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1. Introduction
Oscillatory behavior in neuronal networks has been one of the main subjects of study to
better understand the central nervous system [6,30,37,57,66]. Examples of dynamic behaviors
include synchronization [28,40], in which each cell in the network fires at the same time, and
clustering [27,49], in which the entire population of cells breaks up into subpopulations or
clusters; cells within a single population fire at the same time but are desynchronized from ones in
different subpopulations. Much more complicated network behaviors [33,63,66], such as traveling
waves [16,29,32,47,61], are also possible.

Neurons are connected mainly via chemical synapses, the junction of two nerve cells, through
which information from one neuron transmits to another neurons, resulting in synaptic coupling.
For this communication, the electrical signal must travel along the axon of one neuron to the
synapse, resulting in a conduction delay. The size of this delay depends on the diameter and
length of the axon and whether or not it is myelinated [65]. Further, once the electrical signal
reaches the synapse, time is required for a neurotransmitter to be released and to travel through
the synaptic cleft, a tiny gap between the nerve cells, and for the transmitter to cause an effect
(through chemical reactions) on the postsynaptic cell. This time is called a synaptic delay. We
call the combined effect of these two delays coupling delay. Synapses can be broadly classified
into two types, excitatory and inhibitory, each associated with particular neurons. Excitatory
synapses tend to promote the transmission of electrical signals while inhibitory synapses tend to
suppress the transmission. Although excitatory neurons are much more common in the brain [20],
it has become increasingly apparent that inhibitory neurons play an important role in producing
and regulating the behavior of brain networks [48]. Thus it is important to consider networks
including both inhibitory and excitatory neurons.

The synaptic types, length of the delays, network connectivity and intrinsic properties of the
neurons all interact to produce a variety of dynamic network behaviors, such as synchronization
and clustering [5,7,10,15,27,31,40,42,45,52,58,59]. Due to the richness of qualitatively different
network behaviors caused by delays, the impacts of delays on such emergent network patterns
are key to understanding the information processing functions in the brain. Many studies have
been done on the effects of delays on networks where the synapses are exclusively excitatory or
inhibitory [7,8,14,24,52], but few address networks with both [4,35,58,59]. Thus we focus on this
case. There are many potential choices of network connectivity. We focus on a network with global
inhibition, which consists of a uncoupled or sparsely coupled excitatory network reciprocally
coupled to a highly connected inhibitory population. Networks with such structure are associated
with rhythm generation in the CA1 region of hippocampus [3] and the thalamus [13,16,18], and
with sensory processing [19,46]. In many of these networks, evidence exists that the inhibitory
population is electrically coupled [2,12,26,36].

For the neural model, we focus on excitable, relaxation oscillators, the behavior of which
is representative of many types of neurons. Thus our uncoupled neurons are not oscillatory,
however, our network may exhibit oscillatory solutions and we prove sufficient conditions for
the existence and stability of such solutions in terms of the coupling delays. These results help
to provide insight into how the intrinsic properties of individual cells interact with the synaptic
properties, including coupling type and delays, to produce the emergent population rhythms. For
example, we show that the presence of coupling delays is necessary for our network to produce
stable oscillatory behavior with the excitable cells synchronized.

We use geometric singular perturbation methods to analyze the mechanisms responsible for
the emergence of network oscillations. The fundamental idea of this approach is to construct
singular solutions by separating a system of differential equations into subsystems evolving
on fast and slow time scales. Under some general hypotheses, actual solutions exist near these
singular solutions. In the relaxation oscillator, the variables vary repeatedly between two distinct
states corresponding to so-called active and silent phases. The amount of time spent in each
phase substantially exceeds the time spent in the transitions between phases. When a relaxation
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oscillator is used to model a neuron, the rapid transition from the silent phase to the active phase
corresponds firing of an action potential in the neuron.

Geometric singular perturbation approaches have been previously used to investigate the
generation of pattern formation in neuronal networks [4,8,9,24,34,35,38,55,56,62–64]. Many of
these studies simplify their models to make mathematical analysis more tractable. The resulting
simplified models lack key features: i) the direct interaction of coupling delays with intrinsic
dynamics of neurons and ii) the underlying architecture of the network. For example, the effect
of delay was considered in [8] but only for two neurons (i.e., not a network), and in [24,34] but for
networks with a single type of neuron.

Networks of relaxation oscillators involving both excitatory and inhibitory neurons have
been considered in several contexts. Motivated by bursting oscillations in the thalamus, [49–51]
considered a global inhibitory network where both the excitatory and inhibitory cells are
excitable, that is, in the absence of coupling neither cell type oscillates. They analyzed the
existence and stability of synchronous solutions [51] and of clustered solutions [49]. However,
their models have no conduction delay and the synaptic delay due to the chemical kinetics of the
ion channel is implicitly included in the model for synaptic gating variable.

Several studies consider the effect of time delays in inhibition on oscillation patterns in
networks of excitatory and inhibitory neurons. Motivated by networks of excitatory and
inhibitory cells where there is presynaptic inhibition of the excitatory input to the inhibitory
cells, Kunec and Bose [34] considered inhibitory networks with self inhibition. The unconnected
inhibitory cells are nonoscillatory, with cells in a high voltage state. The analysis focuses on
two cell networks, and considers the effect of time delay in the inhibition. They show how
short time delays lead to anti-phase oscillations (the two neurons are half a period out of
phase) and while long time delays lead to synchronized oscillations. They also show that a high
voltage nonoscillatory state can coexist with these oscillations. Motivated by oscillations in the
hippocampus, the effect of synaptic depression and inhibitory time delay on synchronization and
cluster formation in network of excitatory cells and inhibitory cells was studied in the case where
both cell types [35] or only the excitatory cells [9] are inherently oscillatory.

Here we consider a model for a global inhibitory network, where both the excitatory and
inhibitory cells are excitable. We include an explicit representation of delays in the model
equations which allows for a systematic study of the role of delays in producing network induced
oscillations. Motivated by the fact that many inhibitory networks in the brain have gap junctional
coupling, we assume the inhibitory cells are synchronized and represent them with a single cell.
Our work can be considered an extension of the work in [49–51] to include the effect of explicit
time delays. Our work is complementary to that in [9,35] as we consider networks where both
cell types are nonoscillatory. Our work is similar in approach to that in [34], with some important
differences both in setup and results. We focus on two excitatory cells and one inhibitory cell, and
allow time delays in both the inhibitory and excitatory synapses. We show that there is a critical
value of the total delay (sum of the excitatory and inhibitory delay). Below the critical value,
the network does not oscillate. Above the critical delay the network oscillates, with the phase
difference between the two populations determined by the relative time delays in the synapses.
This is in contrast to the results of [34] where there are always network oscillations and the size
of the delay determines the phase difference between the different cells.

