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Abstract1

Low-dimensional yet rich dynamics often emerge in the brain. Examples include oscillations and chaotic2

dynamics during sleep, epilepsy, and voluntary movement. However, a general mechanism for the emergence of3

low dimensional dynamics remains elusive. Here, we consider Wilson-Cowan networks and demonstrate through4

numerical and analytical work that homeostatic regulation of the network firing rates can paradoxically lead5

to a rich dynamical repertoire. The dynamics include mixed-mode oscillations, mixed-mode chaos, and chaotic6

synchronization when the homeostatic plasticity operates on a moderately slower time scale than the firing7

rates.. This is true for a single recurrently coupled node, pairs of reciprocally coupled nodes without self-8

coupling, and networks coupled through experimentally determined weights derived from functional magnetic9

resonance imaging data. In all cases, the stability of the homeostatic set point is analytically determined or10

approximated. The dynamics at the network level are directly determined by the behavior of a single node11

system through synchronization in both oscillatory and non-oscillatory states. Our results demonstrate that12

rich dynamics can be preserved under homeostatic regulation or even be caused by homeostatic regulation.13

Lead Paragraph14

When recordings from the brain are analyzed, rich dynamics such as oscillations or low-dimensional15

chaos are often present. However, a general mechanism for how these dynamics emerge remains16

unresolved. Here, we explore the potential that these dynamics are caused by an interaction17

between synaptic homeostasis, and the connectivity between distinct populations of neurons. Us-18

ing both analytical and numerical approaches, we analyze how data derived connection weights19

interact with inhibitory synaptic homeostasis to create rich dynamics such chaos and oscilla-20

tions operating on multiple time scales. We demonstrate that these rich dynamical states are21

present in simple systems such as single population of neurons with recurrent coupling. The22

dynamics of these simple systems are directly inherited in large networks while properties of the23

coupling matrices determine when these rich dynamics emerge as a function of the parameters24

of the neuronal populations. Indeed, we find that the removal of single nodes or connections25

can substantially alter where these rich dynamics onset in the parameter space.26

1 Introduction27

The human brain contains billions of neurons each receiving potentially thousands of connections from their28

neighbours. Despite this complexity, low-dimensional dynamics often appear in the brain in different regions29

and contexts. Examples include oscillations such as the theta and gamma oscillations in the hippocampus30

[Buzsáki, 2002, Buzsáki and Wang, 2012, Buzsáki et al., 2012], low dimensional oscillatory dynamics during31

grasping and other motions [Churchland et al., 2012], or even low dimensional chaotic dynamics during epileptic32
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seizures and different sleep phases [Babloyantz and Destexhe, 1986]. These dynamics are sometimes pathologi-33

cal, such as during epileptic seizures while other times they are functional, such as during sleep states. Despite34

the low-dimensionality, the dynamics these systems display are often complex [Babloyantz and Destexhe, 1986].35

However, a general mechanism as to how these dynamical regimes might emerge remains elusive.36

If these dynamical regimes are learned and not inherited, then plasticity in the synaptic weights that couple37

neurons together is necessary. For many neural circuits, strong evidence exists for a form of homeostatic38

plasticity [Froemke et al., 2007, Frank et al., 2006, Bacci et al., 2001, Turrigiano and Nelson, 2004]. The39

function of homeostatic plasticity is to prevent run-away excitation in the circuit and thus prevent pathological40

states such as epileptic seizures. Additionally, homeostatic plasticity prevents a catastrophic loss of neuronal41

activity which results in network quiescence. In other words, homeostatic plasticity serves to maintain a stable42

background firing rate.43

Recent modeling work has demonstrated a novel inhibitory homeostatic plasticity mechanism designed to44

regulate activity [Vogels et al., 2011]. This mechanism works by applying slow variations in the synaptic weights45

from the inhibitory neurons to the excitatory neurons [Vogels et al., 2011]. As the excitatory neurons start firing46

in excess of their homeostatic set points, the synaptic weights from the inhibitory neurons increase in strength47

to prevent run-away excitation. If the excitation in the network is too low, the inhibitory weights decrease48

in strength to disinhibit the excitatory neurons. The homeostatic mechanism can drive initially synchronized49

activity into the asynchronous irregular regime defined by variable spiking but with a constant time averaged50

firing rate [Vogels et al., 2011, Brunel, 2000].51

These homeostatic mechanisms fundamentally exist to stabilize network dynamics to an equilibrium point52

[Turrigiano and Nelson, 2004]. Indeed, they exist as a counter mechanism to offset the often destabilizing53

effects of Hebbian plasticity [Turrigiano and Nelson, 2004]. Thus, it is surprising to consider homeostasis to be54

the potential source of complex dynamical systems. However, recent work on different forms of homeostatic55

plasticity demonstrate the rich dynamical repertoire that networks regulated by homeostatic plasticity can56

display [Udeigwe et al., 2017, Zenke et al., 2013, Harnack et al., 2015, Hellyer et al., 2016]. For example, a57

coupled Wilson-Cowan system with inhibitory homeostatic synaptic plasticity and excitatory weights estimated58

from diffusion spectrum imaging data showed rich spontaneous dynamics such as neural avalanches [Hellyer59

et al., 2016]. However, it is difficult to determine what the source of the rich dynamical repertoire in the system60

considered in [Hellyer et al., 2016] is as the underlying networks contain neuronal noise, synaptic transmission61

delays, non-smooth dynamics, and complex coupling. All four components may be the source of complex62

dynamics.63

In this work, we attempt to disentangle the effect of the homeostatic dynamics by analyzing a smooth64

Wilson-Cowan ([Wilson and Cowan, 1972]) system similar to the system numerically analyzed in [Hellyer65

et al., 2016]. Here, we consider the system without delays or noise as both conditions can increase the66

complexity of otherwise simple network dynamics. We show that the rich dynamics can arise from inhibitory67

synaptic homeostasis alone. Indeed, complex dynamics arise in a single node with recurrent excitation and68

homeostatically regulated inhibition. For example, the single node system displays a period doubling cascade69

to chaos, mixed-mode oscillations, and mixed-mode chaos. Furthermore, we demonstrate that these results also70

occur in coupled dual node systems, and in large coupled node systems. The coupling in the large network is71

identical to the connectivity considered in [Hellyer et al., 2016] and derived from functional magnetic resonance72

imaging data from [Hagmann et al., 2008, Honey et al., 2009]. For both cases, we find that the complex73

dynamics of the single node carry over to higher dimensions. Finally, we consider node and connection deletion74

in simulations using the data derived coupling matrices. We find that the homeostatic effect on firing rate75

stability is substantially boosted by the deletion of very specific nodes or connections in the network.76

2 The Wilson-Cowan System With Homeostatic Regulation77

The system of equations we consider model the average activity of a population of neurons phenomenologically78

[Wilson and Cowan, 1972]. The population consists of subpopulations of excitatory neurons, E, and inhibitory79

neurons, I. Each population corresponds to a single equation. For example, a single recurrently coupled80

population of excitatory and inhibitory neurons are governed by the following dynamical system:81

τEE
′ = −E + φ

(
WEEE −WEII

)
(1)

τII
′ = −I + φ

(
W IEE

)
(2)

The coupling terms WEE ,WEI ,W IE are all assumed to be positive scalars while the self-inhibition term is82

assumed to be zero, for simplicity. The function φ(x) is a sigmoidal transfer function that transforms the83

2

http://dx.doi.org/10.1063/1.5026489


net current arriving at a population into the population activity. The time constants τE and τI denote time84

scales of the excitatory and inhibitory populations, respectively. The equations (1)-(2) are more commonly85

referred to as the Wilson-Cowan system [Wilson and Cowan, 1972]. Here, we also consider the homeostatic86

modification from [Vogels et al., 2011, Hellyer et al., 2016]:87

τWW
EI ′ = I(E − p) (3)

Equation (3) alters the dynamics of the inhibitory synaptic weight in order to drive the excitatory population88

toward p, the homeostatic set point of the network. Equations (1)-(3) together define the dynamics of a89

single, recurrently coupled node. As we will see in Section 3, analyzing the single node system is vital towards90

understanding the dynamics of the large network.91

The network equations are given by the following:92

τEE
′
k = −Ek + φ

(
N∑
i=1

WEE
ik Ei −WEI

k Ik

)
(4)

τII
′
k = −Ik + φ(W IE

k Ek) (5)

τWW
EI
k
′

= Ik(Ek − p) (6)

The excitatory activity of population k is given by Ek while the inhibitory activity is given by Ik for k =93

1, 2, . . . N . These nodes are coupled by the potentially long range weight projection matrix WEE while a node94

inhibits itself through the diagonal weight matrix WEI . We assume that no long-range inhibition is possible,95

hence the diagonal nature of WEI . Furthermore, we will assume that a node can only excite its own inhibitory96

population, and thus W IE is also diagonal.97

The time constants for the excitatory and inhibitory population activities, and inhibitory homeostatic98

synaptic weight are given by τE , τI , and τW , respectively. In this work, we will primarily consider the case99

where τW � τE , τW � τI with τW = 5τE , τE = τI = 1 for the majority of numerical simulations. The100

excitation and inhibition operate on the same time scale, while the homeostasis operates on a slower time101

scale. Here, we consider the case where the plasticity operates on a slower time scale, however the separation102

of time scales is moderate. This smaller separation is due to the Wilson-Cowan system phenomenologically103

representing the activity or average firing of a population of neurons, and firing rates can have significantly104

slower dynamics than the neuronal dynamics that constitute a network. This can be caused for example105

by short-term plasticity ([Markram and Tsodyks, 1996, Stevens and Wang, 1995]), spike-frequency adaptation106

