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A TWO COMPARTMENT MODEL OF A CA1

PYRAMIDAL NEURON
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ABSTRACT. We develop a two compartment, conductance
based model for a pyramidal cell in the CA1 region of the hip-
pocampus. One compartment represents the soma and proxi-
mal dendrites, while the second represents the distal dendrites.
Using numerical simulations we show that our model repro-
duces various experimentally observed behaviours including a
burst of action potentials when the distal dendrite compart-
ment is stimulated. Finally, we study the synchronization of
two such neuronal models, coupled by AMPA synapses.

1 Introduction Focal epilepsy is a neurological disorder which af-
fects approximately 50 million people of all ages worldwide [13]. It is
identified by recurrent unprovoked seizures, which are characterized by
the excessive discharge (and often synchronization) of a large group of
neurons in the brain. A simple, biologically relevant mathematical model
would be helpful to examine the dynamics involved in these excessive dis-
charges. Therefore we created a two-compartment mathematical model
(based on a reduction of Traub et al.’s [9] 19-compartment model) of
a pyramidal neuron in the CA1 region of the hippocampus, a region
which is often associated with seizure activity [1, 11]. We model the
communication between neurons through an AMPA synapse, which ac-
cording to Traub et al. [9] is the dominant method of synchronization
amongst the neurons. Using our model, we reproduce behaviour of the
19-compartment model of Traub et al. [9] and of experiments.

2 Single cell model [9] created a 19-compartment model of a CA1
pyramidal neuron, and used their model to simulate key characteristics
of a CA1 neuron. However, a more simplified model may be useful to
examine the effects of key parameters, to create a network model, or
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to reduce the computational demand in order to extend the model in
other ways. To reduce the number of compartments in the model, we
noted that the CA1 neuron exhibited trains of action potentials when a
small current (< 1 nA) was applied to the soma, but a full calcium spike
and burst followed by trains of action potentials when the same small
current was applied to the distal dendrites (0.6λ from soma) [9]. Thus
we recognized the importance of distinguishing between the electrical
properties in different parts of the neuron. This required the spatial
separation of different channel types and the proper current flow between
them [9]. We concluded our model needed at least two compartments.

To construct these compartments we observed that the ionic chan-
nels were segregated such that their conductance strength varied signif-
icantly in the distal dendrites compared to the proximal dendrites and
the somatic compartment [9]. Therefore, we used the general approach
of Pinsky and Rinzel [6]: we lumped Traub’s soma and proximal den-
drite compartments into one soma compartment, and the distal dendrite
compartments into one dendrite compartment. To determine which ion
currents dominated in each compartmental region, we examined the non-
unique distribution of ion channel conductance densities determined by
[9]. Since we maintained the same volume/area ratio as Traub, and
Traub’s compartments had a length of 0.1λ, this gave our lumped com-
partments a length greater than 0.5λ. Thus, as for Pinsky & Rinzel’s
CA3 neuron model, our model should be considered as phenomenological
rather than physiological.

A schematic representation of our model is given in Figure 1. The
schematic shows the ionic currents present in each compartment, with
the direction of current flow represented by an arrow. The applied cur-
rents (ID , IS) are shown, as well as the synaptic current (ISY N). The
two compartments are connected through the coupling parameters gC ,
the strength of coupling, and p, the percentage of the cell model’s to-
tal area taken up by the somatic compartment. The difference in po-
tential across the membrane is denoted by VS and VD for the somatic
and dendritic compartments respectively, and represents the deviation
(in mV) from the resting membrane potential of −60 mV . The so-
matic compartment has five ionic current channels: sodium and calcium
are the inward currents (INa,S and ICa,S respectively), and the out-
ward currents are the delayed rectifier potassium current (IK−DR,S),
long-duration calcium-dependent AHP potassium current (IK−AHP,S),
and short-duration voltage and calcium-dependent potassium (IK−C,S).
The dendrite compartment has three ionic current channels: an inward
calcium current (ICa,D), and the outward IK−AHP,D and IK−C,D . Al-
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though not shown in the schematic, there is a small leak current in both
the soma and dendrite compartments. We use Cm to represent the mem-
brane capacitance in units µF/cm2. All currents in this model have the
units µA/cm2 and all conductances have the units mS/cm2.

FIGURE 1: A schematic representation of our two-compartment CA1
neuron model.