Two important questions arise in the geometric analysis. The first is associated with the
existence of a singular oscillatory solution. We assume that an individual cell, without synaptic
input, is unable to oscillate. Thus, the existence of network oscillatory behavior depends on
whether the singular trajectory is able to “escape" from the silent phase when they are coupled.
The increased cellular or network complexity enhances each cell’s opportunity to escape from
the silent phase. The second question is concerned with the stability of the singular solution. To
demonstrate the stability, we need to show that the slightly perturbed trajectories of different
cells are eventually brought closer together as they evolve in phase space. We show that this
compression depends on the underlying network architecture as well as nontrivial interactions
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between the intrinsic and synaptic properties of the cells [62]. Our analysis shows, for example,
how delays promote stable oscillatory behaviors due to their interaction with intrinsic properties
of neurons.

The remainder of the paper is organized as follows. In Section 2, we present the models for
individual relaxation oscillators and for the dynamic coupling between oscillators which will be
used in our study. Also we describe the architecture of the global inhibitory network consisting of
two distinct populations of oscillators; one population inhibits the other, which in turn excites the
first population. Section 2 also introduces the basic terminology needed for singular perturbation
analysis, including the notion of a singular solution. In Section 3, we present the statement and
proof of existence and stability results under conditions on size of the synaptic time delays.
Section 4 follows to supplement our analytical results by illustrating the synchronous solutions
obtained by numerical simulations. Finally, we conclude with a discussion in Section 5.

2. The Models
We describe the model equations corresponding to individual, uncoupled cells. There are two
types: one for inhibitory cells and one for excitatory cells. Then, we introduce the synaptic
coupling between the cells, delays, and network architecture to be considered. Finally, based on
the model equations corresponding to the network, we consider fast and slow subsystems, which
will be used for singular geometric analysis in subsequent sections.

(a) Single cells
We model an individual cell of the networks as a relaxation oscillator, whose equations are given
by

ẋ= f(x, y), (2.1)

ẏ= εg(x, y), (2.2)

where . = d
dt , x∈R, and y ∈Rn. For simplicity, we consider n= 1 in our analysis (see [50] for

an example with n> 1). Here we assume 0< ε� 1 for singular geometric analysis so that x is a
fast variable and y is a slow variable. Also, we assume that the x-nullcline, f(x, y) = 0, is a cubic
function, with left, middle, right branches, and f > 0 (f < 0) above (below) the x-nullcline curve.
In addition, the y-nullcline is assumed to be a monotone decreasing function that intersects f = 0

at a unique fixed point, and g > 0 (g < 0) below (above) the y-nullcline curve. See Figure 1.
Depending on the location of the fixed point along the x-nullcline, we have different situations.

The two most commonly seen in neural systems are the following: (i) the system is excitable if the
fixed point lies on the left branch of f = 0, as labeled Pe in Fig. 1; (ii) the system is oscillatory if
the fixed point lies on the middle branch of f = 0, labeled Po. For the excitable system, Pe is an
asymptotically stable fixed point corresponding to a negative value of x, and no periodic solutions
arise for all small ε. However, if a sufficient amount of input is applied to the excitable system, the
solution can jump to the right branch of f = 0 and remain there for some time before returning to
the fixed point Pe, in this case we say the neuron fires or generates an action potential. On the other
hand, in the oscillatory system, Eqs. (2.1)–(2.2) yield a periodic solution for all sufficiently small
ε, as shown in Fig. 1. A third possibility is that the fixed point lies on the right branch of f = 0, in
which case it is asymptotically stable. This corresponds to a cell with strong enough input that it
ceases to fire and remains at a rest at a positive voltage, typically called depoloarization block. Since
the thalamic cells motivating our study are known to be excitable during the sleep state [18,57],
we will focus on the excitable case in subsequent sections.

(b) Synaptic coupling and network architecture
We consider networks with the architecture as shown in Fig. 2, which are motivated by models
for the thalamic sleep rhythms [17,28]. In this architecture, called a globally inhibitory network, two
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Figure 1. Nullclines for Eqs. (2.1)–(2.2) in both excitable (green line) and oscillatory (red line) cases. Pe and Po

correspond to the unique fixed points for excitable and oscillatory systems, respectively. The solid line shows a singular

periodic solution for the oscillatory system. The double arrows on the solid lines indicate the fast jumps between the

silent (left branch of the cubic curve) and active phases (right branch of the cubic curve). There are four different regions

indicated depending on the signs of f and g.

distinct populations of cells interact with each other. Specifically, J-cells inhibit E-cells, which, in
turn, excite the J population. However, there is no communication among E-cells. In the spindle
rhythms, the cells within the J population are completely synchronized, thus we can view the
entire J population as a single cell, sending inhibition to the E population globally. We assume
that all E-cells are identical, but differ from the J-cell. To simplify the analysis, we shall assume
that there are only two cells in the E population but this can be easily generalized to the case of
an arbitrary number of E-cells.

J

E

E
Inhibition

J-cell E-cells

Excitation

Figure 2. Schematic of the model with global inhibition. As the J -cells are synchronized, they are represented by one

cell. The J -cell inhibits the E-cells, which, in turn, excite the J -cell.

The equations corresponding to each Ei for i= 1, 2 in the network are

ẋi = f(xi, yi)− ginhsJ (xJ (t− TJ ))(xi − xinh), (2.3)

ẏi = εg(xi, yi), (2.4)

where f and g are defined as in Eqs. (2.1)–(2.2), and ginh > 0 represents the maximal conductance
of the synapse, which can be viewed as the coupling strength from the J-cell to each E-cell. The
function sJ determines the inhibitory synaptic coupling from J to E. It is a sigmoidal function
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which takes values in [0, 1]. Since the J-cell sends inhibition to the E-cells, xinh, the reversal
potential for the synaptic connection, is set so that xi − xinh > 0. Finally, TJ denotes the delay in
the inhibitory synapse.

The model equations for the J-cell are similarly given by

ẋJ = fJ (xJ , yJ )− gexc

(
1

N

∑
i

si(xi(t− TE))

)
(xJ − xexc), (2.5)

ẏJ = εgJ (xJ , yJ ), (2.6)

where gexc denotes the maximal conductance of the excitatory synapse from E to J . As in the
model for the E-cell, the si are sigmoidal functions with values in [0, 1]. The reversal potential for
the excitatory synapse, denoted by xexc, is chosen so that xJ − xexc < 0. The delay in the excitatory
synapse, τE , is assumed to be same for all the E-cells. For the case of two E-cells in the network,
let us define stot ≡ 1

2 (s1 + s2). Note that we do not incorporate chemical kinetics for synapses
into our model. However, TE and TJ include the effect of delays due to the chemical kinetics, as
well as other factors.

