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AN NPZ MODEL WITH STATE-DEPENDENT DELAY DUE TO
SIZE-STRUCTURE IN JUVENILE ZOOPLANKTON∗

MATT KLOOSTERMAN†, SUE ANN CAMPBELL† , AND FRANCIS J. POULIN†

Abstract. The study of planktonic ecosystems is important as they make up the bottom trophic
levels of aquatic food webs. We study a closed nutrient-phytoplankton-zooplankton (NPZ) model
that includes size structure in the juvenile zooplankton. The closed nature of the system allows the
formulation of a conservation law of biomass that governs the system. The model consists of a system
of a nonlinear ordinary differential equation coupled to a partial differential equation. We are able
to transform this system into one of delay differential equations where the delay is of threshold type
and is state dependent. The system of delay differential equations can be further transformed into
one with fixed delay. Using the different forms of the model, we perform a qualitative analysis of
the solutions, which includes studying existence and uniqueness, positivity and boundedness, local
and global stability, and conditions for extinction. Key parameters that are explored are the total
biomass in the system and the maturity level at which the juvenile zooplankton reach maturity.
Numerical simulations are also performed to verify our analytical results.
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1. Introduction. Nutrient-phytoplankton-zooplankton (NPZ) models are used
to describe the bottom two trophic levels of an aquatic ecosystem. As is the case with
many ecological models, they range from very simple to very complex. Simple models,
such as the Lotka–Volterra system [22], are beneficial in that one can obtain analytical
results more easily, but they often suffer from lack of realism. On the other hand,
complex models may theoretically represent a more accurate description of reality, but
may be difficult or impossible to understand in any general way, and may be useless
without precise and accurate parameter values. A lot of structure can be given to
an NPZ model, such as size dependence and spatial dependence, and this structure
leads to rich modeling possibilities such as size-dependent parameters and coupling
with external factors like fluid dynamics or higher predation. To strike a balance, it
may be useful to start with a simple model that focuses on one factor affecting the
ecosystem, and use it to obtain analytical results and study general trends. For an
introduction to the construction of NPZ models, see [9].

We will focus on the role of maturity in the juvenile zooplankton population
within an ecosystem while keeping all other factors as simple as possible. In this vein,
a simple NPZ model is coupled with a standard linear first-order PDE that describes
the spectrum of the juvenile zooplankton population as a function of time and matu-
rity. It is a known result that this type of PDE is closely related to delay equations.
Examples of population models where time delay is a consequence of age structure
can be found in [4, 5, 14, 31]. We will be considering size structure where the rate of
growth of the juvenile zooplankton is permitted to depend on the concentration of the
phytoplankton. With this assumption, the delay in the related delay equation is not
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explicitly defined, but rather defined implicitly through a threshold-type condition.
Consequently, systems with this type of delay are known as threshold delay differen-
tial equations. They have been studied in the case of ecological models with a single
population split into a juvenile and a mature class [23, 27, 28, 29, 30], for example.
These models operate under the assumption that maturation occurs when an imma-
ture individual accumulates enough of some quantity, such as size or weight. Other
applications include blood cell production [2, 3, 19, 21] and immunology [25, 34].

Our model is formulated in such a way that biomass is conserved. In other words,
we are considering a closed ecosystem with no mass being added to or subtracted
from the system. NPZ models with this property have been studied, for example,
in [10] and [35]. A typical property of these systems is that the amount of biomass,
which is determined by initial conditions, plays a crucial role in determining the
types of dynamics that can and do occur. Most notably, an insufficient amount of
biomass leads to the extinction of plankton—either the zooplankton only, or both the
phytoplankton and zooplankton.

The plan for our article is as follows. In section 2 we consider the model with stage
structure and discuss the main assumption on the parameters and nonlinearities in
the model. In section 3 we use an approach due to Smith [27, 28, 28, 30] to show how
this model can be reduced to a threshold delay differential equation model and which
in turn can be transformed to a delay differential equation model with fixed delay.
In section 4 we discuss existence and uniqueness of solutions of the delay differential
equations. In section 5 we determine the nontrivial equilibria of the models and find
the characteristic equation of the linearization of the model about them. In section 6
we derive stability results for the equilibria. In section 7 we use numerical simulations
to verify and supplement our analytical results. In section 8 we summarize our results
and discuss their implications.

2. Structured model. We consider a nutrient-phytoplankton-zooplankton
(NPZ) model in which the zooplankton population is split into a mature class and
a juvenile class. We will consider the quantity of juvenile phytoplankton as a func-
tion of time and maturity, denoted ρ(t, s). Maturity is considered to be an abstract
quantity, and the juvenile zooplankton must accumulate a sufficient amount to enter
adulthood. The total concentration of immature zooplankton with maturity levels
between s1 and s2 at time t is then

∫ s2
s1
ρ(t, s) ds. We restrict s to the interval [0,m],

wherem is the required level of maturity for adulthood. The nutrient, phytoplankton,
and mature zooplankton variables will therefore depend only on time.

Since the zooplankton feed on phytoplankton, we will assume that the maturation
rate, R, of the juvenile zooplankton depends on the quantity of phytoplankton. We
will denote this dependence as R(P ).

The following equations model the ecosystem for t ≥ 0 and s ∈ [0,m]. We will
refer to it as the PDE1 model.

dN(t)

dt
= −μP (t)f(N(t)) + λP (t) + δZ(t) + (1− γ)gZ(t)h(P (t))(2.1a)

+

∫ m

0

δ0ρ(t, s) ds,

dP (t)

dt
= μP (t)f(N(t))− λP (t) − gZ(t)h(P (t)),(2.1b)

dZ(t)

dt
= R(P (t))ρ(t,m) − δZ(t),(2.1c)
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Fig. 1. Schematic of the PDE1 model (2.1).

∂ρ

∂t
(t, s) +R(P (t))

∂ρ

∂s
(t, s) = −δ0ρ(t, s),(2.1d)

R(P (t))ρ(t, 0) = γgZ(t)h(P (t)).(2.1e)

Appropriate initial conditions for these equations are

N(0) = N0, P (0) = P0, Z(0) = Z0, ρ(0, s) = ρ0(s),(2.2)

where N0, P0, and Z0 are nonnegative real numbers and ρ0 is a nonnegative, contin-
uous function on the interval [0,m].

A few basic ecological processes govern the system; see Figure 1. Phytoplankton,
P , uptake nutrient, N , at a rate that is proportional to the quantity of phytoplankton
and a function of the dissolved nutrient, f(N). Zooplankton, Z, graze on phytoplank-
ton at a rate that is proportional to the quantity of zooplankton and a function of
phytoplankton, h(P ). This is marked by a grazing efficiency factor, γ ∈ (0, 1]. Phy-
toplankton mortality is proportional to the amount of phytoplankton present at time
t. Zooplankton mortality is similarly proportional to the amount of zooplankton in
the system. Nutrient recycling transforms dead biomass and fecal matter back to
the dissolved nutrient variable. Equation (2.1d) is a standard transport equation [21]
with a decay term due to natural mortality. The boundary condition, given in (2.1e),
says that the birth rate of the immature zooplankton is equal to some fraction of the
biomass obtained by the zooplankton through grazing.

The model parameters are defined in Table 1. The parameters are all positive,
but other than γ the values vary tremendously depending on the particular species
and ecosystem involved. See [32] for a thorough discussion of parameter ranges for
plankton models.

Biologically appropriate forms for the nonlinear functions f and h have been
studied in [10]. For our theoretical work we will pose a minimum set of assump-
tions on these functions which are consistent with [10], as we now describe. For the
phytoplankton nutrient uptake response, we assume f ∈ C1 and

f(0) = 0, f ′(N) > 0, lim
N→∞

f(N) = 1.(2.3)

Similarly, for the zooplankton functional response for grazing on phytoplankton, we
assume h ∈ C1 and

h(0) = 0, h′(P ) ≥ 0, lim
P→∞

h(P ) = 1.(2.4)
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Table 1

Model parameters and functions.

Parameter Meaning

μ phytoplankton maximum birth rate

λ phytoplankton death rate

g zooplankton maximum grazing rate

γ zooplankton assimilation efficiency

δ zooplankton grazing rate

Function Meaning

f(N(t)) phytoplankton nutrient uptake function

g(P (t)) zooplankton grazing function

R(P (t)) zooplankton maturation rate function

These assumptions on h encompass both type II (concave down) and type III (sig-
moidal shaped) responses, as described in [17].