([Benda and Herz, 2003]), or clustered coupling between the individual neurons that constitute a node ([Litwin-107

Kumar and Doiron, 2012]). However, we analyze the system more generally when we consider the origin108

of Canards and mixed-mode oscillations in Section 3 and consider stronger separations of the time scales109

numerically to determine if the resulting network dynamics are robust.110

The transfer function φ(x) is a smooth sigmoid function which we will constrain to satisfy the following111

properties:112

φ′(x) > 0,∀x (7)

lim
x→∞

φ(x) = 1 (8)

lim
x→−∞

φ(x) = 0 (9)

While much of our derivations and analysis are general for sigmoid functions that satisfy (7)-(9), we consider113

the logistic function:114

φ(x) =
1

1 + exp(−ax)
, φ′(x) = aφ(x)(1− φ(x)), φ−1(x) =

1

a
log

(
y

1− y

)
(10)

for numerical applications. The parameter a determines the steepness of the sigmoid. While φ(x) is a smooth115

sigmoid function, other transfer functions are also possible. In particular, non-smooth variants of φ(x) can116

also be considered which impact the final dynamics of the network [Harris and Ermentrout, 2015, Nicola and117

Campbell, 2016]. We leave this for future work.118

To simplify the notation further, we will rescale time with t̂ = τIt. For the single node, this yields the119

following system:120

τ1E
′ = −E + φ(WEE −W II) (11)

I ′ = −I + φ(θE) (12)

τ2W
I ′ = I(E − p). (13)

3

http://dx.doi.org/10.1063/1.5026489


with τ1 = τE/τI , τ2 = τW /τI . For simplicity, we will relabel the scalar parameters in the single and dual121

node cases with WE and W I for EE and EI synaptic weights and θ for the IE synaptic weight. Finally, the122

coupling matrix for the large network, WEE , is derived from functional neural imaging data (see [Hellyer et al.,123

2016, Hagmann et al., 2008, Honey et al., 2009] for further details). These data-derived coupling matrices have124

no self-coupling between nodes (WEE
ii = 0). This would seem to imply that analysis of the single system driven125

by self coupling given by equations (1)-(3) will not help in understanding the dynamics of the full network126

where WEE
ii = 0, ∀i. However, as we will see the symmetric double-node system without self-coupling:127

τ1E
′
1 = −E1 + φ(WEE2 −W I

1 I1) (14)

I ′1 = −I1 + φ(θE1) (15)

τ2W
I
1
′

= I1(E1 − p) (16)

τ1E
′
2 = −E2 + φ(WEE1 −W I

2 I2) (17)

I ′2 = −I2 + φ(θE2) (18)

τ2W
I
2
′

= I2(E2 − p) (19)

has largely identical dynamics to the single-node system and in fact synchronizes to solutions of the single-node128

system.129

We structure the paper as follows: In Section 3 we analyze the single-node system and demonstrate that130

the majority of the rich dynamics we see for both the dual node and the full network are present for the single131

node. In Section 4 we numerically demonstrate that the dual node system without self-coupling synchronizes132

to the single node system analyzed in Section 4. Finally, in Section 5, we simulate and analyze the full network133

equations demonstrating a direct inheritance of their dynamics from the single node system. The parameter134

values we consider for all systems are shown in Table 1, unless otherwise specified as a bifurcation parameter135

(see figure captions).136

3 Single Node Analysis137

3.1 Local Analysis138

Due to the homeostatic mechanism in equation (3), only one equilibrium exists and is determined by the139

following equations:140

E = p, I = φ(θp), W I =
WEp− φ−1(p)

φ(θp)

which is valid for p ∈ (0, 1). We will subsequently refer to this equilibrium as x̄ = (E, I,W I). As W I > 0 we
require:

WEp > φ−1(p).

This sets a range on the admissable values of WE allowed as a function of p, in addition to the constraint that141

WE > 0. Note that if φ−1(p) = 0, then we can consider all WE > 0. For our sigmoid (10), this implies that142

we require p < 0.5.143

After some simplification, the Jacobian of this system is given by144

J =

− 1
τ1

+ φ′(φ−1(p))WE

τ1
−W Iφ′(φ−1(p))

τ1
− Iφ′(φ−1(p))

τ1
φ′(θp)θ −1 0

I
τ2

0 0

 .

Which yields the following characteristic polynomial for the single node system:145

CSN (λ) = λ3 + λ2

(
1−WEφ′(φ−1(p))

τ1
+ 1

)
+ λ

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)

+
I

2
φ′(φ−1(p))

τ1τ2
.

The determinant of the Jacobian is given by146

det J = λ1λ2λ3 = −I
2
φ′(φ−1(p))

τ1τ2
= −φ(θp)2φ′(φ−1(p))

τ1τ2
< 0.
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As the determinant is always negative, this limits the dynamical repertoire of this system due to the homeostatic147

variable. Indeed, due to the dynamics of W I , aside from (E, I,W I), no other equilibria exist and thus local148

bifurcations that create or destroy equilibria via λ = 0 crossings are not possible. This implies that no bistability149

in equilibria is possible, as in other classical Wilson-Cowan systems. Thus, we can attempt to look for Hopf150

bifurcations. Furthermore, as the system is cubic and the determinant is negative, one of the eigenvalues is151

always negative. This corresponds to the existence of a stable manifold for the equilibrium globally in the152

parameter space. The other eigenvalues must both be real and of the same sign, or complex. Further, using153

the Routh-Hurwitz criterion, one can show that all roots of the characteristic equation have negative real part154

if 1−WEφ′(φ−1(p)) > 0.155

To determine the potential loss of stability due to Hopf-bifurcations, substitution of the Hopf-bifurcation156

condition λ = iω into the characteristic polynomial yields the following:157

0 = −iω3 − ω2

(
1−WEφ′(φ−1(p))

τ1
+ 1

)
+ iω

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)

+
I

2
φ′(φ−1(p))

τ1τ2
,

which after equating real and imaginary parts yields158

0 = ω3 − ω

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)

0 = ω2

(
1−WEφ′(φ−1(p))

τ1
+ 1

)
− I

2
φ′(φ−1(p))

τ1τ2
.

Solving for ω as a function of the network parameters yields:159

ω =

√
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2
.

The Hopf bifurcation curve is implicitly defined by160

0 =

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)(
1−WEφ′(φ−1(p))

τ1
+ 1

)

− I
2
φ′(φ−1(p))

τ1τ2
(20)

Defining the following quantities161

µ =
1−WEφ′(φ−1(p))

τ1

F (θ) =
1− p−1φ−1(p)φ′(φ−1(p))

τ1

κ(θ) =
pφ′(θp)θ

φ(θp)

D(θ) =
I

2
φ′(φ−1(p))

τ1τ2
,

then the Hopf bifurcation condition can be written as a quadratic equation in µ. Solving for µ yields162

µ± =
−(D(θ) + F (θ)κ(θ) + 1− κ(θ))±

√
(F (θ)κ(θ) +D(θ) + 1− κ(θ))2 − 4κ(θ)F (θ)(1− κ(θ)

2(1− κ(θ))
.

Only the positive branch of µ yields a Hopf-bifurcation as we require ω2 > 0, which after rearranging the Hopf163

bifurcation condition (20) yields:164

ω2
± =

D(θ)

µ± + 1

µ− + 1 =
−(D(θ) + F (θ)κ(θ)− (1− κ(θ)))−

√
(D(θ) + F (θ)κ(θ)− (1− κ(θ))2 + 4D(θ)(1− κ(θ)))

2(1− κ(θ))
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which implies that µ− < 0 is thus an inadmissable solution for a Hopf-bifurcation while µ+ is an admissable165

under the sufficient condition166

κ(θ) =
pφ′(θp)θ

φ(θp)
< 1 (21)

By considering the properties of the sigmoid function φ(x), a routine derivation shows that the inequality (21)167

holds when aθp < ((1− φ(θp))−1 which is always valid as:168

aθp <
1

1− φ(θp)
= 1 + exp(aθp)

and z < 1 + exp(z) for all z. The final Hopf bifurcation curve is given by:169

WE
Hopf (θ) =

1

φ′(φ−1(p))
(1− τ1µ+(θ)) . (22)

in the (θ,WE) parameter space.170

Given the fact that we can explicitly solve for the Hopf-bifurcation curve, we can simulate in its vicinity171

to determine the resulting behavior of the single-node system. Direct numerical simulation in addition to172

numerical continuation using XPPAUT (not shown) indicate that the Hopf bifurcation is likely supercritical,173

as stable limit cycles emerge for WE > WE
Hopf (θ) (Figure 1, 1A). Computing the first Lyapunov coefficient is174

cumbersome for the full-3D system as it requires a center manifold reduction. However, for θ = 0 case, one175

can prove that the Lyapunov coefficient is strictly negative (see Appendix A). Thus, we should expect that the176

first Lyapunov exponent is negative for small θ which suggests a supercritical Hopf bifurcation.177

Finally, taking the limits θ → 0 or θ →∞ yields178

WE
Hopf (0) = WE

Hopf (∞) =
1

φ′(φ−1(p))
(23)

with WE
Hopf (θ) ≥ WE

Hopf (0). The inequality can be proven by considering that F (θ) ≥ 0, µ+(θ) ≤ 0 where179

equality only occurs in the asymptotic limits considered in (23). The value WE
Hopf (0) is the critical value180

after which synaptic homeostasis can no longer guarantee stability of the equilibrium x̄. After this value,181

depending on the strength of the excitatory to inhibitory coupling θ, stability is lost through a supercritical Hopf182

bifurcation. This is however not a catastrophic bifurcation, and thus near the onset of the Hopf bifurcation we183

are still confined to a neighbourhood around x̄. Note that for the sigmoid (10) we consider, WE
Hopf (0) = 1

ap(1−p) ,184

which implies that smoother sigmoids (small a) yield a larger parameter region of homeostatic control.185