Equations (2.3)–(2.6) form a four dimensional system of delay differential equations. The
appropriate initial data for such a system specifies functions for the variables on the interval−T ≤
t≤ 0, where T = max(TE , TJ ), yielding an infinite dimensional phase space. In our analysis,
however, we will assume that the synaptic functions si and sJ are Heaviside step functions,
thus the values switch between 0 and 1 at the threshold x-value. The system (2.3)–(2.6) then
becomes a discontinuous or switched system of ordinary differential equations, with a delayed
switching manifold. That is, at any time the system evolves according to the ODEs given by
Eqs. (2.3)–(2.6) with the each of the si and sJ either 0 or 1, but the condition that determines
which system of ODEs is followed depends on the delayed values of xi and xJ . While there is
a fairly large literature on the stability of such systems (see e.g., [25,60]), the bifurcation theory
of such systems is still being developed, with many results to date based on direct analysis of
specific systems [1,53,54], such as what we will carry out. In our numerical simulations we will
take the synaptic functions to be smooth approximations of Heaviside step functions.

Remark 2.1. An excitable cell stays at its stable fixed point unless it receives some synaptic input. The
effect of this input depends on the type of coupling. For example, since xi − xinh > 0, inhibitory coupling
decreases ẋi, making it harder for the E-cells to fire. On the other hand, since xJ − xexc < 0 excitatory
coupling increases ẋJ , making it easier for the J-cell to fire. The main goal of our work is to show that the
presence of time delayed synaptic coupling can give rise solutions where both neurons fire periodically, that
do not exist in the uncoupled system or in the coupled system with no time delays.

The present model is similar to the model developed in [51] in that both describe the dynamics
of synaptic connection between two distinct populations in a globally inhibitory network.
However, in their model, there are additional differential equations for the synaptic gating
variables, si and sJ . In these equations other slow variables are introduced which ensure the
existence of oscillatory solution. Our model, on the other hand, has no differential equations for
the synaptic variables, and the synaptic coupling is a direct function of the appropriate x variable.
However, we include time delays in the connections, as in [8,24]. Our model is different from that
of [8,24] as in their models the uncoupled neurons are oscillatory, instead of excitable.

To conduct singular perturbation analysis, we identify the fast and slow subsystems for each
population’s evolution by dissecting the full system of equations given in Eqs. (2.3)–(2.6). The
slow subsystem determines the evolution of the y-variable of each cell on either the left branch
(the silent phase) or the right branch (the active phase) of its cubic nullcline. The fast subsystem
determines the evolution of the x-variable of each cell as it jumps between the branches of the
nullcline.

The slow subsystem is derived by first introducing a slow time scale t̃= εt, and then setting
ε= 0. This leads to a reduced system of equations for the slow variables only, after solving for
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each fast variable in terms of the slow ones. For brevity, we focus on the derivation for the E-cell.
In terms of the slow time scale equations (2.3)–(2.4) become

εx′i = f(xi, yi)− ginhsJ (xJ (t̃− εTJ ))(xi − xinh), (2.7)

y′i = g(xi, yi), (2.8)

where ′ = d
dt̃

. From this we can see that the size of the time delay, TJ , is important in determining
the solution of the slow subsystem. If TJ =O(1) with respect to ε (or smaller) then when we set
ε= 0 the effect of the time delay disappears, that is, xJ (t̃− εTJ )≈ xJ (t̃). However, if TJ =O(1/ε)

then this term will persist. We will focus on this case in our work. Let x=ΦL(y, s) denote the left
branch of the cubic f(x, y)− ginhs(x− xinh) = 0, and GL(y, s)≡ g(ΦL(y, s), s). Then we have
the following equations

xi =ΦL(yi, sJ ), (2.9)

y′i =GL(yi, sJ ), (2.10)

sJ = sJ (xJ (t̃− τJ )), (2.11)

where τJ = εTJ . The system in Eqs. (2.9)–(2.11) determines the slow evolution of the E-cell on
the left branch. The slow subsystems of the E-cell on the right branch and of the J-cell on either
branch can be similarly derived.

The fast subsystem of a singularly perturbed ODE system is obtained by setting ε= 0 in the
original equations. However, we must account for the time delays in our model. The scaling we
have chosen means that the delays are large compared with the amount of time spent in the fast
subsystem. Thus even if at time t the J-cell is evolving according to the fast subsystem, xJ (t− TJ )

is most likely (with increasing likelihood as ε→ 0) evolving according to the slow subsystem, and
is effectively unchanged during the evolution on the fast subsystem. We thus set xJ (t− TJ ) = x̄J
which represents the value of xJ a time TJ before the evolution on the fast subsystem began.
Using this in equations (2.3)–(2.4) and setting ε= 0 we obtain the model for the fast subsystem of
the E-cell

ẋi = f(xi, yi)− ginhsJ (x̄J )(xi − xinh), (2.12)

ẏi = 0 (2.13)

where . = d
dt . The model for the fast subsystem of the J-cell can be similarly derived.

In summary, the slow subsystem describes the evolution of a cell along the left or right branch
of some “cubic" nullcline, which is determined by the total amount of synaptic input that the
cell receives. A fast jump occurs when one of the cells reaches the left or right “knee" of its
corresponding cubic or the amount of synaptic input changes. When this occurs, the cell may
jump from the silent to the active phase or vice versa or between branches of the same phase
corresponding to different levels of synaptic input. The fast subsystem describes the evolution
of a cell during a jump. In the ε→ 0 limit, we can construct a singular solution by connecting
the solution to the slow subsystem with jumps between branches given by solutions to the fast
subsystem. The analysis we provide in this study focuses on such singular solutions. For the
extensions to small positive ε, refer the work in [11,41,43].

Remark 2.2. We analyze the dynamics of the network by constructing singular solutions. If ginh is not
too large, then f(x, y)− ginhsJ (x− xinh) = 0 represents a cubic-shaped curve for each sJ ∈ [0, 1]. Let
us denote this curve by CsJ ; curves C0 and C1 are shown in Figure 3A. The trajectory for Ei lies on the
left/right branches of one of these curves (CLsJ /C

R
sJ ) during the silent/active phase, respectively. Fast jumps

between different phases occur when an Ei reaches the right knee of its respective cubic or the effect of
inhibition by the J-cell wears off. Similarly, J lies on the cubic curve determined by its total synaptic input
stot, denoted by Jstot , as shown in Fig. 3B. Note in Fig. 3A that the sJ = 1 nullcline (C1) lies above the
sJ = 0 nullcline (C0), while in Fig. 3B, the stot = 1 nullcline (J1) lies below the stot = 0 nullcline (J0).
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These relations result from the fact that the Ei receive inhibition from J while J receives excitation from
the Ei.
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Figure 3. Plots of possible trajectories for A) E-cells and B) J -cell in black solid lines. The double arrows on the solid

lines indicate the fast jumps between the silent and active phases. The trajectories shown are for the situation when there

is a delay only in the inhibitory synapse. The points Pi and Qi and the construction of this solution are discussed in

section 3(a).