We will also assume throughout that all parameter values are positive (although
we will allow δ0 to be zero) and that

μ > λ, γg > δ,

so that f−1(λ/μ) and h−1(δ/(γg)) exist. Biologically, these conditions correspond to
the maximum birth rate exceeding the death rate.

It will be assumed that R ∈ C1 and that it satisfies the following properties:

R(P ) ≥ 0, R ∈ C1, R′(P ) ≥ 0, R′(0) > 0 if R(0) = 0, lim
P→∞

R(P ) = R∞ <∞.

(2.5)

These assumptions can be justified by laboratory experiments in [20], where they
measured the development rate of the zooplankter Daphnia as a function of F , the
amount of available food. They found that the development rate was proportional to
F/(F + Fhalf).

The assumptions on h in (2.4) and the third assumption on R in (2.5) imply that

lim
P→0

h(P )

R(P )
<∞.(2.6)

This puts a bound on ρ(t, 0) as the phytoplankton population approaches zero, as
seen in (2.1e).

As previously stated, there is no biomass lost from the PDE1 model (2.1). We
can confirm this by noting that (2.1) satisfies the following conservation law:

NT = N(t) + P (t) + Z(t) +

∫ m

0

ρ(t, s) ds,(2.7)

where NT is the total biomass in the system. Given this conservation law, the total
amount of juvenile zooplankton can be determined from the total biomass and the
quantity of the dissolved nutrient, phytoplankton, and zooplankton. Making the ap-
propriate substitution of (2.7) into the PDE1 model (2.1) yields the following system:

dN(t)

dt
= −μP (t)f(N(t)) + λP (t) + δZ(t) + (1− γ)gZ(t)h(P (t))

+ δ0(NT −N(t)− P (t)− Z(t)),(2.8a)
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dP (t)

dt
= μP (t)f(N(t))− λP (t) − gZ(t)h(P (t)),(2.8b)

dZ(t)

dt
= R(P (t))ρ(t,m) − δZ(t),(2.8c)

∂ρ

∂t
(t, s) +R(P (t))

∂ρ

∂s
(t, s) = −δ0ρ(t, s),(2.8d)

R(P (t))ρ(t, 0) = γgZ(t)h(P (t)).(2.8e)

We will refer to this system as the PDE2 model. While the substitution is straight-
forward, it is important to note that we have now fixed NT . Thus, in order for a
solution of the PDE1 model (2.8) to be the same as a solution to the PDE1 model
(2.1), we must choose initial conditions in (2.2) that satisfy

NT = N(0) + P (0) + Z(0) +

∫ m

0

ρ0(s) ds.(2.9)

In other words, the total biomass, NT , is set by the initial conditions for the PDE1
model (2.1), so if we treat it as a parameter in the PDE2 model (2.8), then we have
to restrict the possible initial conditions by the relation (2.9). If we fix NT in the
PDE2 model (2.8) and then choose initial conditions that do not satisfy (2.9), then
the resulting solution is not a solution of the PDE1 model. We can show, however,
that a solution to system PDE2 will asymptotically approach a solution to PDE1,
assuming that both solutions exist for all time. Due to the simpler nature of the
PDE2 model, we will study it instead of the original system and assume that initial
conditions satisfy (2.9).

3. Reduction to a delay differential equation. In a series of papers, Smith
[27, 28, 29, 30] studies models in a form similar to the PDE2 model (2.8), although
the models are for a single species which is split into a juvenile and a mature class.
The model closest to ours is in [28], where the maturation rate of the immature
class depends on the amount of nutrient available. In his work, Smith reduced the
equations so that they became a threshold delay equation. This type of equation has a
state-dependent delay where a newly born individual must first reach maturity before
entering into the adult population. Smith then uses a clever change of variables to
transform the system to a functional differential equation where the delay no longer
depends on the state. Due to the similar form of the PDE2 model (2.8) to Smith’s
model, we will use the same methods to reduce our model to a threshold delay equation
and then to a delay differential equation with a bounded and state-independent delay.

As in [27, 28], we solve (2.8d) and (2.8e) for ρ as a function of P and Z using
the method of characteristics, and then substitute this solution into (2.8c). It can be
verified that the solution for ρ is

(3.1) ρ(t, s) =

{
e−δ0tρ0

(
s−

∫ t

0
R(P (u)) du

)
for (t, s) ∈ S1,

e−δ0τ(s,Pt) γgZ(t−τ(s,Pt))h(P (t−τ(s,Pt)))
R(P (t−τ(s,Pt)))

for (t, s) ∈ S2,

where Pt(u) = P (t+ u),

S1 =

{
(t, s) : 0 ≤ s ≤ m,

∫ t

0

R(P (v)) dv < s

}
,

S2 =

{
(t, s) : 0 ≤ s ≤ m,

∫ t

0

R(P (v)) dv ≥ s

}
,
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and τ(s, Pt) is defined implicitly by

∫ 0

−τ(s,φ)

R(φ(u)) du = s.(3.2)

Biologically, this is the time is takes for the immature zooplankton to grow to ma-
turity level s as a function of the history of phytoplankton. For example, if the
phytoplankton is at an equilibrium value P (t) = P ∗ for all t, then τ(s, Pt) =

s
R(P∗) .

Substituting ρ(t,m), defined by (3.1), into (2.8c) gives a nonautonomous equation.
Using an approach similar to that found in [28], one can analyze this equation to show
that if P0 is sufficiently large or NT > f−1(λ/μ), then there exists a time t0 such that

the solution of the model PDE2 exists on [0, t0] and
∫ t0
0
R(P (v)) dv = m. The time

t0 is when all of the immature zooplankton initially present at t = 0 have reached
maturity. Then for t > t0, (t, s) ∈ S2, and solutions of the model PDE2 will satisfy
the autonomous system

dN(t)

dt
=− μP (t)f(N(t)) + λP (t) + δZ(t) + (1− γ)gZ(t)h(P (t))

+ δ0(NT −N(t)− P (t)− Z(t)),(3.3a)

dP (t)

dt
= μP (t)f(N(t))− λP (t)− gZ(t)h(P (t)),(3.3b)

dZ(t)

dt
= R(P (t))e−δ0τ(m,Pt)

γgZ(t− τ(m,Pt))h(P (t− τ(m,Pt)))

R(P (t− τ(m,Pt)))
− δZ(t).(3.3c)

We will refer to this system as the TDE model, as systems in this form are known as
threshold delay equations. Note that the delay is defined via the integral∫ 0

−τ(m,Pt)

R(Pt(u)) du = m.(3.4)

Thus τ(m,Pt) is a differentiable function of Pt and t and satisfies

(3.5)
∂τ

∂t
= 1− R(P (t))

R(P (t− τ(m,Pt))
.

Considered as a state-dependent delay equation, appropriate initial conditions for
the TDE model (3.3) are

Nt0(u) = φ1(u), Pt0(u) = φ2(u), Zt0(u) = φ3(u), −t0 ≤ u ≤ 0 with τ(m,φ2) = t0.
(3.6)

We can connect the TDE model to the PDE2 model by taking the initial data
(φ1(u), φ2(u), φ3(u)) to correspond to the solution for (N(t), P (t), Z(t)) of the PDE2
model on [0, t0], i.e., u = t − t0. Note that the condition that defines t0 guarantees
that the condition on τ(m,φ2) is satisfied in this case.

Alternatively, we can connect the two models with the conservation law. It can
be verified that if the initial conditions for the TDE model (3.3) satisfy

NT = φ1(0) + φ2(0) + φ3(0) +

∫ m

0

e−δ0τ(s,φ2)
γgφ3(−τ(s, φ2))h(φ2(−τ(s, φ2)))

R(φ2(−τ(s, φ2)))
ds,

(3.7)
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then we have

NT = N(t) + P (t) + Z(t) +

∫ m

0

e−δ0τ(s,Pt)
γgZ(t− τ(s, Pt))h(P (t− τ(s, Pt)))

R(P (t− τ(s, Pt)))
ds

(3.8)

for t ≥ t0. Since initial conditions satisfying (3.7) are the only ones that relate to the
PDE2 model (2.1), we will restrict our attention to this particular choice. For later
use we define the set

DNT = {(φ1, φ2, φ3)T ∈ C([−t0, 0],R3) : φi(t) > 0, i = 1, 2, 3, t ∈ [−t0, 0],
τ(m,φ2) = t0, and (3.7) is satisfied}.

