay.

Jirsa and Ding [34] have analyzed an n×n linear system with linear decay
and arbitrary connections with a common delay. They have shown, under
some mild assumptions, that the stability region of the trivial solution for
any distribution of delays is larger than and contains the stability region for
a discrete delay.

Campbell and Ncube [11] have shown that it is more difficult to get delay
induced oscillations with distributions of delays of the form (6) with τm = 0.
For large variance (m = 1) delay induced instability is impossible and for
smaller variance (m > 1) the mean delay needed for instability is much larger
than the discrete delay value. They have also shown that sufficiently small
variance in the distribution is needed to get the bifurcation interactions which
may lead to multistability, oscillator death and attractor switching discussed
above.

Atay [1, 3] has studied the same model as [49] only with distributed delays
of the form (6) with g given by (7). He shows it is easier to destroy oscillations
with a distribution of delays than with a discrete delay, in the sense that
there is a larger region of oscillator death in the parameter space consisting
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of the mean delay and the strength of the coupling. As the variance of the
distribution increases the size of this region increases.

Thiel et al. [59] studied a scalar equation representing a mean field ap-
proximation for a population pyramidal cells with recurrent feedback, first
formulated by Mackey and and der Heiden [43]. They show that having a uni-
form distribution of delays simplifies the dynamics of the system. The size of
the stability region of the equilibrium point is larger and larger mean delays
are needed to induce oscillations. More complex phenomena such as chaos is
less likely to occur, or totally precluded if the variance of the distribution
is sufficiently large. The model with a distribution of delays better explains
the appearance of periodic bursts of activity when penicillin is added to a
hippocampal slice preparation (which reduces the coupling strength).

5 Summary and Future Directions

In this chapter I showed how time delays due to conduction along the axon
or dendrite or due to transmission across the synapse could be modelled with
delay differential equations. I outlined some of the tools available for analyzing
such equations and reviewed some of the literature about such models. Some
key observations are:

• Time delays can lead to the creation of type II oscillations, especially in
systems with delayed inhibitory coupling.

• Time delays can destroy type II oscillations in a network of intrinsically
oscillatory neurons with gap junctional coupling.

• If a system has a stable synchronous oscillation when there is no delay in
the coupling, the solution remains stable for small enough delay, but may
lose stability for larger delay.

• A system with inhibitory coupling which does not have a stable syn-
chronous oscillation for zero delay, may have one if the delay is large
enough.

• Time delays may lead to bistability between different type II oscillatory
solutions (e.g. synchronous and anti-phase) or switching between different
type II oscillatory solutions.

There are a number of problems which still require further study. These
include: determining the effect of delay on the generation and destruction of
type I oscillations (infinite period bifurcations), applying and/or extending
the methods used to study synchronization in artificial neural networks to
biophysical neural networks, and studying the effect of distributions of delays
on biophysical neural networks.
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