3. Model Analysis
In this section, we give sufficient conditions for the existence of a singular oscillatory periodic
solution, and prove the stability of the solution in subsection (a). In subsection (b), we consider
the case of no coupling delay and prove that oscillatory solutions with the E-cells synchronized
do not exist.

In the following analysis, we denote the fixed point on CLsJ in Eqs. (2.3)–(2.4) by FP sJE =

(xFE(sJ ), yFE (sJ )), the left knee by LKsJ
E = (xLE(sJ ), yLE(sJ )), and the right knee by RKsJ

E =

(xRE(sJ ), yRE(sJ )). We similarly define the fixed point on J Lstot in Eqs. (2.5)–(2.6) by FP stotJ =

(xFJ (stot), y
F
J (stot)), the left knee by LKstot

J = (xLJ (stot), y
L
J (stot)), and the right knee by

RKstot
J = (xRJ (stot), y

R
J (stot)). See Fig. 4.
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knees and the equilibrium points used in the analysis are defined. The times of evolution between relevant points on the

left branches of nullclines are also indicated. The times have been projected onto simplified versions of the branches. See

Table 1 for details.



9

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

Let TLE be the travel time, in the slow subsystem, on CL1 from yRE(0) to yRE(1) and TLmE be the
travel time on CL1 from yRE(1) to yLE(0); see Fig. 4. Note that TLmE and TLE are the same for CL0 . In
a similar manner, we can define the analogous travel times for the the J-cell, TLJ , T

Lm
J ; see Fig. 4

and Table 1.

time branch start end

TLE CL1 yRE(0) yRE(1)

TLmE CL1 yRE(1) yLE(0)

TLJ J L0 yRJ (1) yRJ (0)

TLmJ J L0 yRJ (0) yLJ (1)

Table 1. Travel times in the slow subsystem between relevant points on the nullclines of the E and J cells.

(a) Dynamics with delays
In this section, we prove the existence and stability for oscillatory periodic solutions when delays
are present. Specifically, we give conditions with τJ > 0 and τE = 0. All other possible cases follow
from the results of [39].

Theorem 3.1. A singular oscillatory periodic solution exists with non-zero τJ and zero τE if
(i) yFE (1)> yLE(0) and yFJ (0)> yLJ (1), and
(ii) the delay τJ is sufficiently large, specifically TLmE + TLE + TLmJ + TLJ < τJ , where the values are
defined in Table 1 and Fig. 4.

Remark 3.1. As noted in the proof of [51], the condition yFE (1)> yLE(0) indicates that the fixed point
of C1 lies above the left knee of C0. This makes it possible for E-cells to fire (jump from the silent to the
active phase) when they are released from inhibition. Similarly, the condition yFJ (0)> yLJ (1) implies that
the fixed point of J0 lies above the left knee of J1. This makes it possible for the J-cell to fire when the
excitation from the E-cells turns on.

Proof. We prove the existence of a singular oscillatory solution by constructing such a solution if
the hypotheses of Theorem 3.1 are satisfied. The number of E-cells in the network is arbitrary.
Since we are interested in solutions where the E-cells are synchronized, we assume the positions
of the E-cells are identical throughout the construction. A possible singular trajectory is shown in
Figure 3.

There are three possible cases for the trajectory of each cell. We first describe the situation for
theE-cell, depending on its location in the active phase (along CR0 ) when the inhibition due to the
J-cell turns on, i.e., time τJ after it jumps up.

Case 1: If the E-cell lies between the right knee of C1, RK1
E , and the right knee of C0, RK0

E , it
jumps down to CL1 .

Case 2: If the E-cell lies above RK1
E it jumps to CR1 . It travels on CR1 until it reaches RK1

E and
jumps down to CL1 . This is visualized in Fig. 3A. Let T ∗E be the time spent on CR1 , i.e., from P2 to
RK1

E in Fig. 3A.
Case 3: If the E-cell reaches RK0

E before the inhibition due to the J-cell turns on, it jumps
down to CL0 and travels upwards along this branch until the inhibition turns on and it jumps to
CL1 . Let T †E be the time spent on CL0 .

The description for the J-cell is similar, depending on its location in the active phase (along
JR1 ) when the excitation due to the E-cells turns off. This occurs as soon as they jump down
because τE = 0.
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Case 1: If the J-cell lies between the right knee of J0, RK0
J , and the right knee of J1, RK1

J , it
jumps down to J L0 . This is visualized in Fig. 5A.

Case 2: If the J-cell lies above RK0
J it jumps to JR0 . It travels on JR0 until it reaches RK0

J and
jumps down to J L0 . This is visualized in Fig. 3B. Let T ∗J be the time spent on JR0 , i.e., from Q2 to
RK0

J in Fig. 3B.
Case 3: If the J-cell reaches RK1

J before the excitation due to the E-cells turns off, it jumps
down toJ L1 and travels upwards along this branch until the excitation turns off. This is visualized
in Fig. 5B. Let T †J be the time spent on J L1 .

x

y

J

A)

Q
0

RK
J

0LK
J

1

RK
J

1

x

y

B)

J

Q
0

RK
J

0

RK
J

1

LK
J

1

Figure 5. Plots of two different trajectories in x-y phase plane, depending on the position of the J -cell along JR
1 when

excitation to the J -cell turns off.

We can put these together to find the active and silent phases of singular periodic solutions, if
they exist. Let TaE , T

s
E be the length of the active and silent phases of the E-cell on the periodic

orbit, and TaJ , T
s
J similarly for the J-cell. The active phase includes time on the right branch of

both the upper and lower nullclines. The silent phase includes time on the left branch of both the
upper and lower nullclines. Then the period of the periodic orbit is T = TaE + T sE = TaJ + T sJ .

Among all the possible cases, here we focus on one case, (E case, J case)= (2, 2), show the
existence of its singular periodic trajectory, and derive the lower bound on τJ in the hypothesis
of Theorem.