This is the set of initial conditions which we will consider. That is, we will not study
cases whereN , P , or Z have initial values equal to zero as we are interested in studying
the dynamics when all three trophic levels are initially present.

We note that TDE model (3.3) is a differential equation with locally bounded
delay. Since R(0) = 0, it is possible that the delay becomes arbitrarily large if the
phytoplankton population approaches zero. However, for any given state, the delay
is bounded for all states in a neighborhood. Results for differential equations with
locally bounded delay can be found in [33]. However, our system is in a form that
may be transformed into a simpler system, as we describe below. We will therefore
use that approach.

It is possible to remove the state dependence on the delay through a clever change
in variable, as given in [26, 27, 28, 29, 30]. Since the details are similar to those papers,
we only present some highlights. The transformation is a state-dependent change of
the time variable

t̂ =

∫ t

0

R(P (u))

R∗ du,(3.9a)

N̂(t̂) = N(t), P̂ (t̂) = P (t), Ẑ(t̂) = Z(t)(3.9b)

for t > 0, where R∗ is a typical value of R(P ). With this change of variables, the
TDE model (3.3) is transformed into the following delay differential equation:

dN̂(t̂)

dt̂
=

R∗

R(P̂ (t̂))
[−μP̂ (t̂)f(N̂(t̂)) + λP̂ (t̂) + δẐ(t̂) + (1− γ)gẐ(t̂)h(P̂ (t̂))

+ δ0(NT − N̂(t̂)− P̂ (t̂)− Ẑ(t̂))],(3.10a)

dP̂ (t̂)

dt̂
=

R∗

R(P̂ (t̂))
[μP̂ (t̂)f(N̂(t̂))− λP̂ (t̂)− gẐ(t̂)h(P̂ (t̂))],(3.10b)

dẐ(t̂)

dt̂
= γge−δ0τ̂(m,P̂t)

R∗

R(P̂ (t̂− T ))
Ẑ(t̂− T )h(P̂ (t̂− T ))− R∗

R(P̂ (t̂))
δẐ(t̂)(3.10c)

for t̂ ≥ T , where T = m/R∗ and τ̂ (m, P̂t) is defined by

τ̂ (s, P̂t̂) = τ(s, Pt) =

∫ t

t−τ(s,Pt)

du =

∫ t̂

t̂−s/R∗

R∗

R(P̂ (r))
dr.(3.11)

We will refer to this system as the DDE model. The corresponding initial conditions
are

N̂(T + t) = φ̂1(t̂), P̂ (T + t) = φ̂2(t̂), Ẑ(T + t) = φ̂3(t̂)(3.12)



558 M. KLOOSTERMAN, S. A. CAMPBELL, AND F. J. POULIN

for t ∈ [−T , 0], where φ̂1, φ̂2, φ̂3 ∈ C[−T , 0]. Again, solutions corresponding to the
PDE1 model (2.1) should satisfy

NT = φ̂1(0) + φ̂2(0) + φ̂3(0) +

∫ m

0

e−δ0τ̂(s,φ̂2)
γgφ̂3(− s

R∗ )h(φ̂2(− s
R∗ ))

R(φ̂2(− s
R∗ ))

ds.(3.13)

For an initial condition that satisfies (3.13), the solution to DDE model (3.10) satisfies

NT = N̂(t̂) + P̂ (t̂) + Ẑ(t̂) +

∫ m

0

e−δ0 τ̂(s,P̂t̂)
γgẐ(t̂− s

R∗ )h(P̂ (t̂− s
R∗ ))

R(P̂ (t̂− s
R∗ ))

ds(3.14)

for all t̂ ≥ T for which the solution exists.
If we were to apply the time transformation in (3.9a) directly to the PDE2 model

(2.8) and then proceed with the method of characteristics, we would arrive at the
DDE model (3.10). In essence, the time transformation removes the dependency of
the characteristic curves on P (t) and instead places this dependence on the solutions
along the curves. In [29] and [30], Smith applies an analogous time transform to a
system coupling a single adult population coupled with its corresponding maturity-
structured juvenile population.

Since the delay in the DDE model (3.10) is bounded and state independent, the
standard theory for functional differential equations [15] may be applied.

4. Existence and uniqueness of solutions. In this section, we will develop
conditions whereby a unique solution to the initial value problem for the TDE model
(3.6)–(3.3) can exist for all time. This will be done by matching it to a corresponding
initial value problem for the DDE model (3.10)–(3.12). First, define the open set

Ω̂ = {(ψ̂1, ψ̂2, ψ̂3)
T ∈ C[−T , 0] : ψ̂2(θ) �= 0 for θ ∈ [−T , 0]}.(4.1)

From the properties of f , h, and R given in (2.3)–(2.5), the right-hand side of the
DDE model (3.10) is Lipschitz on Ω̂. Thus standard results on functional differential

equations with bounded delay (for example, see [15]) give us that for (φ̂1, φ̂2, φ̂3) ∈ Ω̂,
the DDE initial value problem (3.10)–(3.12) has a unique maximal solution defined
on [0, ŵ) for some ŵ > 0. We can then deduce the following result.

Proposition 4.1. If φ̂1, φ̂2, φ̂3 are positive functions that satisfy (3.13), then the
unique maximal solution to the DDE initial value problem (3.10)–(3.12), denoted as
(N̂ , P̂ , Ẑ)T : [0, ŵ) → R

3, satisfies N̂(t̂), P̂ (t̂), Ẑ(t̂) ∈ (0, NT ) for all t̂ ∈ [0, ŵ).

Proof. Since φ̂1, φ̂2, φ̂3 are positive functions, the result is clearly true for t̂ ∈
[0, T ]. By the properties of R in (2.5) and the definition of the phase space Ω̂ in
(4.1), we find that P̂ (t̂) > 0 for all t̂ ∈ [0, ŵ). Suppose there exists β1 > T such that

Ẑ(β1) = 0 and Ẑ(t̂) > 0 for t̂ < β1. Then for t̂ ∈ [T , β1] we have that dẐ(t̂)

dt̂
≥ −δẐ(t̂),

which implies that Ẑ(t̂) > 0 since Ẑ(T ) > 0. In particular, Ẑ(β1) > 0, which is a
contradiction, so it must be true that Ẑ(t̂) > 0 for all t̂ ∈ [0, ŵ). Equation (3.14)
then implies that N̂(t̂) + P̂ (t̂) + Ẑ(t̂) < NT , which implies that N̂ is increasing at
sufficiently small and positive values of N̂(t̂). Therefore, N̂(t̂) > 0 for all t̂ ∈ [0, ŵ).
From (3.14), N̂(t̂), P̂ (t̂), Ẑ(t̂) > 0 implies also that N̂(t̂), P̂ (t̂), Ẑ(t̂) < NT .

It follows from this proposition that solutions are bounded. From the definition
of the phase space Ω̂ in (4.1), standard results for functional differential equations
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[15] imply that it must be true that each solution to the DDE initial value problem
(3.10)–(3.12) either exists for all time or satisfies

lim
t̂→ŵ−

R(P̂ (t̂)) = 0.

That is, solutions either exist for all time or approach ∂Ω̂.

Proposition 4.2. If (φ1, φ2, φ3)
T ∈ DNT , then the solution to the TDE initial

value problem (3.6)–(3.3) exists for all time and satisfies N(t), P (t), Z(t) ∈ (0, NT )
for all t ∈ [0,∞).