3.2 Period Doubling Cascade to Chaos Followed by a Pinching of the Tent Map186

For larger values of WE , the system displays chaotic activity which was verified by computing the maximum187

Lyapunov exponent numerically (Figure 2). This chaotic attractor contains small excursions from x̄. Again,188

in this region the homeostatic mechanism is still operating within some degree of tolerance as the chaotic189

attractor is contained within small neighbourhood of the equilibrium. Mixed mode oscillations are also present190

past the Hopf-bifurcation (Figure 1C). Surprisingly, for large enough values of WE , the chaotic attractor can191

also contains components that operate on two separate time scales (Figure 1D). This is referred to as “mixed192

mode chaos” [Desroches et al., 2012, Koper, 1995]193

Given the exotic nature of the mixed mode-chaos in this system, we investigated how chaos emerges in this194

system. First, we fixed θ and steadily increased WE and observed a classical period doubling cascade (Figure195

2A,2B) to chaos. Numerically computing the maximal Lyapunov exponent ([Sprott and Sprott, 2003]) over196

the two parameter (θ,WE) region reveals a contiguous region of chaotic solutions above the Hopf bifurcation197

curve (Figure 2C).198

For smaller values of WE > WE
Hopf , the chaotic solutions are classical in nature (2D). For example, by199

plotting the kth maxima of the E variable, E∗k as a function of E∗k−1, we find a stereotypical unimodal peak-200

to-peak or tent map [Lorenz, 1963, Strogatz, 2014] (Figure 2E). However, as we increase WE further, a201

pseudo-singularity or “pinch” emerges in the tent map at the location of the former maximum. This is not a202

true singularity of this map as the set E ∈ (0, 1) is invariant. The emergence of this singularity in the tent203

map corresponds to the emergence of mixed-mode chaos. However, mixed mode chaos occurs over a narrow204

parameter regime for the single node. For larger values of WE � WE
Hopf (θ), the system only displays large205

relaxation limit cycle solutions.206
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Finally, we remark that period doubling cascades and mixed mode behaviors are preserved under larger207

separations of time scales, up to approximately τW = 200τE , τE = τI (Figure 2F). Thus, even for signifi-208

cantly larger separations of time scales, the Hopf bifurcation induced by the homeostatic coupling leads to the209

emergence of complex, yet low dimensional dynamics.210

3.3 Canards and Mixed Mode Oscillations211

Next, we investigated how mixed-mode oscillations emerge in the three-dimensional, single-node case. In212

particular, recent analytical work has demonstrated several cases through which mixed-mode oscillations can213

emerge in a three-dimensional system exhibiting different separations of time scales. Examples include folded214

singularities involving one fast variable and two slow variables, or the “tourbillon” case involving two fast215

variables and one slow dynamical variable, singular-Hopf bifurcations, and systems exhibiting three different216

time scales. [Wechselberger, 2005, Krupa and Wechselberger, 2010, Vo and Wechselberger, 2015, Desroches217

et al., 2012]. These systems can give rise to mixed-mode oscillations through different mechanisms.218

As our system has two fast variables and one slow variable, we hypothesized that the most likely mechanism219

for the emergence of mixed-mode oscillations for our network equations was the so called tourbillon case220

[Desroches et al., 2012]. This is due to the presence of two fast variables (E, I) in addition to the slow weight221

W I . However, the mixed-mode oscillations cannot arise from the tourbillon case in our system. Indeed, this222

requires that the fast variables, given by:223

τ1E
′ = −E + φ

(
WEE −W II

)
(24)

I ′ = −I + φ (θE) (25)

undergo a Hopf bifurcation [Desroches et al., 2012]. While Hopf bifurcations are possible in this system, they224

do not seem to be linked to MMOs, at least for the parameters we consider. The Hopf bifurcations occur far225

from the region in parameter space where MMOs occur and were never observed to be associated with stable226

limit cycles.227

With the tourbillon case likely removed as a possible cause of mixed-mode oscillations, we are left with228

several other possibilities explored in the literature. These include the folded singularities, three time-scale229

systems, or singular-Hopf bifurcations ([Desroches et al., 2012]. The time scales in our network are given by230

τE/τI = 1, τW /τI = 5. Unfortunately, all other possibilities that are currently explored in the literature require231

either two slow time scales, or three separate time scales [Desroches et al., 2012]. For the nominal parameter232

values we have considered, our system has one slow variable and two identically fast variables.233

However, an alternate possibility is that the mixed-mode oscillations are born in alternate time scale limits,234

yet persist as the time-scale conditions are relaxed. For example, these mixed-mode oscillations may be due to235

folded-nodes or folded-saddles for τW = τI � τE or singular Hopf bifurcations in the same limit, or the three236

time-scale limit τW � τI � τE , all of which have been recently summarized in [Desroches et al., 2012]. As237

τI → O(τE), the mixed mode solutions born in the limit that τI � τE persist past this limit.238

First, we considered folded singularities as these cases were the most promising. Mixed mode oscillations239

arising from a folded singularities (either folded saddles or folded nodes) occur when the system has one fast240

variable and two slow variables. Both folded node and folded saddles can have canard solutions [Desroches et al.,241

2012]. These systems are often generalizations of the canard solutions one observes in simple two-dimensional242

systems such as the Van der Pol system.243

We note that canards exist over a exponentially small parameter regime in two-dimensional reductions of244

the recurrently coupled single node system. For example, the E,W I system with I either set to φ(θE) (Figure245

3A) or I = 1
2 , in the limit that θ = 0 (not shown) both have canard solutions. Further, we prove in Appendix246

B for the θ = 0 case that the two-dimensional system:247

E′ = −E + φ(WEE −W I) (26)

W I ′ = ε(E − p) (27)

analytically has a canard point. This is due to the cubic-like nature of the critical manifold of (26), which is248

preserved as a folded surface in 3D. The system (26)-(27) is arrived by a suitable rescaling of time and space,249

after setting θ = 0 thereby uncoupling the inhibition from the other dynamics and rendering the dynamics of250

the inhibitory variable a stable manifold.251

Further, if we consider the full 3D single-recurrently coupled node system, the null-surfaces for the excitatory252

fast variable are indeed folded and contain two attracting regions and a repelling region. The dynamics for large253
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amplitude oscillations follow the attracting components of the null-surface. This numerical analysis suggest254

that the mixed-mode oscillations might arise from folded singularities in a relaxed parameter regime.255

Thus, we conducted the folded singularity analysis in [Desroches et al., 2012, Wechselberger, 2005] and256

determined where in the (θ,WE) parameter region we would expect folded singulairites (see Appendix B) and257

their resulting nature. We found both folded-node and folded saddle regions (Figure 3D). Interestingly, we258

numerically found these regions to be separated by the Hopf-bifurcation curve. Furthermore, we ran numerical259

simulations for τW = τI = 100τE and automatically classified solutions as having mixed-mode elements (Figure260

3D). Here, we found that over a large region in the analytically predicted folded-saddle space, mixed mode261

oscillations existed (Figure 3D,E). We also remark here that the critical manifold for the single node system262

has some pathological properties that might render local analysis less useful. In particular, the folded surface263

is parameterized by264

S =

{
(E, I,W I) : (E, I) ∈ (0, 1)× (0, 1),W I =

WEE − φ−1(E)

I

}
where φ−1(E) = − 1

a log
(

1−E
E

)
. Thus, the critical manifold diverges at E = 0, 1, or I = 0.265

Thus, Canards analytically exist (through a Canard point) for the 2D reduced system under the limit that266

θ → 0, while the 3D system in the limit that τI = τW � τE exhibits certain characteristics of a potential267

folded-singularity. We numerically found the the Hopf-bifurcation curve was a good predictor for the boundary268

between the folded-node and folded-saddle regions. This might be indicative of the folded saddle-node of269

type II/singular Hopf bifurcation where Hopf-bifurcations of the full-system exist near the transition of a270

folded-saddle to a folded-node due to an equilibrium collision with a fold of the critical manifold.271

4 The Dual-Node Case: Synchronous Solutions to the Single Node272

As the large network equations contain no self coupling in the WEE weight matrix (diag(WEE) = 0), the273

single-node analysis that we have conducted is not necessarily informative of the large network dynamics. Thus,274

analysis must be conducted on the simplest possible system without self-coupling, the dual-node reciprocally275

coupled system given by equations (14)-(19). In this system, the local homeostatic mechanism attempts to276

stabilize the excitatory activity while the opposing node functions to stimulate their neighbour.277

First, we conducted numerical simulations of the dual-node system to determine what dynamical behaviors278

are possible. Surprisingly, we found that over all parameter regimes tested, the dual-node system without self-279

coupling synchronizes to solutions of the single-node, recurrently coupled system (Figure 4A,B). For example,280

the dual-node system asymptotically tends towards the same chaotic attractors, limit cycles, and mixed mode281

solutions as the single node system (Figure 4A). For oscillatory solutions, this is not surprising as a simple282

derivation shows that any stable solution of the single-node system potentially corresponds to a synchronous283

solution in the dual-node system. For chaotic attractors, the dual-node system exhibits a case of synchronized284

chaos when the parameters for both nodes are identical [Pecora and Carroll, 1990].285

4.1 Local Stability Analysis of Equilibria286

Again, due to the homeostatic nature of the dual-node system, the only equilibrium that exists is given by287

equation288

E1 = E2 = p, I1 = I2 = φ(θp), W I
1 = W I

2 =
WEp− φ−1(p)

φ(θp)
.