The ionic currents are modeled as a function of their maximal con-
ductance strengths and their corresponding Hodgkin-Huxley-like gating
variables. The voltage dependent currents are given by:

Ileak,j (Vj) = ḡleak,j(Vj − Vleak)(1)

INa,j(Vj , hj) = ḡNa,jm
2
∞(Vj)hj(Vj − VNa)(2)

IK−DR(Vj , nj) = ḡK−DR,jnj(Vj − VK)(3)

ICa,j(Vj , sj) = ḡCa,js
2
j (Vj − VCa)(4)

where j ∈ {S, D}, VS and VD are the membrane potentials for the so-
matic and dendritic compartments respectively. Sodium has an activa-
tion variable, m, and an inactivation variable, h. Since sodium activates
almost instantaneously compared to the other variables, its activation
variable is represented by the steady state value of m, m∞, which is
voltage dependent.

The activation for K-C and K-AHP ion channels depends on the
calcium concentration inside the cell. Following standard practice [9],
we model only the intracellular calcium concentration in a “shell” be-
neath the cell membrane, given by the variables [Ca2+]S and [Ca2+]D.
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The variation of each concentration is described by a simple produc-
tion/degradation model:

d[Ca2+]j
dt

= −φICa,j − β[Ca2+][Ca2+]j , j ∈ {S, D}

where φ is the scaling constant (with arbitrary units) that converts the
inward calcium current to the internal calcium concentration. We then
have

IK−AHP,j(Vj , qj) = ḡK−AHP,jqj(Vj − VK)

and

IK−C,j(Vj , [Ca2+]j , cj) = ḡK−C,j · cj · min(1,
[Ca2+]j

250
) · (Vj − VK)

where j ∈ {S, D}.
The gating variables hj , nj , sj , cj , qj , j ∈ {S, D}, are each governed

by an equation of the form

dyj

dt
=

y∞(U) − yj

τy(U)
with U =

{

Vj for yj 6= qj

[Ca2+]j for yj = qj

The associated steady state value and time constant are defined in the
usual manner

y∞(U) =
αy(U)

αy(U) + βy(U)
and τy(U) =

1

αy(U) + βy(U)
,

with rate constants as given in [9]:

αm(Vj) =
0.32× (13.1− Vj)

e(13.1−Vj)/4 − 1
, βm(Vj) =

0.28× (Vj − 40.1)

e(Vj−40.1)/5 − 1

αh(Vj) = 0.128× e(17−Vj)/18, βh(Vj) =
4

e(40−Vj)/5 + 1

αn(Vj) =
0.016× (35.1− Vj)

e(35.1−Vj)/5 − 1
, βn(Vj) = 0.25× e(0.5−0.025Vj)

αs(Vj) =
1.6

1 + e−0.072×(Vj−65)
, βs(Vj) =

0.02× (Vj − 51.1)

e(Vj−51.1)/5 − 1
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αc(Vj) =

{

2 × e(6.5−Vj)/27 if Vj > 50

(e{((Vj−10)/11)−((Vj−6.5)/27)})/18.975 otherwise

βc(Vj) =

{

0 if Vj > 50

2 × e(6.5−Vj)/27 − αc(Vj) otherwise

αq([Ca2+]j) = min(0.00002× [Ca2+]j , 0.01)

βq = 0.001

The synaptic current through AMPA receptor channels is given by
IAMPA. Using Kirchoff’s Law, we obtain an expression for the voltage
change across the membrane of each compartment:

dVS

dt
=

1

Cm

{

− Ileak,S(VS) − INa,S(VS , hS) − IK−DR,S(VS , nS)(5)

− ICa,S(VS , sS) − IK−C,S(VS , [Ca2+]S , cS)

− IK−AHP,S(VS , qS) +
gc

p
· (VD − VS) +

IS

p

}

dVD

dt
=

1

Cm

{

− Ileak,D(VD) − IK−AHP,D(VD , qD)(6)

− ICa,D(VD , sD) −
IAMPA

1 − p
− IK−C,D(VD , [Ca2+]D, cD)

+
gc

1 − p
· (VS − VD) +

ID

1 − p

}

The maximal ionic conductances were chosen to be consistent with
those in Traub’s multi-compartment model. In particular, the densities
in our somatic compartment are consistent with the soma and proxi-
mal dendrite compartments of Traub’s model and those in our dendritic
compartment are consistent with those in the distal dendrite compart-
ments of Traub’s model. The values used are shown in Table 1. All
other parameter values, set as in [9], are given in Table 2.