Proof. Consider the corresponding DDE initial value problem (3.10)–(3.12) with

φ̂i(t̂) = φi(t) for i = 1, 2, 3 with t̂ and t related through (3.9a). There exists a unique
maximal solution (N̂ , P̂ , Ẑ)T : [0, ŵ) → R

3, where ŵ > T may be finite or infinite.
Using the results in [26], (N,P, Z)T : [0, w) → R

3 defined by (N(t), P (t), Z(t))T =
(N̂(t̂), P̂ (t̂), Ẑ(t̂))T is the unique maximal solution to the initial value problem (3.6)–

(3.3) with w = limt̂→ŵ−
∫ t̂

0
R∗(R(P̂ (r)))−1 dr.

If ŵ = ∞, then

w = lim
t̂→∞

∫ t̂

0

R∗

R(P̂ (r))
dr = ∞

since R∗/R(P̂ (r)) > R∗/R(NT ) > 0.
If ŵ < ∞, then we have that limt̂→b̂−(N̂(t̂), P̂ (t̂), Ẑ(t̂))T ∈ ∂Ω̂ [15]. Since (N̂(t̂),

P̂ (t̂), Ẑ(t̂))T is bounded by Proposition 4.1, in order for the solution to approach ∂Ω̂
we must have that

lim
t̂→ŵ−

R(P̂ (t̂)) = 0.

This implies that limt̂→ŵ− P̂ (t̂) = 0. From (3.10b) and the properties of h and R in
(2.4) and (2.5), there exists a positive A such that

d

dt
R(P̂ (t̂)) > −A

for t ∈ (ŵ− T , ŵ). It then follows that R(P̂ (t̂)) < A(ŵ− t̂) for t̂ ∈ (ŵ−T , ŵ), which
implies that

w = lim
t̂→ŵ−

∫ t̂

0

R∗

R(P̂ (r))
dr > lim

t̂→ŵ−

∫ t̂

t̂−T

R∗

A(ŵ − r)
dr = ∞.

The last part, N(t), P (t), Z(t) ∈ (0, NT ) for all t ∈ [0,∞), follows directly from
Proposition 4.1 and the fact that (N(t), P (t), Z(t))T = (N̂(t̂), P̂ (t̂), Ẑ(t̂))T .

5. Equilibrium solutions and linearization. To begin, note that (N∗, P ∗,
Z∗)T is an equilibrium solution of the DDE model (3.10) if and only if (N∗, P ∗, Z∗)T

with R(P ∗) �= 0 is an equilibrium solution of the TDE model (3.3). For a fixed
value of NT , the DDE model (3.10) has an equilibrium solution (N̂(t̂), P̂ (t̂), Ẑ(t̂))T =
(N∗, P ∗, Z∗)T for t ≥ 0 if N∗, P ∗, Z∗ are constants that satisfy

R∗

R(P ∗)
[−μP ∗f(N∗) + λP ∗ + δZ∗ + (1− γ)gZ∗h(P ∗) + δ0(NT −N∗ − P ∗ − Z∗)] = 0,

(5.1a)
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R∗

R(P ∗)
[μP ∗f(N∗)− λP ∗ − gZ∗h(P ∗)] = 0,(5.1b)

R∗

R(P ∗)
[γge−δ0m/R(P∗)Z∗h(P ∗)− δZ∗] = 0.(5.1c)

where m/R(P ∗)
def
= τ∗ is the equilibrium value of the delay. If δ0 = 0, then these

three equations are redundant in the sense that if two are satisfied, then the third is
also satisfied. To avoid this problem, we use the conservation law (3.8) in place of
(5.1a). For P ∗ �= 0, equilibrium solutions should satisfy

N∗ + P ∗ + Z∗ + γgZ∗h(P ∗)
1− e−δ0m/R(P∗)

δ0
−NT = 0,(5.2a)

μP ∗f(N∗)− λP ∗ − gZ∗h(P ∗) = 0,(5.2b)

γge−δ0m/R(P∗)Z∗h(P ∗)− δZ∗ = 0,(5.2c)

where we have used τ(s, P ∗) = s/R(P ∗)) and assumed δ0 �= 0. When δ0 = 0, the

term 1−e−δ0m/R(P∗)

δ0
is replaced by m/R(P ∗). If δ0 �= 0 and P ∗ �= 0, then (5.1a)–(5.1c)

are satisfied if and only if (5.2a)–(5.2c) are satisfied. However, when δ0 = 0, (5.2a)–
(5.2c) give the equilibrium solution corresponding to the value of total biomass, NT ,
in which we are interested, whereas (5.1a)–(5.1c) do not.

There are two types of equilibrium solutions that can exist: E1 = (N∗
1 , P

∗
1 , 0)

T and
E2 = (N∗

2 , P
∗
2 , Z

∗
2 )

T . We will say that an equilibrium point exists if all its components
are nonnegative, as these represent physical quantities. We will only consider Z∗

2 > 0
to distinguish between the two types.

Note that any equilibrium solution (N∗, P ∗, Z∗)T of the DDE or TDE model
corresponds to an equilibrium solution (N∗, P ∗, Z∗, ρ∗(s))T of the PDE1 or PDE2
model, with

ρ∗(s) =
γgZ∗h(P ∗)

R(P ∗)
e

−δ0s

R(P∗) .

5.1. The phytoplankton-only equilibrium E1. Considering E1, we see that
Z∗ = 0 implies that (5.2c) is satisfied. Then, for positive P ∗

1 , (5.2b) is satisfied if and
only if N∗

1 = f−1(λ/μ). Consequently, (5.2a) is satisfied if and only if P ∗
1 = NT −N∗

1 .
Therefore, E1 exists if and only if

NT > NT1,

where

NT1 = f−1

(
λ

μ

)
.(5.3)

Note that asNT increases, P 1 increases linearly while N 1 remains fixed. That is, while
E1 is a stable equilibrium, increasing the total biomass in the ecosystem increases the
phytoplankton population while the dissolved nutrient remains fixed.

5.2. The phytoplankton-zooplankton equilibrium E2. For the equilibrium
E2, we have that Z∗

2 > 0, so it is required that

γge−δ0m/R(P∗
2 )h(P ∗

2 )− δ = 0
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in order for (5.2c) to be satisfied. This is true if and only if

m =
R(P ∗

2 )

δ0
ln

(
γgh(P ∗

2 )

δ

)
.(5.4)

Given m, P ∗
2 is defined implicitly through this equation. Under the assumption that

R and h are both increasing and saturating functions, we can see that P ∗
2 increases

with m, P ∗
2 = h−1(δ/γg) when m = 0, and P ∗

2 → ∞ as m↗ R∞ ln(γg/δ)/δ0. There
is no solution for m larger than this value. However, if m ∈ [0, R∞ ln(γg/δ)/δ0), then
there is a unique positive value P ∗

2 that satisfies (5.4).
Assuming that m ∈ [0, R∞ ln(γg/δ)/δ0), we get that (5.2b) is satisfied if and only

if

Z∗
2 = (μf(N∗

2 )− λ)
P ∗
2

gh(P ∗
2 )
.

Assuming Z∗
2 > 0 , we require N∗

2 > NT1. Then (5.2a) is satisfied if N∗
2 satisfies

N∗
2 + P ∗

2 + (μf(N∗
2 )− λ)

P ∗
2

gh(P ∗
2 )

(
1 + γgh(P ∗

2 )
1− e−δ0m/R(P∗

2 )

δ0

)
−NT = 0,

with P ∗
2 fixed and given by (5.4). We can see that N∗

2 increases with increasing NT

and that N∗
2 = NT1 when NT = NT1 + P ∗

2 . Therefore, E2 exists and is unique if and
only if m ∈ [0, R∞ ln(γg/δ)/δ0) and NT > NT2 where

NT2 = f−1

(
λ

μ

)
+ P ∗

2 ,

with P ∗
2 defined through (5.4). Since NT2 > NT1, the existence of E2 implies the

existence of E1. As NT is increased, P 2 is fixed while N 2 and Z 2 increase.
Figure 2 shows how the dominant equilibrium solutions change as the total

biomass increases, for several values of m and two choices of δ0. We use the pa-
rameter values given in Table 2, which were taken from [24]. We consider the case
where R(P ) = P/(P + 0.159) and various values of m. Note that if m = 0, then
the zooplankton are considered mature immediately at birth. In this case there is no
delay and the TDE model (3.3) and DDE model (3.10) reduce to systems of ordinary
differential equations. Plots (a), (c), (e) are for δ0 = 0, while (b), (d), (f) are for
δ0 = δ. The former case represents the situation where the immature zooplankton
have a zero death rate. That is, we ignore the possibility of them dying before reach-
ing maturity. In the latter case the immature zooplankton have the same death rate
as the mature zooplankton. We see that N∗ = NT and P ∗ = Z∗ = 0 for NT < NT1

(e0 is plotted). Then for NT1 < NT < NT2 (E1 is plotted), P ∗ increases linearly with
NT while N∗ is fixed at NT1 and Z∗ is fixed at 0. Then for NT > NT2 (E2 is plotted),
P ∗ is fixed and N∗ and Z∗ increase with NT , though Z

∗ saturates and N∗ increases
indefinitely. Note that NT2 depends on m when δ0 �= 0, but not when δ0 = 0. Also,
P ∗ is independent of m when δ0 = 0, but changes for NT > NT2 when δ0 �= 0. The
value to which Z∗ saturates does not change with m when δ0 = 0, but increases with
m when δ0 �= 0.