Furthermore, using the Jacobian to solve for the characteristic polynomial yields the following:289

CDN (λ) = CSN (λ)Q(λ) (28)

Q(λ) = λ3 + λ2

(
1 +WEφ′(φ−1(p))

τ1
+ 1

)
+ λ

(
1 +WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)

+
I

2
φ′(φ−1(p))

τ1τ2
. (29)

Thus, instability in CSN (λ) implies instability in the dual-node system for any equilibria. Furthermore, by the290

Routh-Hurwitz criterion [Wiggins, 2003], all roots of Q(λ) lie in the left complex plane if:291 (
1 +WEφ′(φ−1(p))

τ1
+ 1

)(
1 +WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)
>
I

2
φ′(φ−1(p))

τ1τ2
.
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For all physical solutions, the inequality is satisfied as the term Ī2φ′(φ−1(p))
τ1τ2

can be subtracted from both sides292

of (30) with all the remaining terms on the right hand side being strictly positive. However, roots on the293

right-complex plane may occur for non-physical values of these coefficients, for example when the weights are294

negative. This analysis implies that for all permissible (physical) equilibria, the stability of the dual node system295

is directly inherited from the stability of the single node. In other words, for symmetrically coupled systems,296

the local homeostasis rule loses no robustness in regulating network dynamics up to the Hopf-bifurcation and297

the recurrent inhibition can counteract non-local excitation just as well as local excitation.298

4.2 Stability Analysis of Limit Cycles299

If we consider any limit cycle for the single node-system x(t) = (E(t), I(t),W I(t)) such that x(t) = x(t + T )300

for some T > 0, ∀t, then the following is an admissable limit cycle solution to the dual-node system:301

z(t) =

(
x(t)
x(t)

)
with an identical period T , for all t > 0. Furthermore, if we consider the monodromy matrix system302

ε̇ = A(x(t))ε (30)

derived by linearizing equations (1)-(3) around x(t) then linearization for equations (14)-(19) can be written303

as304

ε̇ = A(x(t))ε+ gε(ε,x(t)) (31)

ν̇ = A(x(t))ν + gν(ε,x(t)). (32)

where305

gε(ε(t), ν(t)) = [WEφ′(WEE(t)− I(t)W I(t))(ν1(t)− ε1(t)), 0, 0]T

gν(ε(t), ν(t)) = [WEφ′(WEE(t)− I(t)W I(t))(ε1(t)− ν1(t)), 0, 0]T

In order to analyze the stability of limit cycles, we require a fundamental solution set to equations (31)-(32).306

First, if we consider the fundamental solution set for equation (30), Υ(t) = [ε1(t), ε2(t), ε3(t)], then three307

fundamental solutions of (31)-(32) are immediately given by [εk(t), εk(t)] for k = 1, 2, 3. This implies that if308

the limit cycle is unstable in the single node system, (1)-(3), then it is unstable in the dual node system. We309

leave the stability analysis of these limit cycles and other trajectories for future work. We remark however310

that the recent work in [Coombes et al., 2018] analyzing the stability of limit cycles in piecewise neural mass311

models may be pertinent to resolving the stability of these limit cycles through Floquet analysis, under the312

assumption that the slope of the sigmoid is sharp (a→∞).313

5 The Fully Coupled N -Node System314

As we have previously demonstrated, the dual-node system without self coupling has identical dynamics to the315

single-node, self coupled system and even exhibits chaotic synchronization to identical attractors as the single-316

node. Thus, the single node is largely predictive of the qualitative dynamics of the coupled system despite317

the removal of self-coupling. Thus, we investigated if a similar result would apply to the large uncoupled318

system given by equations (4)-(6). First we analyzed a pair of analytically resolvable cases for matrices that319

satisfied specific assumptions. Then, we numerically explored the system (4)-(6) coupled by the weight matrix320

considered in [Hellyer et al., 2016].321

5.1 Exactly Resolvable Cases322

First, we considered a pair of analytically resolvable cases. If we consider the all-to-all coupled matrix:323

WEE
ij =

{
WE

NE−1 i 6= j

0 i = j
(33)

then there exist steady states (Ej , Ij ,W
I
j ) = (p, Ī, W̄ I), j = 1, 2, . . . N given by the steady state formulas for324

the single and dual node systems. The characteristic polynomial reduces to:325

CNE
(λ) = Q̂(λ)NE−1CSN (λ)
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where Q̂(λ) and CSN (λ) are the polynomials resolved in the dual node (equation (29)) and single node case326

(See Appendix C). The polynomial Q̂(λ) however has W̄E = WE

N−1 in place of WE . Our previous analysis327

immediately applies and shows that with the coupling matrix (33), the system (4)-(6) has identical local328

stability to the single node. We refer to equation (33) as the “mean-field” assumption. Self-coupling need not329

be removed in this case, however the results will differ slightly from the single node if self-coupling is considered.330

Finally, we remark that there is at least one other case where the stability of the system can be determined331

analytically, when the row sum of the coupling weight matrix is constant:332

NE∑
j=1

WEE
ij = WE , i = 1, 2, . . . NE

We decompose the weight matrix WEE = WE ·LEE where the row sum of LEE is equal to one. The scalar333

term WE scales the magnitude of the components of the weight matrix, similar to WE in the single and dual334

node cases. For this case, one can resolve the eigenvalue spectrum explicitly as the characteristic polynomial335

factors readily:336

C(λ) =

NE∏
i=1

(
Q̃(λ)− ri

λ(λ+ 1)φ′(φ−1(p))

τ1
WE

)

where each ri is an eigenvalue of the weight matrix LEE . Each Q̃(λ) is a cubic polynomial given by:337

Q̂(λ) = λ3 + λ2

(
1

τ1
+ 1

)
+ λ

(
1

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)
+
I

2
φ′(φ−1(p))

τ1τ2
.

(34)

The steady states W̄ I and Ī are given by identical formulas as in the single and dual node cases. Given the338

structure of the polynomial Q(λ), this yields a Hopf-bifurcation immediately through an identical derivation339

in the single node case. The curve will be of the form:340

WE
Hopf,i(θ) =

1

riφ′(φ−1(p))
(1− τ1µ+(θ)) (35)

where µ+(θ) is redefined and ri is an eigenvalue of L (see Appendix C). As WE is increased, the first intersection341

of WE = WE
Hopf,i determines the Hopf bifurcation curve. For θ � 1 and θ � 1, this is readily seen to be the342

curve corresponding to the largest positive eigenvalue of LEE .343

Additionally, if the row-sum of the matrix WEE is non-constant, but narrowly distributed, one can still344

approximate the Hopf-bifurcation curve by using the mean-row sum (see Appendix C). We validate this ap-345

proximation in the subsequent section as applied to the weight matrix considered in [Hellyer et al., 2016].346

5.2 Numerical Exploration of the Experimentally Coupled System347

The connectivity matrix, WEE = WEE ·LEE , is derived from functional neuroimaging data and is described348

in greater detail in [Hellyer et al., 2016, Honey et al., 2009, Hagmann et al., 2008]. The matrix LEE is349

shown in Figure 5A. The matrix couples 66 homeostatically regulated Wilson-Cowan nodes. Furthermore,350

LEEii = 0 for all i and thus the nodes contain no self-coupling. As our single and dual node analyses indicate351

a branch of Hopf bifurcations, we numerically computed the eigenvalues over the two parameter (W, θ) space352

and searched for the first eigenvalue λi crossing Re(λi) = 0 as a function of θ for each value of W . This yielded353

a similar potential Hopf-bifurcation curve as the single and dual node cases. The curve was again unimodal354

with identical asymptotes as θ → 0 and θ →∞. We conducted large scale numerical simulations to determine355

if the curve indeed indicated a transition from steady state dynamics to oscillations. For W < WHopf (θ),356

we observe decay to a steady state equilibrium and oscillations or chaos for W > WHopf (θ) (Figure 5B,5C).357

Finally, we applied the analytical approximation derived in section 5.1 for comparison. The approximation358

has the greatest accuracy near the asymptotes θ → 0 and θ →∞ and indicates that the common asymptotic359

behavior for WHopf is:360

WHopf (θ) ∼ 1

φ′(φ−1(p))rmax
, θ →∞, θ → 0
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where rmax is the largest positive eigenvalue of LEE . As in our analysis of the single node, this asymptotic361

behavior corresponds to the region of guaranteed stability of the steady state for WE < WE
Hopf (0)362