We begin with the E-cells having just jumped up to CR0 , the point labeled P0 in Fig. 3A. Due
to the excitation from the E-cells and τE = 0, the J-cell will immediately jump to JR1 , the point
labeled Q0 in Fig. 3B. Thus, the E-cells are still in the active phase when the J-cell jumps up.
Since the E-cells are in Case 2, they lie above RK1

E after the τJ delay. When inhibition turns on
the E-cells jump from P1 to P2, as shown in Fig. 3A, while the J-cell evolves down along JR1 .

As the J-cell is in Case 2, it lies aboveRK0
J when theE-cells reach the right knee of C1, labeled

RK1
E in Fig. 3A. Thus, at the time when E-cells jump down, labeled P3 on CL1 , the J-cell jumps

to the point Q2 along JR0 due to τE = 0, as shown in Fig. 3B. Then, the J-cell moves down JR0
while the E-cells move up CL1 . When the J-cell reaches the right knee RK0

J , it jumps down to the
point Q3 on J L0 .

Now the inhibition to E-cells starts to turn off. However, due to the delay τJ in inhibition, this
means that the E-cells do not jump to CL0 but continue to move up CL1 instead. Moreover, if the
inhibitory delay, τJ , is sufficiently large, theE-cells are able to reach a point (P4) above LK0

E , and
to jump up to P0 on CR0 again when they are finally released from inhibition. When the E-cells
jump up, if τJ is sufficiently large, the J-cell also lies above LK1

J . Therefore, it also jumps to JR1
and returns to its starting point, Q0. In the following we will derive a lower bound on how large
τJ must be for these arguments to hold.

Recall that yLE(sJ ) (or yRE(sJ )) is the y-value of the left (or right) knee of CsJ and we have
yRE(0)< yLE(0). From Fig. 4 TLmE is the time for y to increase from yRE(1) to yLE(0) under y′ =
GL(y, 1) in the slow subsystem. Thus, in the case we consider, (E, J)= (2, 2), we need TLmE less
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(E, J) TaE T sE TaJ T τJ lower bound
(1, 1) τJ τJ τJ 2τJ max(TLmE + TLE , T

Lm
J + TLJ )

(1, 2) τJ τJ + T ∗J τJ + T ∗J 2τJ + T ∗J max(TLmE + TLE , T
Lm
J )

(1, 3) τJ τJ − T †J τJ − T †J 2τJ − T †J TLmE + TLE + TLmJ + TLJ
(2, 1) τJ + T ∗E τJ τJ + T ∗E 2τJ + T ∗E max(TLmE , TLmJ + TLJ )
(2, 2) τJ + T ∗E τJ + T ∗J τJ + T ∗J + T ∗E 2τJ + T ∗J + T ∗E max(TLmE , TLmJ )

(2, 3) τJ + T ∗E τJ − T †J τJ − T †J + T ∗E 2τJ − T †J + T ∗E TLmE + TLmJ + TLJ
(3, 1) τJ − T †E τJ τJ − T †E 2τJ − T †E max(TLmE + TLE , τ

Lm
J + TLJ )

(3, 2) τJ − T †E τJ + T ∗J τJ + T ∗J − T
†
E 2τJ + T ∗J − T

†
E max(TLmE + TLE , T

Lm
J )

(3, 3) τJ − T †E τJ − T †J τJ − T †J − T
†
E 2τJ − T †J − T

†
E TLmE + TLE + TLmJ + TLJ

Table 2. Summary of the values of Ta
E , T

s
E , T

a
J , the period T , and the lower bound on τJ for existence in all nine cases.

than the duration of the E-cell silent phase, T sE , for the oscillatory solution to exist. Similarly for
the J-cell to escape from the silent phase, we need TLmJ less than T sJ .

The duration of J-cell active phase, TaJ , consists of up to three different parts: (i) the first part
corresponds to the time delay τJ after J has jumped up, (ii) the next part corresponds to time,
denoted by T ∗E , needed for the E-cell to reachRK1

E on CR1 after jumping from CR0 (corresponding
to the part of the trajectory from P2 to RK1

E in Fig. 3A), and (iii) after E jumps down, the third
part, denoted by T ∗J , is the time needed for J to reach the right knee of JR0 (corresponding to
the trajectory from Q2 to RK0

J in Fig. 3B). Combining all times yields TaJ = τJ + T ∗E + T ∗J . Since
the E-cell jumps up a delay τJ after the J-cell jumps down, and the J-cell jumps up at the same
time as the E-cell, the duration of the J-cell silent phase is T sJ = τJ . Similarly, it can be seen that
TaE = τJ + T ∗E and T sE = τJ + T ∗J . Thus, the singular periodic solution exists if TLmJ < τJ and
TLmE < τJ + T ∗J . In the latter inequality, the worst case occurs if the J-cell reaches RK0

J along
JR1 exactly when E jumps down, resulting in T ∗J = 0. Therefore, the singular periodic oscillatory
solution populations exists if max (TLmE , TLmJ )< τJ .

Using similar arguments as above, we can compute TaE , T
s
E , T

a
J , the period T and the lower

bound on τJ for all other possible cases. These results are summarized in Table 2. Note that T sJ =

τJ for all cases.
Now the lower bound on τJ in condition (ii) of the theorem statement is the largest bound of

those specified the last column of Table 2. Thus this lower bound on τJ guarantees the existence
of oscillatory solutions for both populations in all of the cases.

Stability. To proceed with stability analysis, we need to make some simplifying assumptions
about the model. First, we assume the nonlinearity in the differential equation for the y coordinate
in (2.4) and (2.6) can be written

gE(xE , yE) = hE(xE)− kEyE , gJ (xJ , yJ ) = hJ (xJ )− kJyJ ,

where hE , hJ are sigmoidal shaped nonlinearities. This is not a strong assumption, as this is the
form of the differential equation for gating variables in many models. Second, we will assume the
the sigmoids are steep enough that on the slow manifolds we have

hE(ΦEL (yE , sJ ))≈ALE , hE(ΦER(yE , sJ ))≈ARE ,

where ALE >A
R
E are constants. Thus in the slow subsystem we have

y′E =

{
kE(ALE − yE) when xE =ΦEL (yE , sJ (xJ (t̃− τJ ))

kE(ARE − yE) when xE =ΦER(yE , sJ (xJ (t̃− τJ )).

}
(3.1)



12

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

The equations for yJ follow analogously. The key effect of this assumption is that, on the slow
manifolds, the y coordinate follows a linear differential equation which only depends on whether
the cell is in the active or silent phase.

We can now state our main result.

Theorem 3.2. Consider a network with one E-cell and one J-cell. Let the conditions of Theorem 3.1 be
satisfied. If the cells are in cases (1, k), (k, 1), (2, 3) of Table 2, the periodic solution is asymptotically
stable. In the other cases it is stable if T sE <T

a
E or T sE >

1
kE

ln(2).