We can interpret these observations biologically as follows. As might be ex-
pected, the presence of the juvenile zooplankton stage affects only the zooplankton-
phytoplankton equilibrium point E2. Increasing the maturity level for adulthood, m,
corresponds to increasing the maturation delay, so zooplankton spend more time in
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Fig. 2. Equilibrium solutions as a function of total biomass for m = 0, 5, 10, 15, 19.7 and
R(P ) = P/(P + 0.159). Plots (a), (c), (e) are for δ0 = 0 and (b), (d), (f) are for δ0 = δ. If E2

exists, it is the solution plotted. If E2 does not exist, but E1 does, then E1 is plotted. If neither
exist, the limit point (NT , 0, 0)T is plotted.

Table 2

Parameter values used for all computations.

Parameter Value

μ 5.9 day−1

λ 0.017 day−1

g 7 day−1

γ 0.7

δ 0.17 day−1

f(N) N
N+k

h(P ) P
P+K

k 1.0μM

K 1.0μM

the juvenile stage. In the case that juveniles do not die (δ0 = 0), the effect of the
maturation delay is mild. This is primarily because the equilibrium distribution of
the juvenile zooplankton is constant, ρ∗0, determined by (2.1e). Thus the main effect
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is that there is more biomass in a juvenile zooplankton compartment at equilibrium,
which leads (through the conservation law) to lower equilibrium values for the nutrient
and zooplankton. The equilibrium values for the phytoplankton and the minimum
total nutrient needed to support zooplankton (NT2) are unaffected by the presence
of the juvenile stage. If the juveniles die (δ0 > 0), the equilibrium distribution of ju-
veniles is a decaying exponential ρ∗(s) = ρ∗0e

−δ0s/R(P∗), and the effect of the juvenile
stage is more complex. For low amounts of total nutrient (NT small) the effect is sim-
ilar to that when the juveniles don’t die, except that there is more phytoplankton at
equilibrium and more total nutrient is needed to support zooplankton. However, when
there is a large enough amount of total nutrient available, the amount of zooplankton
at equilibrium increases as the maturation delay increases.

5.3. Linearization and characteristic equation. We now derive the lin-
earization about the equilibrium points described above and the corresponding char-
acteristic equation. As linearization results exist for equations with bounded state-
dependent delays [7, 16] and for equations with constant delay [15], we could work
with either the TDE model (3.3) or the DDE model (3.10). We have carried out the
computations for both models, and they yield the same results. Below we present
the results for the TDE model (3.3). Although our state-dependent delay becomes
unbounded as P → 0, we focus here on the linearization about E1 and E2. Thus we
can restrict our work to neighborhoods of these points where P is bounded away from
zero, and hence the delay is bounded.

Consider the threshold delay equation in the general form

dx(t)

dt
= f(x(t), x(t− τ(xt)), τ(xt)),

∫ 0

−τ(xt)

K(xt(u)) du = m,(5.5)

where f and K are C1.
Let x∗ be an equilibrium solution of equations (5.5), that is, a constant function

such that f(x∗, x∗, τ(x∗)) = 0, where τ∗ = m/K(x∗) = τ(x∗). Let y(t) = x(t) − x∗.
By setting the state-dependent delay to its equilibrium value, and linearizing (5.5) as
in [7, 16], we obtain

dy(t)

dt
= D1f(x

∗, x∗, τ∗)y(t) +D2f(x
∗, x∗, τ∗)y(t− τ∗) +D3f(x

∗, x∗, τ∗)Dτ(x∗)yt,

(5.6)

where Dif is the derivative of f with respect to its ith argument, and

Dτ(x∗)yt = −DK(x∗)

K(x∗)

∫ 0

−τ∗
yt(u) du,(5.7)

where D denotes the Fréchet derivative.
We can check that (5.7) is correct by verifying that

lim
η→0

∣∣∣τ(x∗ + η)− τ(x∗) + DK(x∗)
K(x∗)

∫ 0

−τ∗ η(u) du
∣∣∣

||η|| = 0,(5.8)

where η ∈ C[−r, 0] for some r > τ(φ) for all φ in a neighborhood of x∗. Here, ||.|| is
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the usual sup norm. We proceed as follows:∣∣∣∣τ(x∗ + η)− τ(x∗) +
DK(x∗)

K(x∗)

∫ 0

−τ∗
η(u) du

∣∣∣∣
=

1

K(x∗)

∣∣∣∣∣
∫ 0

−τ(x∗+η)

K(x∗) du−
∫ 0

−τ∗
K(x∗) du+DK(x∗)

∫ 0

−τ∗
η(u) du

∣∣∣∣∣ .
Under the assumption that K ∈ C1, it is true that K(x∗) = K(x∗ + x)−DK(x∗)x+
G(x), with G satisfying

lim
x→0

|G(x)|
||x||E

= 0,

where ||.||E is the Euclidean norm on R
n. Then∫ 0

−τ(x∗+η)

K(x∗) du

=

∫ 0

−τ(x∗+η)

K(x∗ + η(u)) du −DK(x∗)

∫ 0

−τ(x∗+η)

η(u) du+

∫ 0

−τ(x∗+η)

G(η(u)) du.

Then by the definition of τ ,∫ 0

−τ(x∗+η)

K(x∗ + η(u)) du =

∫ 0

−τ(x∗)
K(x∗) du = m.

So it can then be seen that

lim
η→0

∣∣∣τ(x∗ + η)− τ(x∗) + DK(x∗)
K(x∗)

∫ 0

−τ(x∗) η(u) du
∣∣∣

‖η‖

= lim
η→0

∣∣∣DK(x∗)
∫ −τ(x∗+η)

−τ∗ η(u) du +
∫ 0

−τ(x∗+η)
G(η(u)) du

∣∣∣
K(x∗)‖η‖

= 0

from the properties of G.
In particular, the linearization of the TDE model (3.3) about an equilibrium

solution (N∗, P ∗, Z∗)T with R∗ taken to be R(P ∗) is

dy(t)

dt
= A1y(t) +A2y(t− T ) +A3

∫ 0

−T
y(t+ u) du,(5.9)

where

A1 =

⎛
⎝ −μP ∗a− δ0 −μc+ λ+ (1− γ)gZ∗b− δ0 δ − δ0 + (1− γ)gd

μP ∗a μc− λ− gZ∗b −gd
0 e−δ0T γgZ∗dR′(P∗)

R(P∗) −δ

⎞
⎠ ,

A2 =

⎛
⎝ 0 0 0

0 0 0

0 e−δ0T γgZ∗(b− R′(P∗)
R(P∗) d) e−δ0T γgd

⎞
⎠ ,
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A3 =

⎛
⎝ 0 0 0

0 0 0

0 δ0e
−δ0T γgZ∗dR′(P∗)

R(P∗) 0

⎞
⎠ ,

and a = f ′(N∗), b = h′(P ∗), c = f(N∗), d = h(P ∗), and T = m/R(P ∗) = τ(m,P ∗) =
τ̂ (m,P ∗).

Substituting y(t) = vest into (5.9), with v ∈ R
3, we can obtain the characteristic

equation

det

(
sI −A1 −A2e

−sT +A3
(1− e−sT )

s

)
= 0.(5.10)

If all values of s that satisfy (5.10) have a negative real part, then (N∗, P ∗, Z∗)T

is an asymptotically stable equilibrium solution of the TDE model (3.3) [16].

6. Stability and extinction.

6.1. Conditions for the extinction of plankton. It is possible for the solu-
tions to the TDE model (3.3) to approach the point e0 = (NT , 0, 0)

T . To show this,
we will use the following lemma.