As in the single and dual node cases, the large network also displays mixed mode oscillations and mixed363

mode chaos (Figure 5C,D). Interestingly, due to the heterogeneous coupling in the weight matrix, the nodes do364

not all transition to chaotic dynamics in an identical fashion (Figure 5E). This is despite the connectivity in365

the network only being moderately sparse (probability of connection is 0.2635). For example, some nodes can366

display a smaller attractor without mixed mode elements, other nodes contain larger amplitude components367

while others are essentially still stabilized around their equilibrium point with minimal interference from the368

rest of the network. Also note that the attractors in Figure 5F occupy a similar region of the reduced phase369

space (E, I,W I) as the single and dual node cases when we plot every node (Ek, Ik,W
I
k ) in the same reduced370

phase space.371

Given the heterogeneity in the chaotic dynamics of the individual nodes in the coupled networks, we372

investigated whether node deletion (Figure 5G) or connection deletion (Figure 5H) might enhance the stability373

of the homeostatic mechanism. Indeed, the homeostatic mechanism is inherently local for a node and trying374

to stabilize the dynamics of that node despite receiving external, potentially destabilizing inputs. To that end,375

we deleted a node and recomputed our Hopf bifurcation curves for each node deletion yielding 66 different376

systems with 65 nodes. In every system, the deletion either had minimal effect on the Hopf-bifurcation curve377

or it shifted the curve upward. Thus, deleting either connections or nodes can only increase the stability of the378

homeostatically induced equilibrium. The maximum change was a 14.69% shift upwards (as measured from the379

peak) given by deleting the 25th node. Deleting individuals connections in the weight matrix, WEE yielded at380

most a 4.01% shift upwards in the Hopf bifurcation curve. Interestingly, the largest shift in the Hopf-bifurcation381

curve corresponds to WEE
21,4 and not node 25. We computed a series of measures of centrality for the nodes that382

were deleted. These included the row and column sums, authority, hub score, in degree, out degree, page rank,383

out closeness, in closesness, and betweeness and the reciprocal of the maximum eigenvalue. The reciprocal of384

the maximum eigenvalue of the weight matrix after node deletion had the largest correlation coefficient with385

the stability increase (0.999), as expected from our analysis. All other computed metrics displayed weaker386

correlation coefficients typically falling in the range 0.14− 0.54.387

6 Discussion388

Through a combination of numerical and analytical work, we studied a homeostatically regulated Wilson-389

Cowan system in three separate cases: isolated single-nodes, reciprocally coupled dual-nodes, and large coupled390

networks where the connection strength was derived from functional neuroimaging data [Hellyer et al., 2016,391

Honey et al., 2009, Hagmann et al., 2008]. We found that the isolated single node displays a plethora of complex392

dynamics such as mixed mode oscillations, chaos via a period-doubling cascade, and mixed-mode chaos. The393

source of these rich dynamics is a combination of the Hopf-bifurcation induced by the homeostatic mechanism,394

and the cubic-like critical manifold of the excitatory dynamics. Two nodes with no self coupling and symmetric395

reciprocal excitatory coupling acted essentially as a single, self-coupled node and synchronized to the steady396

state attractors in the single node-case. We demonstrated analytically that the stability of steady states in397

the single node case is directly inherited in the dual node case. Furthermore, any unstable limit cycle in the398

single node is unstable in the dual node case. Finally, we numerically explored the large coupled network and399

showed a similar transition to oscillatory behavior for strong enough excitatory coupling. The individual nodes400

in the large network displayed similar dynamics to isolated recurrently coupled nodes in different parameter401

regimes. Interestingly, node deletion and connection deletion yielded non-trivial increases in the stability of402

the homeostatic set point for all values of excitatory to inhibitory coupling.403

Past the Hopf-bifurcation, the network exhibits a rich dynamical repertoire consisting of oscillatory activity,404

chaos, and mixed-mode elements of both. Whether these dynamical states are potentially functional or patho-405

logical remains to be seen. Indeed, even for the experimentally determined chaotic attractors in [Babloyantz406

and Destexhe, 1986], some correspond to functional states such as stages of sleep while others correspond to407

pathological states such as epileptic seizures. In the former case, we have demonstrated that synaptic home-408

ostasis can support the emergence of complex dynamics. If however, these states are pathological, then they409

represent a failure of homeostasis in regulating network dynamics. Our node-deletion and connection deletion410

experiments demonstrate that the deletion of even single nodes or connections can increase the stability of the411

entire network through a shift in the Hopf-bifurcation curve upwards.412

Homeostasis is widely regarded as a mechanism for the maintenance of network dynamics, and more413

specifically the maintenance of a steady-state average firing rate [Macleod and Zinsmaier, 2006, Frank et al.,414
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2006, Bacci et al., 2001] and is regarded as a stabilizing force in network dynamics [Turrigiano and Nelson,415

2004]. This steady-state is regulated at slow time scales on the order of minutes [Frank et al., 2006] or hours416

[Turrigiano et al., 1998]. For example, the homeostatic model in [Vogels et al., 2011] was shown to maintain417

the asynchronous irregular regime where neurons fire irregularly, but at a constant average rate. It is thus418

surprising that low dimensional yet rich structures such as mixed-mode chaotic attractors emerge under the419

presence of homeostasis.420

Our results complement recent work on alternative forms of homeostatic regulation. For example, in421

[Udeigwe et al., 2017], the authors consider the Bienenstock-Cooper-Monroe (BCM,[Bienenstock et al., 1982])422

Rule which also can act as a homeostatic regulator. Here, the authors also find chaos and complex dynamics.423

In [Zenke et al., 2013], the authors consider a metaplastic tripled-based STDP rule (from [Pfister and Gerstner,424

2006]) and derive a mean-field system demonstrating BCM like dynamics. The authors find a critical transition425

time constant for the stability of the BCM rule. This time constant controls the dynamics of the rate detector426

of the network. The rule results in runaway potentiation if the time constant is too fast. However, In [Harnack427

et al., 2015], the authors consider a different homeostatic mechanism not based on the BCM rule but based on428

intrinsic homeostasis. There, they demonstrate that the time constants for homeostatic control should increase429

for increased network stability. In all cases, homeostasis can be the source of rich dynamical states and our430

results corroborate and extend this to inhibitory synaptic homeostasis.431

While mixed-mode chaos is an understudied phenomenon, it has been previously documented in the litera-432

ture [Desroches et al., 2012, Koper, 1995, Krupa et al., 2008, Hauser and Olsen, 1996]. For example, the authors433

analyze an enzymatic reaction scheme in [Hauser and Olsen, 1996] and demonstrate similar pinched/singular434

tent-maps for the mixed-mode chaotic attractors they observe. Interestingly, the authors suggest a homoclinic435

limit cycle as their return mechanism through a version of the classical Shilnikov bifurcation resulting in ho-436

moclinic chaos [Kuznetsov, 2013]. Indeed, a Shilnikov bifurcation also appears in other Wilson-Cowan type437

models with more complicated dynamics in the individual nodes [Van Veen and Liley, 2006].438

Our results demonstrate that the rich dynamical states are an intrinsic property of synaptic homeostasis,439

which is capable of more than stabilizing the average firing rates across a network. With inhibitory synaptic440

homeostasis, stability can only be guaranteed up to a point in the parameter space. This point is analytically441

determined and is related to the properties of the tuning curves, the homeostatic set point, and the connectivity442

between excitatory populations. The resulting dynamics past this point display a rich dynamical repertoire443

including oscillations and chaos, both of which can occur on two different time scales. This is an intrinsic444

consequence of the inhibitory synaptic homeostasis rule as the two-dimensional Wilson-Cowan node that we445

consider is incapable of oscillating without inhibitory synaptic homeostasis. These dynamical repertoires might446

have functional or pathological consequences for populations of neurons.447
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Parameter Numerical Value

a 5

p 0.2

τE 1

τI 1

τW 5

WE (see Figure Captions, typically [0,3]

θ (see Figure Captions, typically [0,10]

Table 1: The parameter values for the system of equations (1)-(3) (single node), (14)-(19) (dual node), and
(4)-(6) (full network). Note that for the full network equations, W IE = θIN , where IN is the N dimensional
identity matrix, and N consists of the number of nodes.

Figures448
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Figure Captions449

Figure 1450

(Top) The Hopf bifurcation curve for the single-node system can be derived explicitly. Analysis of the θ = 0451

case coupled with numerics demonstrates that the bifurcation is a supercritical bifurcation. As we vary the452

(θ,WE) parameters, different behaviors emerge corresponding to (A) stability of the target activity, (B) chaotic453

loss of stability (C) mixed mode oscillations, and (D) mixed mode chaos. The parameters were p = 0.2, τ1 = 1,454

τ2 = 5 with (θ,WE): (1,1.9), (1.6,2.1), (1.5,2.14), (1,2.115) for (A)-(D), respectively. All simulations were455

conducted in MATLAB using the ode45 integration suite to implement a Runge-Kutta 4th order integration456

scheme.457

Figure 2458

(A) The maxima of limit cycles, (E∗) are plotted as a function of the recurrent self coupling, WE for the single459

node system. As WE increases past WE
Hopf (θ), a period doubling cascade to chaos occurs. (B) The limit cycles460

and chaotic attractor plotted for increasing values of WE . (C) The maximum Lyapunov exponent is computed461

over the two parameter (θ,WE) region showing patches of chaos that onset after the Hopf bifurcation curve.462

(D) The chaotic attractor for sub-threshold and mixed mode chaotic solutions. (E) As WE is increased past463

WE
Hopf (θ), the period doubling cascade produces a tent map similar to the classical Lorenz tent map. For464

larger values of WE the tent map develops a pseudo-singularity at the maximum value. Note that this is not465

strictly a singularity in the tent map as the dynamics of the E are restricted to E ∈ (0, 1). For all simulations466

in (A),(B),(D) and (E), θ = 1 was used. (F) The mixed-mode oscillations and mixed mode chaos persist for467

larger separations of relative time scales between the synaptic plasticity (W I) and the node activities (E, I).468

On the left, we recompute the limit cycle maxima for τW = 50τE , where τE = 1 while on the right, we consider469

τW = 200τE . However, mixed-mode solutions are no longer observed for sufficiently large τW (not shown).470

The parameter θ = 1.5 was used for (F).471

Figure 3472

(A) Canard limit cycles for the dual node system given by equations (24)-(25). The seven limit cycles show a473

rapid increase in amplitude shortly after a supercritical Hopf bifurcation. The WE parameter for 6 limit cycles474

agrees to four decimal places (WE = 7.5959). The final limit cycle is a large relaxation limit cycle (WE = 7.6).475

The limit cycles were computed with direct simulation of the ordinary differential equations (24)-(25) using a476