The model was implemented in Windows using XPPAUT, a differen-
tial equation simulation tool developed by B. Ermentrout. See [3] for
details. The Runge-Kutta fourth-order explicit method was used with a
fixed timestep of 0.05 ms.
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Compartment ḡNa,j ḡCa,j ḡK−DR,j ḡK−AHP,j ḡK−C,j ḡleak,j

Somatic (j = S) 30.0 6.0 17.0 0.8 15.0 0.1

Dendritic (j = D) 0.0 5.0 0.0 0.8 5.0 0.1

TABLE 1: Maximal ionic conductances (mS/cm2)

Parameter Unit Parameter Value

VNa mV 120

VCa mV 140

VK mV -15

Vleak mV 0

VEXC mV 60

gC mS/cm2 1.5

p 0.5

Cm µF/cm2 3

TABLE 2: Values and units of reversal potentials, coupling parameters,
and membrane capacitance

2.1 Single cell model results By injecting a sustained current into
our somatic compartment (IS) and later into our dendritic compartment
(ID), we reproduced behaviour found experimentally and obtained with
the 19-compartment model of [9]. When a sustained current is applied
to the somatic compartment, a steady train of somatic action poten-
tials is produced with no bursting (Figure 2(a), cf. with Figure 12
of [9]). The amplitude and frequency of both the somatic and den-
dritic voltage spikes are very similar to those obtained with Traub et

al.’s 19 compartment model, which are consistent with experimentally
observed values [8]. The interspike interval (i.e., the interval between
action potentials) lengthens over time, which is consistent with exper-
imental findings for CA1 neurons [4, 7, 8]. When a current of the
same strength is applied to the dendritic compartment, our model accu-
rately simulates the dendritic calcium spike and somatic burst observed
experimentally [12]. The single burst is followed by a series of action
potentials as seen in the simulations of Traub’s 19 compartment model.
These results are shown in Figure 2(b) (cf. Figure 12 of [9]). The ac-
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tion potentials occur at a lower frequency than when the same current
is applied to the somatic compartment. This is due to the increased
calcium-dependent outward potassium channel (IK−AHP,D) triggered
by the large dendritic calcium spike, resulting in a longer afterhyperpo-
larization. For the simulations in Figure 2, we use a constant applied
current of either IS or ID = 1.25 µA/cm2 (which translates to ap-
proximately 0.48 nA in Traub’s model), while the current in the other
compartment is held constant at −0.25 µA/cm2. We have chosen this
value so that it is slightly below the rheobase—the minimum amount
of current required to excite the neuron—which is found to be approx-
imately −0.175 µA/cm2 when p = 0.5. We did so in accordance with
[9], who applied a small negative current to suppress spontaneous fir-
ing. The coupling parameters are kept for now at the standard values
of gC = 1.5 mS/cm2 and p = 0.5. Keeping all other parameters fixed,
spiking behaviour with physiologically reasonable frequencies was ob-
served for 1.25 µA/cm2 ≤ IS < 3.5 µA/cm2 and bursting behaviour
was observed for 0.5 µA/cm2 ≤ ID < 4 µA/cm2.

As with Pinsky and Rinzel’s [6] CA3 model, our model only demon-
strates the desired characteristic CA1 behaviour for a limited range of
the coupling conductance, gC . A very large coupling conductance essen-
tially makes our model a single compartment model, and a very small
gC leaves us with isolated compartments. However, if gC is slightly re-
duced then no bursting occurs, and if gC is slightly increased then ape-
riodic bursting occurs. Using an applied current of ID = 1.25 µA/cm2,
the desired bursting behaviour is reproduced for 1.35 mS/cm2 ≤ gC ≤
1.7 mS/cm2.

2.2 Bursting mechanics When a moderate sustained current is ap-
plied to the dendritic compartment, a somatic transient burst results
(Figure 3(a)). To explain this burst qualitatively, we examine a single
isolated model CA1 neuron with no synaptic input. Keeping the cou-
pling parameters at their usual values of gC = 1.5 mS/cm2 and p = 0.5,
and maintaining IS = −0.25 µA/cm2, a constant applied dendritic cur-
rent of ID = 1.25 µA/cm2 is used to create the initial burst followed by
the action potential shown in Figure 3(a). We find that the interplay
between the outward dendritic currents IK−C,D and IK−AHP,D with the
inward dendritic current ICa,D is the primary cause of bursting. Since
the calcium-dependent potassium currents are essential to the bursting
behaviour, we look at the associated variables [Ca2+]S , [Ca2+]D , qS and
qD. In addition, the coupling parameters gC and p are identified as key
elements in generating this characteristic behaviour.
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(a) A sustained somatic current of IS = 1.25 µA/cm2 is applied
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(b) A sustained dendritic current of ID = 1.25 µA/cm2 is applied

FIGURE 2: The membrane voltage produced by the model when (a) a
somatic and (b) a dendritic current is applied. Characteristic qualities
of a CA1 neuron are reproduced: (a) a train of action potentials with
increasing interspike interval, (b) a burst with a full dendritic calcium
spike, followed by repetitive spiking.