Lemma 6.1. If (N(t), P (t), Z(t))T is a solution of the TDE model (3.3) such that
limt→∞ P (t) = 0, then limt→∞(N(t), P (t), Z(t))T = (NT , 0, 0)

T .

Proof. Assume that limt→∞ P (t) = 0. The term e−δ0τ(m,Pt) is clearly bounded.
Also, by Proposition 4.2, Z(t− τ(m,Pt)) < NT , so this term is also bounded. Recall
that the properties of h and R in (2.4) and (2.5) imply (2.6). It follows that there

is a function, w, such that limt→∞ w(t) = 0 and dZ(t)
dt < w(t) − δZ(t) for t ≥ t0.

Integrating this inequality, we obtain

Z(t) < e−δ(t−t0)Z(t0) + e−δt

∫ t

t0

eδuw(u) du.

In the case where
∫∞
t0
eδuw(u) du < ∞ it is obvious the final term approaches zero

as t → ∞. Otherwise, we can apply l’Hôpital’s rule and get the same result. Since
Z(t) > 0 by Proposition 4.2, we have that limt→∞ Z(t) = 0.

The result then follows from conservation law (3.8) if it is true that

lim
t→∞

∫ m

0

e−δ0τ(s,Pt)
γgZ(t− τ(s, Pt))h(P (t − τ(s, Pt)))

R(P (t− τ(s, Pt)))
ds = 0.

If limt→∞ τ(s, Pt) <∞, then Z(t− τ(s, Pt)) → 0 and the result immediately follows.
If limt→∞ τ(s, Pt) = ∞, then e−δ0τ(s,Pt) → 0 and the result follows.

This also implies that if P̂ (t̂) in the solution to the DDE model (3.10) reaches
zero in finite time, then Ẑ(t̂) reaches zero at the same finite moment in time. This is
because the transformation maps t = ∞ to t̂ = ŵ <∞.

Consider the following proposition.

Proposition 6.2. If 0 < NT < NT1, where NT1 is given in (5.3), and (φ1, φ2, φ3)
T

∈ DNT , then the solution to the TDE initial value problem (3.6)–(3.3) asymptotically
approaches (NT , 0, 0)

T .

Proof. From (3.3b), we have that dP
dt < μf(NT )P (t) − λP (t). Then NT < NT1

implies that μf(NT ) − λ < 0, which implies that P (t) < P (t0)e
(μf(NT )−λ)(t−t0).

Since P (t) > 0 from Proposition 4.2, limt→∞ P (t) = 0. The result then follows from
Lemma 6.1.
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6.2. Global stability of E1. Here we will show conditions for the global sta-
bility of E1. Consider the following lemma.

Lemma 6.3. Let (φ1, φ2, φ3)
T ∈ DNT and denote (N,P, Z)T : [0,∞) → R

3 as the
solution to the TDE initial value problem (3.6)–(3.3). If NT > NT1, then for any
constant β > NT −NT1, there exists a t1 ≥ t0 such that P (t) < β for all t ≥ t1.

Proof. Fix β < NT −NT1. From the conservation law (3.8) and Proposition 4.2,
N(t) < NT − P (t). Then for P (t) ≥ β we have

dP (t)

dt
< [μf(N(t))− λ]P (t),

< [μf(NT − P (t))− λ]P (t),

< [μf(NT − β)− λ]P (t).

Since μf(NT − β)− λ < μf(NT1)− λ = 0, we have

dP (t)

dt
< [μf(NT − β)− λ]β

for P (t) ≥ β. Therefore there exists t1 ≥ t0 such that P (t) < β for all t ≥ t1.

Proposition 6.4. Let (φ1, φ2, φ3)
T ∈ DNT and denote (N,P, Z)T : [0,∞) → R

3

as the solution to the TDE initial value problem (3.6)–(3.3). If NT1 < NT < NT2,
then limt→∞(N(t), P (t), Z(t))T = (N∗

1 , P
∗
1 , 0)

T .

Proof. Note that μf(N∗
1 ) − λ = 0 and P ∗

1 = NT − N∗
1 < P ∗

2 for NT < NT2.
Consider the function

V1(t) =

∫ N(t)

N∗
1

[μf(x)− λ] dx + δ0

∫ P (t)

NT−N∗
1

x+N∗
1 −NT

x
dx.

We have that V1(t) ≥ 0 for P (t) > 0. Taking the derivative along solutions to the
TDE model (3.3), we obtain

d

dt
V1(t) = [μf(N(t))− λ][−μP (t)f(N(t)) + λP (t) + δZ(t) + (1− γ)gZ(t)h(P (t))

+ δ0(NT −N(t)− P (t)− Z(t))]

+ δ0
P (t) +N∗

1 −NT

P (t)
[μP (t)f(N(t)) − λP (t)− gZ(t)h(P (t))]

≤− P (t)[μf(N(t))− λ]2 − δ0[N(t)−N∗
1 ][μf(N(t)) − λ] +MZ(t)

for some positive constantM . ThisM exists because N(t) and P (t) are bounded and
because of the properties of h in (2.4). Then consider the function

V2(t) = Z(t) +

∫ t

t−τ(m,Pt)

γge−δ0τ(m,β)Z(u)h(P (u)) du.

We have that V2(t) ≥ 0. Choose β ∈ (NT − NT1, P
∗
2 ). Then by Lemma 6.3 there

exists t1 ≥ t0 such that P (t) < β for t ≥ t1. This implies that

γge−δ0τ(m,Pt)h(P (t)) < γge−δ0τ(m,β)h(β) < γge−δ0τ(m,P∗
2 )h(P ∗

2 ) = δ
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for t ≥ t1. Define the positive constant α = δ− γge−δ0τ(m,β)h(β). Differentiating, we
have that

d

dt
V2(t) = R(P (t))e−δ0τ(m,Pt)

γgZ(t− τ(m,Pt))h(P (t− τ(m,Pt)))

R(P (t− τ(m,Pt)))
− δZ(t)

+ γge−δ0τ(m,β)Z(t)h(P (t))

− γge−δ0τ(m,β)Z(t− τ(m,Pt))h(P (t − τ(m,Pt)))

(
1− ∂τ

∂t

)
,

≤− αZ(t),

where we have used (3.5), h(P (t)) < h(β), and e−δ0τ(m,Pt) < e−δ0τ(m,β) for t ≥ t1.
Setting V (t) = V1(t) +

M+M1

α V2(t), where M1 > 0, we have that V (t) ≥ 0 and that

d

dt
V (t) ≤ −δ0[N(t)−N∗

1 ][μf(N(t))− λ]−M1Z(t)

for t ≥ t1. Integrating, we obtain that

V (t) +

∫ t

t0

[δ0(N(u)−N∗
1 )(μf(N(u))− λ) +M1Z(u)] du ≤ V (t1).(6.1)

Since V (t) and the above integrand are nonnegative, and since inequality (6.1) must
be true for all time, it must also be true that∫ ∞

t0

[δ0(N(u)−N∗
1 )(μf(N(u))− λ) +M1Z(u)] du <∞.

By Barbălat’s lemma [11], it must be true that N(t) → N∗
1 and Z(t) → 0. By the

conservation law (3.8) it then follows that P (t) → P ∗
1 .

The attractivity of E1 has thus been shown. However, Proposition 6.4 does not
address its stability. Let (N,P, Z)T : [0,∞) → R

3 denote the solution to the TDE
initial value problem (3.6)–(3.3). We will consider an equilibrium point E to be
asymptotically stable if for any ε > 0, there exists a neighborhood Nε around E such
that if (φ1, φ2, φ3) ∈ DNT ∩ Nε, then ||(N(t), P (t), Z(t))T − E|| < ε for t ≥ t0 and
limt→∞(N(t), P (t), Z(t))T = E.

We will use the linearization of the TDE model (3.3) to prove the following propo-
sition.

Proposition 6.5. If NT1 < NT < NT2, then E1 is asymptotically stable.

Proof. The condition NT1 < NT ensures that E1 = (N∗
1 , P

∗
1 , 0)

T exists. The
characteristic equation of the corresponding linear system is

det

⎛
⎝ s+ μP ∗

1 a+ δ0 δ0 −δ + δ0 − (1− γ)gd
−μP ∗

1 a s gd
0 0 s+ δ − γgde−(δ0+s)T

⎞
⎠

= (s+ μP ∗
1 a)(s+ δ0)(s+ δ − γgde−(δ0+s)T ).