Proof. To study the stability of the periodic orbits described above, we will construct a map similar
to the approach in [34].

Consider an initial conditions as described in Theorem 3.1, with both cells on the right
branch of the slow manifold, and the time history of both orbits in the silent phase, i.e.,
(xE(0), yE(0)) = (xE0, yE0) = P0 ∈ CR0 and (xJ (0), yJ (0)) = (xJ0, yJ0) =Q0 ∈JR1 . Assuming
the initial conditions are close enough to the periodic orbit, the orbit corresponding to this initial
condition should follow the right branches of the slow manifolds, jump to the left branches, follow
them and then jump back up to the right branches. The simplified slow equations (3.1) can be
integrated to get expressions for this orbit. Consider the E-cell and define yEd = yE(TaE) to be the
y value at the jump down point (on the left branch) and yEf = yE(TaE + T sE) to be the y value at
the jump up point, i.e. the final position on right branch. Then we have

yEf = yEde
−kET s

E +ALE(1− e−kET
s
E )

= (yE0 −ARE)e−kE(Ta
E+T s

E) + (ARE −A
L
E)e−kET

s
E +ALE .

The expression for the J-cell is completely analogous. Thus we can think of the trajectories of
cells as a mapping from the CR0 × JR1 to itself. To simplify the mapping we introduce the shifted
variables uE = yE0 −ARE , uJ = yJ0 −ARJ . Then the mapping can be written

H(uE , uJ )

=
(
uEe

−kE(Ta
E+T s

E) + (ALE −A
R
E)(1− e−kET

s
E ), uJe

−kJ (Ta
J +T s

J ) + (ALJ −A
R
J )(1− e−kJT

s
J )
)
.

The periodic solutions shown to exist in Theorem 3.1 correspond to fixed points (ūE , ūJ ) of
this map. The fixed points satisfy TaE + T sE = TaJ + T sJ = T and

ūE = (ALE −A
R
E)

1− e−kET
s
E

1− e−kET
, ūJ = (ALJ −A

R
J )

1− e−kJT
s
J

1− e−kJT
. (3.2)

To study the stability of the periodic solution we will consider the linearization of the map H
about the fixed point (ūE , ūJ ). While the map appears simple, as shown in Table 2, TaE , T

s
E , T

a
J

depend on which trajectories the cells follow. In particular, these times may depend on the
initial point of the trajectory through T ∗E etc. For example, consider an E-cell in Case 2. Since
the cell jumps from the active to the silent phase when yE = yRE(1), we have yRE(1)−ARE =

uEe
−kE(TJ+T∗

E), which may be solved for T ∗E . Using a similar approach we have

T ∗E =−τJ +
1

kE
ln

uE
yRE(1)−ARE

, T †E = τJ −
1

kE
ln

uE
yRE(0)−ARE

,

T ∗J =−TaE +
1

kJ
ln

uJ
yRJ (1)−ARJ

, T †J = TaE −
1

kJ
ln

uJ
yRJ (1)−ARJ

.
(3.3)

Using these expressions we can calculate the Jacobian matrix of the linearization, DHi,j , for any
case (i, j) of periodic orbit described in Table 2.
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Straightforward calculations show the following

DH1,1(ūE , ūJ ) =

(
e−kET 0

0 e−kJT

)
;

DH1,j(ūE , ūJ ) =

(
e−kET αβ

0 0

)
, j = 2, 3;

DHi,1(ūE , ūJ ) =

(
0 0

− 1
αe
−kJT e−kJT

)
, i= 2, 3.

where α= kE ūE
kJ ūJ

and

β = e−kET
(
ALE −A

R
E

ūE
ekET

a
E − 1

)
.

Clearly in these five cases, all the eigenvalues of the Jacobian matrix satisfy |λ|< 1, thus the
periodic solutions are asymptotically stable.

Now consider the situation when both cells are in case 2. Then, using Table 2 and eq.(3.3) we
have

dTaE
duE

=
dT ∗E
duE

=
1

kEuE
,

dT sE
duE

=
dT ∗J
duE

=− 1

kEuE
,

dT sE
duJ

=
dT ∗J
duJ

=
1

kJuJ

dTaJ
duE

=
dT ∗E
duE

+
dT ∗J
duE

= 0,
dTaJ
duJ

=
dT ∗J
duJ

=
1

kJuJ

It follows that

DH2,2(ūE , ūJ ) =

(
−β αβ

0 0

)
Similar calculations show that DH2,3, DH3,2, DH3,3 are the same.

The eigenvalues in these latter cases are 0,−β. Using eq. (3.2) we have

β = e−kET
s
E

1− e−kET
a
E

1− e−kET s
E

If T sE <T
a
E then

1− e−kET
a
E

1− e−kETus
E

< 1,

while if T sE >
1
kE

ln(2) then

e−kET
s
E

1− e−kET s
E

< 1.

In either situation, |β|< 1. Noting from Table 2 that T sE <T
a
E is always true in case (2, 3) concludes

the proof.

Remark 3.2. The theorem above gives the stability for a network with multiple E-cells and J-cells
assuming that each populations is synchronized, i.e., stability within the synchronization subspace.
Stability to general perturbations could be considered using as similar approach but with higher
dimensional maps. We leave this for future work.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied with τJ replaced by τE + τJ . Then, a singular
oscillatory periodic solution of the model (2.3)–(2.6) exists. If the conditions of Theorem 3.2 are also satisfied,
with τJ replaced by τE + τJ , then the solution is asymptotically stable.

Proof. The proof follows from the results of [39] which show that the important delays for
determining the behaviour of a network are the total delays around any closed loop in the
network. In our model (2.3)–(2.6) all the loops have the same total delay τtot = τE + τJ . Thus if the
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model has a periodic solution with particular values of τE , τJ such that τE + τJ = τtot then the
model has the same solution, with the same stability, for any values of τE , τJ satisfying τE + τJ =

τtot. All that will change is the relative phase difference of the E-cells and the J-cell.

Remark 3.3. The phase difference between the J-cell and the synchronized E-cells can be determined by
the size of the excitatory synaptic delay, τE , regardless of the τJ value. This is because the J-cell fires τE
time after the E-cells fire. Specifically, if τE is set to be zero with nonzero τJ , in-phase oscillations between
J and E populations occur because the J-cell fires as soon as the E-cells fire. In contrast, if τE is nonzero,
the J-cell fires τE time after the E-cells. Thus, oscillations between the two populations are out-of-phase
with the phase lag, τE .

(b) Dynamics with no delay
Using a similar approach to Section (a), we now show that a singular oscillatory solution, with
the E-cells synchronized, does not exist if there is no time delay in the interaction between the
two populations.