(4,5) order Runge-Kutta scheme. The θ parameter was fixed at θ = 1. (B) Shown above is the period doubled477

limit cycle (teal) for the system (1)-(3) in addition to the E-nullcline (red). Under the assumption that both478

the inhibition and the homeostatic mechanism are operating as slow variables, we can see the mixed-mode479

oscillations potentially arising from the underlying geometry of the folded-node case. The (θ,WE) parameters480

were (2, 2.02) (C) A relaxation cycle emerges with increasing values of WE . For all simulations, θ = 1 was481

fixed. The (θ,WE) parameters were (2.5, 2). (D) The folded-singularity conditions were analyzed in the limit482

that τI = τW � τE yielding a continuous folded-node below the Hopf bifurcation curve and a continuous folded483

saddle region above the Hopf bifurcation curve (See Appendix B for further details)). Mixed mode oscillations484

were also detected in this limit in the folded-node region. The simulations were automatically classified as485

mixed-mode oscillations by estimating the variance in their maximum return map of the E variable. Points486

with high variance correspond to multiple discrete peaks in the return map with larger separation distances487

in the peaks (and thus mixed-mode solutions) corresponding to larger variance. (E) A simulation of one of488

the mixed-mode solutions is shown for 5000 time steps, fixed at the values θ = 1,WE = 1.5 for τE = 1,489

τW = τI = 200.490

Figure 4491

(A) Shown above is the time series for the symmetrically coupled dual node system without self-coupling. The492

nodes synchronize with each other to a solution state for the single node system at steady-state, independent493

of where in the parameter region we are or the characteristics of the steady state. The first node is showed in494

solid lines with the excitation (black), inhibition (red), and homeostatic weight (magenta). The second node is495

plotted as a dashed line. The parameters in the (W, θ) space are (1.6, 2.1). (B) The steady state attractors for496

the single node (left) and the dual node (right) are plotted in the (E, I) projection space. The parameters in the497

(W, θ) are space (1.6,2.1) (top) which corresponds to a chaotic attractor, (1.5, 2.14) (middle) which corresponds498
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to a mixed-mode oscillation, and (1, 2.115) (bottom) which corresponds to mixed-mode chaos. Note that in all499

cases, the steady state attractors are identical for either the single recurrently coupled node or the dual-node500

symmetrically coupled nodes. Only one node is plotted in the dual-node case, however due to synchrony, the501

trajectory for the second node is identical.502

Figure 5503

(A) The coupling matrix used to connect the excitatory components of the nodes. Note that the matrix is504

highly structured, and contains no elements on its diagonal (no self-coupling). The system consists of 66505

nodes. (B) The Hopf bifurcation (blue) curve is determined manually by evaluating the eigenvalues over the506

two parameter (θ,W ) space numerically and plotting the level set for the first eigenvalue crossing Re(λi) = 0.507

This curve was verified by running a mesh of simulations over the (θ,W ) parameter space that consisted of508

2× 104 time units each. The final half of the simulation was used to compute the log of the variance of E1(t)509

to determine if the equilibrium was stable. Blacker values correspond to either limit cycles or chaos and a510

loss of stability as the dynamics no longer settle onto a steady state E1(t) = p. Additionally, the analytical511

approximation (in orange) which assumes that the row-sum of the matrix WEE is approximately constant is512

also plotted. The accuracy is highest at the asymptotes (θ � 1, θ � 1). The four parameter points (i)-(iv) are513

shown in (C) in addition to their relationship with the Hopf-Bifurcation curve. The parameter values in the514

(W, θ) plane are (5,3),(5.5,3),(7.1,1.2), and (7.05,1.2) for (i)-(iv), respectively. Note that the Hopf-bifurcation515

curve has a similar shape and qualitative behavior to the curve in the single-node/dual-node case. (C) For the516

parameter values shown, the large network displays a decay to a static equilibrium for W < WHopf (θ), stable517

oscillations for W > WHopf (θ), mixed mode oscillations, and mixed-mode chaos. (D) All nodes are plotted in518

a 3D phase portrait for the parameter region (iv) demonstrating the chaotic attractor. (E) Three nodes are519

plotted from the full 66-dimensional system in the same phase space. Some nodes in the full system display520

mixed-mode chaos while simultaneously other nodes display smaller chaotic deviations from the steady state521

equilibrium. (F) The same figure (E) only projected down to the (E, I) phase space for comparison purposes522

with Figure 2D. (G) Node deletion (red) and the resulting changes to the numerically Hopf bifurcation curve.523

The 66 red lines denote deletion of a node, resulting in 66 separate networks containing 65 nodes. (H) As in524

(G), only single connections are deleted rather than nodes. In total, 1148 non-zero connections exist in the525

coupling matrix for potential deletion.526
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Appendices626

Appendix A: First Lyapunov Coefficient for the θ = 0 Case627

We can compute the Lyapunov coefficient for the Hopf bifurcation point when θ = 0 quite easily without628

having to resort to the center-manifold theorem. By setting θ = 0, we have the following system629

τ1E
′ = −E + φ

(
WEE −W II

)
I ′ = −I + φ(0)

τ2W
I ′ = I(E − p)

and in essence I(t) has become decoupled from the other equations and can be set to its equilibrium value of630

φ(0). This reduction yields631

τ1E
′ = −E + φ

(
WEE −W I

)
τ2W

I ′ = (E − p)

after rescaling τ2 and W I to absorb I = φ(0). To proceed, we shift the equilibrium to the origin632

Ê = E − p
Ŵ = W I −WEp+ φ−1(p)

which yields the following633

τ1Ê
′ = −Ê − p+ φ(WE(p+ Ê)− (Ŵ +WEp− φ−1(p))

= −Ê(1−WEφ′(φ−1(p)))− φ′(φ−1(p))Ŵ +
φ′′(φ−1(p))

2!
[WEÊ − Ŵ ]2

+
φ′′′(φ−1(p))

3!
[WEÊ − Ŵ ]3 +O((WEÊ − Ŵ )4)

τ2Ŵ
′ = Ê

If we now apply the bifurcation condition:

WE = φ′(φ−1(p))−1 =
1

ap(1− p)

we obtain the following system634

τ1Ê
′ = −ap(1− p))Ŵ +

φ′′(φ−1(p))

2!
[WEÊ − Ŵ ]2 +

φ′′′(φ−1(p))

3!
[WEÊ − Ŵ ]3

+ O((WEÊ − Ŵ )4)

Ŵ ′ =
Ê

τ2

This system can be transformed with Ê = KẼ into a system of the form635

Ẽ′ = −ωŴ +
φ′′(φ−1(p))

2!Kτ1
[WEKẼ − Ŵ ]2 +

φ′′′(φ−1(p))

3!Kτ1
[WEKẼ − Ŵ ]3 +O((WEKẼ − Ŵ )4)

= −ωŴ + P (Ẽ, Ŵ )

Ŵ ′ = ωẼ

where636

K =

√
τ2ap(1− p)

τ1
, ω =

√
ap(1− p)
τ2τ1

which is the standard form to compute the Lyapunov Coefficient for a two-dimensional function. The formula
for the Lypaunov coefficient can be found in [Guckenheimer and Holmes, 2013] The resulting computation
yields

l1(0) =
WE
Hopf ((KWE

Hopf )2 + 1)

16τ1

(
φ′′′(φ−1(p))− φ′′(φ−1(p))2

Kωτ1

)
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which for the sigmoid we consider simplifies to:

l1(0) = −
WE
Hopf ((KWE

Hopf )2 + 1)

16τ1

(
a3p2(1− p2)

)
< 0

and thus the bifurcation is supercritical, always.637

Appendix B: Canards and Mixed Mode Oscillatons: Potential Sources of Origin638

Existence of Canards in the 2D (E,W I) System639

Here, we will conisder the emergence of Canards in the two-dimensional system:640

E′ = −E + φ(WEE −W I) (36)

W I ′ = ε(E − p) (37)

which arises in the small θ limit as I decays to its steady state φ(0) = 1
2 independent of all other dynamics,641

and upon suitably redefining the both time and space variables to absorb the φ(0) term into W I and τW . Here,642

we will prove the existence of Canard solutions through the determination of a Canard point (see [Krupa and643

Szmolyan, 2001] for further details). For the fast-slow system given by644

ẋ = f(x, y, λ, ε)

ẏ = εg(x, y, λ, ε)

a series of conditions ([Krupa and Szmolyan, 2001]) have to be satisfied to guarantee the existence of Canards645

which we include here for convenience:646

1. The critical manifold, given by f(x, y, λ, 0) is s-shaped, with one critical point at the origin corresponding647

to a minimum. It can be written in the form y = ψ(x)648

2. Consider the following branches:649

SL = {(x, ψ(x)) : x < 0}
SM = {(x, ψ(x)) : 0 < x < xM}
SR = {(x, ψ(x)) : x > xM}

where XM corresponds to the maximum critical point. Then, SL and SR are attracting (∂f∂x < 0) while650

SM is repelling (∂f∂x > 0) for the layer problem.651

3. One of the folds becomes a Canard point, g(0, 0, 0, 0) = 0 while the other fold is non-degenerate. The652

canard point is genertic if the following also hold:653

∂2f

∂x2
(0, 0, 0, 0) 6= 0,

∂f

∂y
(0, 0, 0, 0) 6= 0,

∂g

∂x
(0, 0, 0, 0) 6= 0,

∂g

∂λ
(0, 0, 0, 0) 6= 0

4. When λ = 0, then ẋ < 0 on SR and and ẋ > 0 on SL ∪ {0} ∪ SM . This specifically concerns the flow on654

the critical manifold, given by:655

ẋ =
g(x, ψ(x), 0)

ψ′(x)