The first two factors give two negative real eigenvalues. Since NT < NT2, it is true
that γgde−δ0T < δ. Set s = α+ iω for real α and ω and assume that α ≥ 0. We have
that s+ δ − γgde−(δ0+s)T = 0 if and only if α+ iω + δ = γgde−(δ0+α+iω)T . Squaring
the modulus of both sides we obtain

(α+ δ)2 + ω2 = (γgd)2e−2(δ0+α)T < δ2,
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which implies α < 0. This contradiction shows that there are no solutions with
nonnegative real part. Since all the eigenvalues have negative real parts, E1 is asymp-
totically stable.

The global attractivity together with the local stability of E1 for NT1 < NT <
NT2 shows that E1 is globally asymptotically stable on DNT .

6.3. Stability of E2: No delay. Recall that ifm = 0, then the zooplankton are
considered mature immediately at birth. In this case there is no delay and the TDE
model (3.3) is just a system of ordinary differential equations. In [18], we showed that
in the case of no delay, E2 is always asymptotically stable if h has a negative second
derivative (a type II response) and f has a negative second derivative, which is the
case we will consider in the following sections. There is a unique NT3 > NT2 such
that E2 is asymptotically stable if NT2 < NT < NT3 and unstable if NT > NT3. This
value of NT3 is independent of δ0 and the functional form of R(P ), sincem = 0 implies
that δ0 and R(P ) do not play a role in the TDE model (3.3) under the assumption
that (φ1, φ2, φ3) ∈ DNT .

6.4. Stability of E2: State-independent delay. Consider the case where
R(P ) is constant. That is, the maturation rate of zooplankton is independent of the
phytoplankton population. Without loss of generality, we will assume m has been
scaled so that R(P ) = 1. In this sense, m has dimensions of time and represents the
age at which zooplankton reach maturity. In this case, the delay is no longer state
dependent and is fixed at τ = m.

Due to the complicated nature of the resulting characteristic equation, we use
numerical methods to study the stability of E2, both here in the state-independent
delay case and in the following section, which deals with the state-dependent delay
problem. We use the parameter values in Table 2.

By setting s = iω in the characteristic equation (5.10) and allowing the m and
NT parameters to vary, we can find solutions where the eigenvalues have zero real
part. These represent critical points where stability might switch. Since the charac-
teristic equation is complex valued, it gives us two equations that need to be satisfied.
The equilibrium equations change with changing m and NT , so (5.2) gives us three
more equations to solve. We then have six unknowns: N∗, P ∗, Z∗,m,NT , ω. We can
then find one-dimension curves where the five equations are satisfied, using pseudo-
arclength continuation [12]. Note that if (N∗, P ∗, Z∗,m,NT , ω) solves the five equa-
tions, then ω represents the frequency for solutions to the TDE model (3.3) near the
corresponding equilibrium solution (N∗, P ∗, Z∗) when the size at which the immature
zooplankton reach maturity is m and the total biomass is NT .

Figure 3 shows regions in the m − NT plane where the equilibrium solutions
exhibit different behavior. Two cases were considered: δ0 = 0 (Figure 3(a)) and
δ0 = δ (Figure 3(b)). In region 1 we have that E1 and E2 do not exist. This region
is the same, regardless of the value of δ0. In region 2, E1 exists, but E2 does not.
This region does depend on the value of δ0, as a larger δ0 requires more biomass for
the E2 equilibrium to exist. Region 3 shows where E1 and E2 exist. We note that
R∞ ln(γg/δ)/δ0 ≈ 19.77, which is an upper limit for m when δ0 > 0. The solid curves
show the values of m and NT where the linearized system has an eigenvalue with zero
real part. The subset of region 3 below the solid curves represents values ofm and NT

where the E2 equilibrium is asymptotically stable. This follows from the continuity
of the eigenvalues with respect to parameter values and the fact that there are no
eigenvalues with nonnegative real parts when m = 0 and NT2 < NT < NT3 (between
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Fig. 3. The solid curves are where the linearized system has an eigenvalue with zero real part
for R(P ) = 1 and (a) δ0 = 0; (b) δ0 = δ. Region 1 is where E1 and E2 do not exist. Region 2 is
where E1 exists, but E2 does not. Region 3 is where E1 and E2 exist. The subset of region 3 under
the solid curves is where E2 is asymptotically stable.

Fig. 4. The corresponding frequencies to the curves in Figure 3. The value of ω is the imaginary
part of the eigenvalue with zero real part along these curves.

where the upper dotted curve intersects the vertical axis and where the solid curve
intersects the vertical axis).

These regions are all fairly independent of m when δ0 = 0. That is, if the juvenile
zooplankton have a zero death rate, then the level of maturity required for adulthood
has little effect on the stability of the equilibrium solutions. However, when there is
a positive death rate for the immature zooplankton, the required level of maturity
plays a more important role. We see that critical values of total biomass increase with
increasing m.

Figure 4 shows the frequencies that correspond to the curves in Figure 3. These
are the imaginary parts of the eigenvalues with zero real parts along the curves. For
values of m and NT near the solid curves in Figure 3, we would expect a slow growth
or decay rate in the solution to the TDE model (3.3) when it is near the equilibrium
solution, and for it to have a frequency close to the corresponding value of ω in
Figure 4.

6.5. Stability of E2: State-dependent delay. Here we consider the case
where R(P ) = P

P+l for various values of l. Using the same numerical technique as
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in the previous section, we compute curves in the m − NT plane where there is an
eigenvalue with zero real part. This tells us parameter values where stability can
change.

The parameter l is important as it determines how strongly the maturation rate
and hence maturation delay, through (3.4), of the juvenile zooplankton depend on the
amount of phytoplankton available. The larger l is, the more we would expect the
dynamics of the phytoplankton to affect that of the immature zooplankton. We will
see this in the results below.

Figure 5 shows regions in the m − NT plane that have different behavior. We
varied both δ0 and l: δ0 = 0 (plots (a), (c), (e)) and δ0 = δ (plots (b), (d), (f));
l = 0.01 (plots (a), (b)), l = 0.159 (plots (c), (d)), l = 1.00 (plots (e), (f)). As before,
region 1 is where neither E1 nor E2 exists. Region 2 is where E1 exists, but E2 does
not. Region 3 is where both E1 and E2 exist. The solid curves are where there is an
eigenvalue with zero real part for the system linearized about E2. Hence, the subset
of region 3 beneath the solid curves represents the values of m and NT where the
equilibrium solution E2 is asymptotically stable.

We can see that the case where l = 0.01 is very similar to the case R(P ) = 1,
shown in Figure 3. This is due to the fact that l in this case is small enough relative
to P so that R(P ) is approximately constant.

When l is increased to 0.159, its value is no longer small relative to typical values
of P (see Figure 2). In this case, the delay has a stronger dependence on the quantity
of the phytoplankton.

We see many more curves in the case of δ0 = 0. The minimum values of NT

for these curves increase slightly as m is increased. For l = 1.00 there are about an
order of magnitude more curves. The minimum values of NT for these curves increase
more as m is increased, which creates an overall larger region of stability than when
l = 0.159.

For l = 0.159 and δ0 = δ there is a single curve that loops three times. In fact,
it was observed that l = 0.01 is a single curve with three loops as well, but we would
have to continue it for NT values much larger than 100 in order to see this. As we
vary l from 0.01 to 0.159, we see this loop become tighter. As l increases to 1.00, the
loops either vanish or become smaller than what can be detected at this scale. Either
way, we get a much simpler region of stability, even though a larger value of l means
that the delay has a stronger dependence on the quantity of phytoplankton.

Figure 6 shows the corresponding frequencies to the curves in Figure 5. In this
figure, ω is the imaginary part of the eigenvalues with zero real parts. In the case
where δ0 = 0, the characteristic equation is periodic in m in the sense that if the
characteristic equation is zero when m = m0, then it is also zero when m = m0 +
2nπR(P ∗)/ω. This is because m only appears in the characteristic equation in the
form eimω/R(P∗). This periodicity can be easily seen in Figure 6 when δ0 = 0. Since
changing l by an order of magnitude changes R(P ∗) by an order of magnitude, we get
an order of magnitude more curves for the same range of m.