Theorem 3.3. Suppose that there is no delay in the synapses for the globally inhibitory network, i.e., TJ =

TE = 0 in Eqs. (2.3)–(2.6), and that (i) in Theorem 3.1 is satisfied. Then a singular oscillatory periodic
solution with the E-cells synchronized does not exist.

Proof. In this situation, the slow subsystems of the E cells are as described by in (2.9)–(2.11) with
τJ = 0 while the equations for the fast subsystem are obtained by setting ε= 0 and TJ = TE = 0

in (2.3)–(2.6).
We assume that the positions of E-cells are identical and show that no periodic solution exists

as both the E-cells and J-cell always converge to their respective equilibrium points. There are
several cases, depending on the initial conditions, i.e., the starting points of the two cell types, and
the properties of nullclines. We analyze one case in detail, the others can be analyzed in a similar
manner.

Suppose that both the E-cells and the J-cell start in the active phase, i.e., the E-cells lie on
CR1 and the J-cell on JR1 . As in the proof of Theorem 3.1, there are several cases for the solution
trajectories depending on which cell type reaches the right knee of its respective nullcline first
and the position this cell is in when the other cell type jumps down to the silent phase.

We consider one possible solution trajectory set as illustrated in Figure 6. As above, P0 and Q0

correspond to the starting points of the E and J cells, respectively. This figure corresponds to the
case where the E-cells jump down first and the J-cell lies above RK0

J when E-cells jump down.
In the figure, the cells evolve to points RK1

E and Q1, respectively, then E-cells jump down to P1

on CL1 . As this occurs, the J-cell jumps to JR0 , point Q2. The J-cell follows the nullcline to RK0
J ,

and then jumps down to its silent phase. In the case shown in Figure 6A, when this occurs the
E-cell lies at point P2 above LK0

E . This makes it possible for the E-cells to jump up again as they
are released from inhibition. Thus the E-cells jump to P3 on CR0 and the J-cell jumps to Q3 on
J L1 . The two cells then move along their respective nullclines until the E-cell reaches RK0

E . The
E-cells then jump down to CL0 , point P4. This causes the J-cell to jump from J L1 to J L0 , point
Q5. Since all cells are now in their silent phase with no synaptic input from the other cells, the
convergence to the equilibrium points follows.

Remark 3.4. This result holds for TE and TJ sufficiently small. If TE , TJ are O(ε) then the delays will
not appear in the equations for the fast and slow subsystems and the analysis will be the same as the zero
delay case.
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Figure 6. Plots of solution trajectories for A) E-cells and B) J -cell in black solid lines, approaching to their respective

equilibrium points, if two populations start in the active phase and there is no delay in the synapses. These plots are for

the case where E-cells lie above the left knee of the sJ = 0 cubic, corresponding to the red curve of A), when J jumps

down.

4. Numerical Simulations
We conduct numerical simulations to illustrate the oscillatory solutions under different conditions
on the nullclines for theE-cells and the J-cell, and on their delays, as constructed in Section 3. We
consider a simple model by specifying explicit functions for f and g in Eqs. (2.3)–(2.4), for fJ and
gJ in Eqs. (2.5)–(2.6), and synaptic variables si and sJ .

The model we consider is the following

ẋi = 3xi − x3
i + yi − ginhsJ (xJ (t− TJ ))(xi − xinh), (4.1)

ẏi = ε(λ− γ tanh(β(xi − δ))− yi), (4.2)

ẋJ = 3xJ − x3
J + yJ − gexc

(
1

N

∑
i

si(xi(t− TE))

)
(xJ − xexc), (4.3)

ẏJ = ε(λJ − γJ tanh(βJ (xJ − δ))− yJ ), (4.4)

where i= 1, . . . , 2. Note that f and fJ are the same. Using different functions would not alter
the results significantly. These functions are modified from those used in [8,64] so that the
properties of f and g are as illustrated in Fig. 1. The function f is the same nonlinearity as in
the FitzHugh-Nagumo [23,44] model, which is the simplest nonlinearity exhibiting a cubic x-
nullcline. The function g is similar to the nonlinearity that occurs in equations for gating variables
in conductance based models [22,49]. This parameters of this function allow us to easily adjust
the behaviour of the model on the y-nullcline.

The parameters β, βJ denote the steepness of the sigmoidal curves for the y-nullcline and
yJ -nullcline, respectively. We set both to be � 1. The parameters λ, γ, and δ for the E-cells are
used to modify the amount of time they spend in the left or right branches as their speed along
either branch depends on the y-nullcline. Model parameters for the J-cell, which are different
from those for E-cells, are similarly defined.

The coupling function, s, is defined to be a sigmoid curve having the form of

s(x) = [1 + exp(−(x− θ)/σ)]−1, (4.5)

where σ determines the steepness of this sigmoid and is set to be � 1. The parameter θ is the
threshold for x-variable, i.e., the value at which s rapidly changes from 0 to 1.

We used the delay differential equation solver in the numerical package XPPAUT [21] to
numerically integrate Eqs. (4.1)–(4.4) with two E-cells and one J-cell and show the existence of
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Figure 7. Example of case (1, 2) periodic solutions for two E-cells and one J -cell with different combinations of the two

coupling delays. A) TJ = 10 and TE = 0, B) TJ = 7 and TE = 3, C) TJ = 0 and TE = 10, D) TJ = 10 and TE = 0.

The black and red/green curves are the time courses of J -cell and E-cell voltages, respectively. Parameter values used

are ε= 0.025, γ = γJ = 5, β = βJ = 10, δ= δJ =−1.1, λ= 1, λJ = 0, σ= 0.002, and θ=−0.5. Coupling

parameter values are gexc = ginh = 1, xinh =−3, and xexc = 3. For the simulations in A)–C) the initial conditions

were given by eq.(4.6) with x10 =−1, x20 = 1.1, y10 = 0.2, y20 = 0.02, xJ0 = 1.1, yJ0 = 0.1. For D) they were the

same except x20 =−0.3, xJ0 =−1.1.

stable oscillatory solutions under the conditions of Theorem 3.1. We used constant initial functions

xi(t) = xi0, yi(t) = yi0, xJ (t) = xJ0, yJ (t) = yJ0, −max{TE , TJ} ≤ t≤ 0, (4.6)

where i= 1, . . . , 2. The values for the constants are shown in the figure captions. Figure 7 shows
an example of a case (1, 2) periodic orbit while Figure 8 shows an example of a case (1, 3) periodic
orbit.