These are necessary conditions required for the Canard point to exist, and be generic. Here, we will limit our656

analysis to the sigmoid given by (10) for simplicity. The critical manifold is given by657

W I = ψ(E) = WEE − φ−1(E)

ψ′(E) = WE − dφ−1(E)

dE

= WE − 1

aE(1− E)
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which yields the following two potential folds:658

E(1− E)− (WEa)−1 = 0

E =
1

2
±
√

1

4
− 1

aWE

The criticality of these points is given by ψ′′(E):659

ψ′′(E) = −(−1)
(
φ′(φ−1(E))

)−2
φ′′(φ−1(E))

dφ−1(E)

dE

=
a2φ(φ−1(E))(1− φ(φ−1(E)))(1− 2φ(φ−1(E)))

a3φ(φ−1(E))3(1− φ(φ−1(E)))3

=
(1− 2E)

(aE(1− E))2

ψ′′(E±) = (WE)2(1− 2E±) = (WE)2

(
∓
√

1

4
− 1

aWE

)

which yields ψ′′(E−) > 0 and ψ′′(E+) < 0. This, E− is a minimum while E+ is a maximum, and condition660

1 is satisfied. Condition 2 concerns equilibria of the layer problem. Specifically, if we regard W I as a fixed661

parameter, then:662

E′ = −E + φ(WEE −W I) = f(E,W I)

∂f

∂E
= −1 +WEφ′(WEE −W I) = −1 +WEaφ(WEE −W I)(1− φ(WEE −W I))

= −1 +WEaE(1− E)

∂f

∂E
= −WEa(E − E−)(E − E+)

which given that E− < E+, implies that for E < E− and for E > E+, ∂f
∂E < 0 while for E− < E < E+, ∂f

∂E > 0663

and condition 2 is satisfied. The primary Canard condition is that one of the fold points becomes a Canard664

point, ie. it coincides with an equilibrium of the slow system: g(E±, ψ(E±), 0, 0) = 0. The Canard condition665

yields the following potential Canard points:666

E± = p→ p =
1

2
±
√

1

4
− 1

aWE

Further, the conditions ∂g
∂E 6= 0 and ∂g

∂p 6= 0 are satisfied always. The next condition involves the second partial667

of f , evaluated at E±, and W I
± = WEE± − φ−1(E±):668

∂2f

∂E2
= (aWE)2φ(WEE −W I)(1− φ(WEE −W I))(1− 2φ(WEE −W I))

= (aWE)2φ(φ−1(E±))(1− φ(φ−1(E±)))(1− 2φ(φ−1(E±)))

= (aWE)2E±(1− E±)(1− 2E±)

= aWE(1− 2E±) = aWE

(
±2

√
1

4
− 1

aWE

)

which implies that we require aWE 6= 1
4 .669

The next condition is that ∂f
∂W I 6= 0670

∂f

∂W I
= −φ′(WEE −W I)

= −aφ(WEE −W I)(1− φ(WEE −W I)

= −aφ(φ−1(E±))(1− φ−1(E±)

= −aE±(1− E±)

= −WE−1
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which implies we only need WE to be bounded, or non-zero if the non-genericity condition is based on taking671

a coordinate transform. Now, for the final condition, we have to consider the reduced flow with the λ = 0672

condition being p = E±:673

Ė± =
E − E±

WE − 1
aE(1−E)

=
E(1− E)(E − E±)

WE(E(E − 1)− (aWE)−1)

= − E(1− E)(E − E±)

WE(E − E+)(E − E−))

We’ll consider the p = E− case:674

Ė− = − E(1− E)

WE(E − E+)

First, note that 0 < E < E− < E+. This implies that for 0 < E < E−, Ė > 0. Further, for E− < E < E+,675

Ė− > 0, as neither the numerator nor denominanator change sine. Further, Ė± > 0 for E = E−. To proceed676

further, we will need to transform the system into the following form:677

x′ = −yh1(x, y, λ, ε) + x2h2(x, y, λ, ε) + εh3(x, y, λ, ε)

y′ = ε(xh3(x, y, λ, ε)− λh5(x, y, λ, ε) + yh6(x, y, λ, ε))

First, consider the transform:678

Ê = E − E−
Ŵ I = W I −W I

− = W I −WEE− + φ−1(E−)

p̂ = p− E−

to shift all variables to the origin. This yields the following:679

Ê′ = −Ê − E− + φ
(
WEÊ − Ŵ I + φ−1(E−)

)
Ŵ I ′ = ε(Ê − p̂)

Further, to transform the system into canonical form, we use:680

Ẑ = WEÊ − Ŵ I

Ŵ I = Ŵ I

which yields the following:681

Ẑ ′ = −Ŵ I + Ẑ2

(
WE φ

′′(φ−1(E−))

2!
+WEẐ

φ′′′(φ−1(E))

3!
+O(Ẑ2)

)
+ ε

(
Ẑ + Ŵ I

WE
− p̂

)

Ŵ I ′ = ε

(
Ẑ + Ŵ I

WE
− p̂

)

= ε

(
Ẑ

WE
− p̂+

Ŵ I

WE

)

In order to apply the theorems from [Krupa and Szmolyan, 2001], we require another round of transforms to682

put the system into proper canonical form. Consider the transform x = ẐM and y = Ŵ IN683

x′ = −My

N
+
x2

M

(
WE φ

′′(φ−1(E−))

2!
+WE x

M

φ′′′(φ−1(E))

3!
+O(x2)

)
+ ε̃

(
x+

My

N
−WEMp̂

)
y′ = ε̃

(
Nx

M
− (WENp̂) + y

)
(where ε̃ = ε(WE)−1)
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which yields the following functions:684

h1(x, y, λ, ε̃) =
M

N

h2(x, y, λ, ε̃) = WE φ
′′(φ−1(E−))

M2!
+WE x

M2

φ′′′(φ−1(E))

3!
+O(x2)

h3(x, y, λ, ε̃) =

(
x+

My

N
−WEMp̂

)
h4(x, y, λ, ε̃) =

N

M

h5(x, y, λ, ε̃) = WEN

h6(x, y, λ, ε̃) = 1

If we take N = M =
(
WE φ′′(φ−1(E−))

2!

)
, and absorb WEM into p̂ with λ = WEMp̂, we are in the correct685

normal form and arrive at the following:686

a1 =
∂h3(0, 0, 0, 0)

∂x
= 1

a2 =
∂h1(0, 0, 0, 0)

∂x
= 0

a3 =
∂h2(0, 0, 0, 0)

∂x
=

2!2!φ′′′(φ−1(E))

WE3!φ′′(φ−1(E−))2

a4 =
∂h4(0, 0, 0, 0)

∂x
= 0

a5 = h6(0, 0, 0, 0) = 1

Then consider the quantity:687

A = −a2 + 3a3 − 2a4 − 2a5

= −4

(
E−(1− E−)

(1− 2E−)2

)
= − 4

aWE(1− 2E−)2
< 0

Thus, A < 0 which implies that the Hopf bifurcation that coincides with the Canard point is a super-critical688

generic Hopf bifurcation (as also demonstrated by our Lypaunov coefficient analysis). Further, the Hopf-689

bifurcation vanishes to leading order (in fact all orders, see above) as for ε > 0, the Hopf point occurs when690

λH(ε̃) = −
(
a1 + a5

2

)
ε̃+O(ε3/2) = −ε+O(ε3/2)

which we will now express in the original parameter system:691

λH(ε) = − ε

WE
+O(ε3/2) = WENp̂

=
(WE)2φ′′(φ−1(E−))

2!
(p− E−)

=
(WE)2φ′′(φ−1(E−))

2!
(p− E−)

− ε

WE
+O(ε3/2) =

(WE)2φ′′(φ−1(E−))

2!

(
p− 1

2
+

√
1

4
− 1

aWE

)

Note that if we expand out WE(ε), then the O(1) problem yields the following692

WE =
1

ap(1− p)

which is identical to the equation we derived before.693
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Folded-Node Analysis for τI � τE, τW � τE, τI = τW694

Here, we will consider the 3D system:695

εE′ = −E + φ(WEE −W II) = f(E, I,W I)

I ′ = −I + φ(θE) = g1(E, I,W I)

W I = I(E − p) = g2(E, I,W I)

where we have absorbed the excitatory time-constant and assumed that I and W I are two slow variables.696

First, from the analysis in [Desroches et al., 2012, Wechselberger, 2005] we have the following set of genericity697

conditions:698

f(p∗, 0) = 0

∂f(p∗, 0)

∂E
= 0

∂2f(p∗, 0)

∂E2
6= 0

D(I,W I)f(p∗, 0) has full rank one

The first condition yields:699

E = φ(WEE −W II)

while the second condition yields:700

−1 +WEφ′(WEE −W II) = −1 +WEaφ(WEE −W II)(1− φ(WEE −W II))

= −1 +WEaE(1− E) = 0

which again yields E± as in the 2D, Canard case. The third condition yields:701

−(WE)2φ′′(WEE −W I) = −(WE)2aφ(WEE −W I)(1− φ(WEE −W I))(1− 2φ(WEE −W II))

= −(WE)2aE−(1− E−)(1− 2E−)

= −WE(1− 2E−) 6= 0

where the last step is verified from our analysis in the 2D case. Finally, the last condition yields702

Dy,zf = [−W Iφ′(WEE −W I),−Iφ′(WEE −W I)]

=

[
−W

I

WE
,− I

WE

]
which is always full rank. Now we need to consider the dynamics restricted to the critical manifold:703

Ė =
∂f

∂I
g1 +

∂f

∂W I
g2 = −(−I + φ(θE))W Iφ′(WEE −W II)− I2(E − p)φ′(WEE −W II)