7. Numerical simulations. In order to verify some of the results from the pre-
vious section, we perform a series of numerical simulations. Rather than simulating
the TDE model (3.3) directly, we simulated the DDE model (3.10) and then trans-
formed the resulting time series using equations (3.9b) and the inverse transform of
(3.9a). The DDE model (3.10) was simulated using a second-order method for dif-
ferential equations with fixed delay provided in MATLAB. The integral (3.11) was
discretized using a trapezoidal rule. The simulations allowed us to verify the regions
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Fig. 5. The solid curves are where the linearized system has an eigenvalue with zero real part
for R(P ) = P

P+l
for various values of l and δ0 = 0 (plots (a), (c), (e)) and δ0 = δ (plots (b), (d),

(f)). Region 1 is where E1 and E2 do not exist. Region 2 is where E1 exists, but E2 does not.
Region 3 is where E1 and E2 exist. The subset of region 3 under the solid curves is where E2 is
asymptotically stable.

of stability for E2 that were computed numerically. For instance, we varied values of
m and NT near the solid curves in Figure 5. The initial conditions for the simulation
were chosen close to the equilibrium solution E2. For values of m and NT that were
in a stable region, we verified that the time series of the simulation decayed in time.
For values of m and NT that were in an unstable region, we verified that the time
series of the simulation grew in time. Many tests were done for various values of l and
for δ0 = 0 and δ0 = δ, and no inconsistencies were found. That is, the simulations
always agreed with the numerical stability analysis.
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Fig. 6. The corresponding frequencies to the curves in Figure 5. The value of ω is the imaginary
part of the eigenvalue with zero real part along these curves.

Figure 7 shows one such verification. For l = 0.159, δ0 = δ, and m = 6, Figure 5
predicts that E2 should be stable for NT = 100.49 and unstable for NT = 100.51.
In Figure 7(a), the simulation for NT = 100.49 indeed suggests that the equilibrium
solution is stable. In Figure 7(b), the simulation for NT = 100.51 suggests that the
equilibrium is unstable. While such simulations are by no means proof of stability,
it is still reassuring that they agree with the predictions from the numerical stability
analysis.

Figure 5 shows the existence of the intersection of the lines where the character-
istic equation has a pair of pure imaginary eigenvalues. Assuming that the equation
satisfies appropriate nondegeneracy and nonresonance conditions, such points corre-
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(b) NT = 100.51

Fig. 7. The time series of simulations for R = P
P+0.159

, δ0 = δ, m = 6, and two values of

NT . The initial conditions were chosen near the equilibrium solution. (a) For NT = 100.49, the
simulation suggests that the equilibrium solution is stable. (b) For NT = 100.51, the simulation
suggests that the equilibrium solution is unstable. This agrees with Figure 5(d), which indicated that
there is a zero eigenvalue at m = 6 and NT = 100.50. Also plotted is the time series of the τ(m,PT ),
which is the state-dependent delay.

spond to points of double Hopf bifurcation [1, 15] and can lead to complex dynamics
such as bistability between different limit cycles or the presence of a two-torus [13]. In
fact this figure shows that multiple intersection points can occur close together, which
points to the possibility of even more complex behavior. When δ0 = δ, the intersec-
tion points are fairly isolated, and thus we would not expect the complex behavior
to persist in large regions of the NT ,m parameter space. In the case that δ0 = 0,
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Fig. 8. A subinterval of the time series of a simulation for R = P
P+0.159

, δ0 = δ, m = 8,

and NT = 100.73. The state-dependent delay, τ(m,Pt) is also shown. This simulation shows the
possibility of very irregular and possibly chaotic solutions to the TDE model (3.3).

however, there are intersection points in a large region of the NT ,m parameter space,
and we may expect the complex behavior to be more widespread.

Figure 8 gives an example of the complex behavior induced by such intersection
points. It shows a portion of a time series of a simulation for l = 0.159, δ0 = δ,
m = 8, and NT = 100.73. For these values, Figures 5 and 6 together show that there
are about five pairs of eigenvalues with real parts close to zero. Thus, we might expect
the solution to exhibit up to five frequencies. In Figure 8 we see that the solution
is very irregular, which is not surprising given the predicted spectrum in 6. This
behavior appears to be stable as it persisted in much longer simulations (not shown).

8. Discussion. We have looked at a model of a closed planktonic ecosystem that
depends on the maturity structure of the immature zooplankton. Using techniques in
[26] and [27], we were able to transform the model into a delay differential equation
with a state-dependent threshold-type delay or a delay differential equation with a
state-independent delay. Such transformations allowed us to use results readily avail-
able from the theory of delay differential equations to study the qualitative features
of the model, such as existence and uniqueness of solutions, boundedness, persistence,
and stability. For instance, we showed that solutions of the TDE model exist for all
time, remain positive, and are bounded, which are desirable features for an ecological
model to have.

Being able to represent a system in a variety of ways is very beneficial from a math-
ematical perspective, as we are able to choose the framework that is most convenient
for the situation at hand. For instance, the state-independent delay differential equa-
tion was useful for applying well-established theory for functional differential equations
with fixed delay, as well as performing numerical simulations. The state-dependent
threshold differential equation was convenient for computing the linearization and for
arguing qualitative results. The PDE was useful since it represents the model in its
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most intuitive form, and therefore offers the best framework for interpreting results.
Furthermore, in a practical sense, the different models offer flexibility in what

initial data is required for numerical simulations. For instance, in some situations it
may be convenient to measure the spectrum of the juvenile zooplankton at a given
time, while in other situations it may be more convenient to measure the histories
of the phytoplankton and mature zooplankton over a sufficiently long time interval.
Since it is possible to transform between the PDE and TDE models, the type of data
obtained for the initial conditions does not necessarily dictate which equations we
need to use to simulate the ecosystem.

A key parameter in the study of closed ecosystems is the amount of biomass,
which is fixed by the initial conditions. General results include the existence of two
critical values of the total biomass. The first is the minimum amount needed to sustain
the phytoplankton population, which we have called NT1. If the biomass is less than
NT1, then the phytoplankton and zooplankton both become extinct, as there is not
enough biomass to sustain their populations. Conversely, if the biomass is greater
than NT1, then the phytoplankton do not become extinct. The second critical value
of the total biomass, which we have called NT2, is the minimum amount needed to
sustain the zooplankton population. If the total biomass is less than NT2, then the
zooplankton population becomes extinct, but it does not if the biomass is greater
than NT2. We have shown that if the total biomass is greater than NT1, but less than
NT2, then the system globally approaches a unique, phytoplankton-only equilibrium
solution that depends on the total biomass. Future work might include further study
of the system when the biomass is greater than NT2, including a formal study of
weak/strong (uniform) persistence [6] and possibly global behavior of solutions. Here,
for NT > NT2, we mainly focused on local stability of the unique equilibrium solution
with numerical techniques for a chosen set of parameter values.

In the case when the juvenile zooplankton have a zero mortality rate (δ0 = 0),
the stability results have a strong dependence on the total biomass (NT ), while the
required level of maturity (m) is less significant. In essence, it seems that the time
to maturity does not matter if juvenile zooplankton are not being lost due to mor-
tality. However, when we allow them to have a positive mortality rate (δ0 > 0), the
required level of maturity becomes more important with regards to stability. In this
case, Figure 5 suggests that m must increase with NT in order to maintain stability
of the phytoplankton-zooplankton equilibrium. As well as stable behavior, the model
ecosystem can simply exhibit periodic solutions as well as more complicated dynam-
ics. We saw complicated orbits in many cases where parameters were such that the
characteristic equation had multiple pairs of eigenvalues that had real parts close to
zero.

Further work may include adding structure to the immature phytoplankton pop-
ulation in a way similar to what was done for the immature zooplankton. In [18], we
have included a delay in nutrient recycling while ignoring the structure of the imma-
ture zooplankton, but a more complete model would include both of these effects. It
may also be worthwhile to see how nonlinear closure terms affect the overall behav-
ior of the system when the zooplankton size structure is present. An investigation
into the role of this closure term in models without such size structure is given in [8]
and is generally considered to be very significant in determining the dynamics that
can occur. Spatial structure can also be added, but similar transformations between
PDEs and delay differential equations may not be possible in this case.
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