Note that the coordinates of the points RK0
E , RK

1
E , RK

0
J , RK

1
J can be found explicitly

for the model (4.1)–(4.4). Using these and approximation (3.1) we estimated the times
TRE , T

Rm
E , TRJ , T

Rm
J as per Table 1. Applying the lower bound in Table 2 for the parameter

values of Figure 7 and converting the delays to the fast time gives the sufficient condition
for oscillations TJ + TE >max(TLmE + TLE , T

Lm
J )/ε≈ 27.7. In our simulations we observed

oscillations for TJ + TE > 5.1. For the parameter values of Figure 8 we obtained the condition
TJ + TE > (TLmE + TLE + TLmJ + TLJ )/ε≈ 54.7. In our simulations we observed oscillations for
TJ + TE > 37.6. Clearly our estimates are conservative. This is not surprising since our analysis
is based on the worst case analysis for the various cases of the trajectories.

Note that the periods and activation times are as predicted by Table 2 after converting these to
the fast time. In both figures TaE = TE + TJ , the total delay. In Figure 7 TaJ = TE + TJ + T ∗J >T

a
E

and the period is longer than 2(TE + TJ ) while in Figure 8 TaJ = TE + TJ − T †J <T
a
E and the

period is shorter than 2(TE + TJ ). The period of the oscillation increases as the total delay is
increased within the range where the stable oscillation exists. Although from Table 2 it would
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appear the period depends linearly on the total delay, in fact the times T ∗E , T †E , T ∗J , T †J can depend
on the delay, so other than case (1, 1) the dependence is nonlinear.

In all simulations, the two E-cells (red and green curves) quickly synchronize on the periodic
orbit. Further, as predicted by Corollary 3.1 identical periodic orbits with different phase
difference between the E and J cells occur for different values of TJ and TE with the same total
delay. As noted in Remark 3.3, the phase difference between the two populations is determined
simply by the size of the excitatory synaptic delay, TE . Part D) of each figure shows that an
equilibrium point corresponding to the quiescent state coexists with the periodic orbit.
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Figure 8. Example of case (1, 3) periodic solutions for two E-cells and one J -cell with different combinations of the two

coupling delays. A) TJ = 45 and TE = 0, B) TJ = 30 and TE = 15, C) TJ = 0 and TE = 45, D) TJ = 45 and TE = 0.

The black and red/green curves are the time courses of J -cell and E-cell voltages, respectively. Parameter values used

are ε= 0.025, γ = γJ = 5, β = βJ = 10, δ= δJ =−1.1, λ= 2, λJ =−2, σ= 0.002, and θ=−0.5. Coupling

parameter values are gexc = ginh = 0.5, xinh =−2.2, and xexc = 2.2. In A)–C) the initial conditions were given by

eq.(4.6) with x10 =−1, x20 = 1.1, y10 = 0.2, y20 = 0.02, xJ0 = 1.1, yJ0 = 0.1. For D) they were the same except

xJ0 =−1.1.

5. Discussion
In this paper, we provide sufficient conditions for the existence and stability of periodic solutions
in which the excitatory cells are synchronized, in globally inhibitory networks of excitable cells
with coupling delays. The model we develop and analyze is biologically motivated by several
neural systems with this network structure. In the context of sleep rhythms, synchronization
is one of the common rhythmic behaviors, in which excitatory thalamocortical relay cells fire
together while receiving a global inhibition from a population of inhibitory thalamic reticular
cells [18]. In sensory processing, synchronization through global inhibition can be important for
a network of excitatory neurons to produce the correct response to a given input [19].
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In Section 3, we apply geometric singular perturbation methods to prove existence and
stability conditions in terms of the delays, TJ corresponding to the delay in inhibitory synapses
and TE corresponding to that in excitatory synapses. These delays represent both the time for
information to travel between neurons and to be processed at the synapse. We show that the
presence of delays makes it possible for the network to exhibit synchronous periodic solutions.
In contrast, if there is no delay in both synapses, our analysis demonstrates that synchronous
periodic solutions cannot be obtained. Based on the construction of synchronous periodic
solutions under certain conditions, we determined the period of such solutions in terms of the
lengths of both delays.

In related studies by Rubin and Terman [49,51], they assume that the inhibitory cells have a
longer active phase than the excitatory cells, based on the experimental findings that thalamic
reticular cells are known to have longer active states than relay cells [18]. However, as we indicate
above, global inhibitory networks occur in other neural systems, where this assumption may or
may not be true. Thus, we extend their analysis by giving conditions that do not depend on the
length of the active phase of either cell type, and show synchronous solutions can exist as long as
there are sufficiently long delays. In particular, applying the results of [39], we show that the size
of the total delay TE + TJ is the important parameter for synchronous periodic solutions to exist,
with the specific sizes of TE and TJ determining the relative phase of spiking in the excitatory
and inhibitory populations.

We provide numerical simulations using XPPAUT [21] in Section 4 to supplement and validate
the analytical results in Section 3. We specify explicit forms for the nonlinearities in our generic
two-dimensional, relaxation oscillator model, Eqs. (2.3)–(2.6), which have appropriate form for
the nullclines. The numerical simulations of this model confirm that the presence of the delay in at
least one synapse type is an essential factor to generate oscillations with theE-cells synchronized.

One advantage of the explicit representation of coupling delays in model equations, is that
we can conduct a systematic study for the existence of solutions depending on the length of
delays. This allows us to extend the way that the effect of synaptic delays were incorporated in
previous models of global inhibition [49,51] while having slightly simpler model equations. Thus,
in Section 4, we consider three different combinations of inhibitory and excitatory delays for each
case of which cell has the longer active phase. The model simulations demonstrate that all of the
combinations result in synchronized behaviors among the excitatory cells. These synchronized
oscillations differ from each other only in terms of the phase difference between excitatory and
inhibitory cells’ oscillations; their qualitative features are the same.

In addition, our model extends the work on the effect of delays in [8,24] in that ours analyzes a
network of excitable neurons with both excitatory and inhibitory synapses whereas theirs focused
on system with excitatory neurons which are oscillatory, that is, where each uncoupled neuron can
oscillate without synaptic coupling.

Our model extends some of previous modeling work on synaptic delays in biologically
relevant neural networks. However, analysis on other types of network behaviors, such as
clustered patterns, is also needed to obtain a more complete understanding of how different
population rhythms arise as a result of the interaction between coupling delays, intrinsic
properties of each cell and network architecture. Also, since the present model assumes that J
population is nearly synchronized so that it can be viewed as a single cell, we can relax this
condition by allowing the interaction between neurons in the J population, which may result in
different population behaviors other than synchronization, such as clustering. Investigating the
role of the interactions between inhibitory thalamic reticular cells in the thalamocortical networks
is worthy of further investigation in the context of network firing patterns.
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