İ = − ∂f
∂E

g1 = (−1 +WEφ′(WEE −W II))(−I + φ(θE))

Ẇ I = − ∂f
∂E

g2 = (−1 +WEφ′(WEE −W II))(I(E − p))

and the fold-point becomes a folded singularity if:704

∂f

∂I
g1 +

∂f

∂W I
g2 = − (−I + φ(θE))W Iφ′(WEE −W I)−

(
I2(E − p)

)
φ′(WEE −W I) = 0

→ − (−I + φ(θE−))W I −
(
I2(E − p)

)
= 0

which yields a fold point when:705

W I =
−I2(E− − p)
−I + φ(θE−)
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Thus, the fold point is determined by the following equations:706

E = E−, W I =
−I2(E− − p)
−I + φ(θE−)

= ω(I, E−)

with I− being determined by:707

−E− + φ(WEE− − ω(I, E−)I) = 0 (38)

As the following computations are quite tedious, we employed a computer algebra system (Maple) to resolve708

them. We will consider the fold point as (E−, I−,W
I
−). Evaluating the Jacobian yields the following:709

J =

 −W I
−
φ′(θE−)θ
WE − I2−

WE

W I
−

WE − 2I−(E−−p)
WE −−I−+φ(θE−)

WE

WEa(1− 2E−)(−I + φ(θE−)) aI2
−(E− − p)(1− 2E−) −a (1− 2E−) I−(−I− + φ(θE−))

WEa(1− 2E−)I−(E− − p)
a(1−2E−)I3−(E−−p)2

−I+φ(θE−) −I2
−(E− − p)a(1− 2E−)


which yields the following characteristic polynomial after simplification:710

c(λ) = λ

(
λ2 + λ

(
θφ′(θE−)W I

− + I2
−
)

WE
+ (3φ(θE−)− 2I−)(1− 2E−)(E− − p))

)
(39)

which yields the following possibilities depending on the two non-zero roots of this equation, σ1, σ2:711

folded saddle → σ1σ2 < 0, σ1,2 ∈ R
folded node → σ1σ2 > 0, σ1,2 ∈ R
folded focus → σ1σ2 < 0, σ1,2 ∈ Im(σ1,2) 6= 0

These conditions were evaluated numerically using the analytically determined roots of equation (39) over712

the (θ,WE) parameter plane (see Figure 3). The fold point condition, given by (38) was resolved numerically713

using the MATLAB numerical solver fsolve for the point I−.714

Appendix C: Local Stability Analysis of Equilibria in N -node Coupled System715

The Mean-Field Solution716

Here, we will consider a simple-case where theN node system without self-coupling is also analytically resolvable717

for the Hopf-bifurcation. In particular, consider the following conditions:718

WE
ii = 0, WE

ij =
WE

NE − 1
= W̄E

These solutions correspond to the mean-field of the NE nodes. Note that the equilibria of the system (4)-(5)719

are unchanged, independent of the conditions (40). However, under the mean-field conditions (40), the stability720

criterion are resolvable. In particular, suppose we reorder the 3NE equations such that the first NE equations721

correspond to Ei, the next NE correspond to Ii, and the final NE correspond to W I
i . Then the Jacobian can722

be written block matrix form:723

J =

−
(

1
τ1

+ W̄Eφ′(φ−1(p))
τ1

)
INE

+ W̄Eφ′(φ−1(p))
τ1

1NE
−W

I
φ′(φ−1(p))
τ1

INE
− Iφ′(φ−1(p))

τ1
INE

φ′(θp)θINE
−INE

0NE

Ī
τ2
INE

0NE
0NE


where INE

, 1NE
and 0NE

denote the NE identity matrix, and NE ×NE matrices where all elements are 1 or724

0, respectively. The characteristic polynomial is given by the following:725
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C(λ) = det

−
(

1
τ1

+ W̄Eφ′(φ−1(p))
τ1

)
INE

+ W̄Eφ′(φ−1(p))
τ1

1NE
− INE

λ −W
I
φ′(φ−1(p))
τ1

INE
− Iφ′(φ−1(p))

τ1
INE

φ′(θp)θINE
−INE

(1 + λ) 0NE

Ī
τ2
INE

0NE
−INE

λ


= det

(
−
([

1

τ1
+
W̄Eφ′(φ−1(p))

τ1
+ λ

]
λ(λ+ 1) + λ

[
W̄ Iφ′(φ−1(p))φ(θp)θ

τ1

]
+ (λ+ 1)Ī2φ

′(φ−1(p))

τ1τ2

)
INE

+ λ(λ+ 1)
W̄Eφ′(φ−1(p))

τ1
1NE

)
(40)

= det

(
−Q̂(λ)INE

+ λ(λ+ 1)
W̄Eφ′(φ−1(p))

τ1
1NE

)
where we have arrived at (40) by applying the matrix determinant identity:726

det

(
A B
C D

)
= det

(
A−BD−1C

)
detD

To proceed, we will note the following:727

W̄E1NE
= W̄EuuT , u =


1
1
...
1


which allows us to use the rank-1 update to the determinant:728

det
(
A+ uuT

)
=
(
1 + uTA−1u

)
det(A)

yields the following:729

C(λ) = (−1)NE Q̂(λ)NE

(
1− W̄Eφ′(φ−1(p))

τ1
λ(λ+ 1)Q̂(λ)−1uTu

)
= (−1)NE Q̂(λ)NE−1

(
Q̂(λ)−NE

(
WE

NE − 1

)
φ′(φ−1(p))λ(λ+ 1)

τ1

)
= (−1)NE Q̂(λ)NE−1CSN (λ)

where CSN (λ) is the characteristic polynomial for the single, recurrently coupled node. Our analysis of the730

dual-node case applies here and the stability of the NE-node system under mean-field assumptions applies.731

The NE node system under mean-field connectivity has identical solutions to the single node system.732

The Normalized Excitatory Weight Solution733

Finally, we will consider an arbitrary weight matrix, WE with the only constraint being that734

NE∑
j=1

LEEij = 1, WEE = WELEE .

Note that the mean-field example previously considered is a special case of assumption (41). The assumption is735

required as it stabilizes the equilibria for W I
i to W I

i = W̄ I for all i = 1, 2, . . . NE where W̄ I is the single-node736

equilibrium solution. Using a similar derivation procedure as before, the characteristic polynomial simplifies737

to:738

C(λ) = det

(
−Q̂(λ)INE

+ λ(λ+ 1)
φ′(φ−1(p))

τ1
WEE

)
(41)

Q̂(λ) = λ3 + λ2

(
1

τ1
+ 1

)
+ λ

(
1

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)
+
I

2
φ′(φ−1(p))

τ1τ2
.
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This implies that739

C(λ) = det

(
λ(λ+ 1)

φ′(φ−1(p))

τ1
WEE − Q̂(λ)INE

)
= det

(
q0(λ)LEE − Q̂(λ)INE

)
, q0(λ) = λ(λ+ 1)

φ′(φ−1(p))

τ1
WE

= q0(λ)NE det

(
LEE − Q̂(λ)

q0(λ)
INE

)

= q0(λ)NE det
(
LEE − µINE

)
, µ =

Q̂(λ)

q0(λ)

= q0(λ)NE

NE∏
i=1

(µ− ri)

where ri are the eigenvalues ofLEE . Undoing the substitutions resolves the factorized characteristic polynomial:740

C(λ) =

NE∏
i=1

(
Q̂(λ)− ri

λ(λ+ 1)φ′(φ−1(p))

τ1
WE

)
This factorization of C(λ) allows one to resolve the Hopf bifurcation curve almost as easily as in the single741

node case. In particular, if all the eigenvalues are real (for example, if the matrix WEE is symmetric) then742

the Hopf bifurcation curve occurs when a complex conjugate pair of roots of743

Q̂(λ)− riλ(λ+ 1)φ′(φ−1(p))WE

τ1

cross Re(λi) = 0. For the experimentally derived weight matrix we consider, all eigenvalues of WEE are real744

due to the near symmetric nature of the matrix ([Honey et al., 2009, Hellyer et al., 2016, Hagmann et al.,745

2008]). Thus, the potential Hopf-bifurcation curves are:746

WE
Hopf,i(θ) =

1

riφ′(φ−1(p))
(1− τ1µ+(θ))

µ± =
−(D(θ) + F (θ)κ(θ) + 1− κ(θ))±

√
(F (θ)κ(θ) +D(θ) + 1− κ(θ))2 − 4κ(θ)F (θ)(1− κ(θ)

2(1− κ(θ))

F (θ) =
1− rmaxp−1φ−1(p)φ′(φ−1(p))

τ1

κ(θ) =
pφ′(θp)θ

φ(θp)rmax

D(θ) =
I

2
φ′(φ−1(p))

τ1τ2
.

This implies that as we increase WE , the first transition through WE
Hopf,i(θ) yields a Hopf bifurcation. Due to747

the form of (42), this is likely to correspond to the eigenvalue of L, rmax with the largest positive real part.748

Finally, we remark that if the row sum of the weight matrix LEE is not constant but narrowly distributed749

around a mean-value L̄, than one can readily derive the following approximation:750

WE
Hopf,i(θ) ≈

1

rmaxφ′(φ−1(p))
(1− τ1µ+(θ)) (42)

rmax = max
i=1...NE

{ri} (43)

F (θ) =

(
1− rmax

L̄
p−1φ−1(p)φ′(φ−1(p))

)
(44)

κ(θ) =
pφ′(θp)θL̄

φ(θp)rmax
(45)

which we apply to the coupling matrix from [Hellyer et al., 2016] where L̄ = 0.2318 and rmax = 0.3148.751
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