To determine why our model is much more likely to produce a sin-
gle transient burst than repetitive bursting, we consider the dynamics
of the outward potassium currents IK−C,D and IK−AHP,D . Recall that
the activation of the K-C ion channels depends both on the fast voltage-
dependent gating variables, cS and cD, and on the slower intracellular
calcium concentrations [Ca2+]S and [Ca2+]D. Therefore the time con-
stant of this outward potassium channel largely depends on the slow de-
cay time (1/β[Ca2+]) of the concentration of intracellular calcium. Simi-
larly, the decay time of the potassium current IK−AHP,D depends on the
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slow gating variable qD, which is also a function of [Ca2+]D. Thus the
dendritic calcium spikes repolarize in accordance with the time constants
of the slow variables [Ca2+]S , [Ca2+]D, qS and qD. During the burst,
the length of the “quiet period” of VS—when the soma is overdriven—is
also determined mainly by these slow variables. From Figure 3(b) it is
evident that the levels of qS and qD are low at the time of bursting, and
are significantly elevated during the action potentials. High q values
permit greater outward flow of IK−AHP , allowing the voltage to recover
faster, thereby reducing the probability of bursting. Similarly, the in-
tracellular calcium concentration is low during the initiation of a burst
(Figure 3(a)). An increased level of [Ca2+] activates the K-C channels
directly (and K-AHP channels indirectly), permitting the compartmen-
tal voltage to repolarize faster. This faster recovery implies a decreased
chance of bursting, resulting in single action potentials (Figure 3(a)). In
contrast, a large dendritic calcium conductance, ḡCa,D, creates a large
inward calcium current flow. This makes it difficult for the outward
potassium currents to counteract the inward flow, increasing the possi-
bility of a burst.

The coupling parameters, gC and p, play an essential role in gener-
ating bursts. Increased coupling results in increased flow of electrotonic
current, elevating the q and [Ca2+] levels, as well as the inward current
flow. Although the model will be more effective in creating the bursts,
it will also recover faster, shortening the length of the burst. Thus, if
the coupling parameter gC is increased, the greater current flow between
the two compartments will be more effective at initiating a burst. Simi-
larly, the effects of the two compartments depend on their proportional
size, p: the larger the dendritic compartment is compared to the somatic
compartment, the more influence it will have.

3 Coupled cell model When excited, the presynaptic neuron re-
leases neurotransmitters into the synaptic cleft to signal its postsynaptic
neighbour. According to Pinsky and Rinzel [6] and Traub et al. [10],
the AMPA synapse is the dominant mechanism involved in the synchro-
nization of two pyramidal neurons. Using this knowledge, we construct a
standard AMPA synapse model [2] which synchronizes coupled cell mod-
els under a strong connection, and desynchronizes the coupled models
immediately once the strong connection is removed.

Since we have multiple cell models, we attach a subscript to our vari-
ables to denote the appropriate cell to which it belongs. Consider two
cells, a presynaptic cell (cell 2) and a postsynaptic cell (cell 1). Using the
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FIGURE 3: (a) The somatic and dendritic intracellular calcium concen-
trations, [Ca2+]S and [Ca2+]D (in grey), overlaying the bursting and
spiking. (b) qS and qD for the burst and spike sequence in (a). There-
fore an applied dendritic current of ID = 1.25 µA/cm2 results in the
same voltage burst and spike. It is evident that increased levels of the
slow variables [Ca2+]S, [Ca2+]D, qS , and qD decrease bursting activity.
The characteristic transient burst occurs because of the initially low q
values.

gating variable W1 and the maximal conductance ḡAMPA1
, we represent

the synaptic current due to the AMPA receptors by

(7) IAMPA1
= ḡAMPA1

W1(VD1
− VEXC),

where VD1
is the voltage of the dendritic compartment of the postsy-

naptic cell, and the reversal potential of the excitatory synapse is given



A TWO COMPARTMENT MODEL 303

by VEXC = 60 mV in accordance with Traub et al. [9]. The presynap-
tic voltage is denoted VS2

and VD2
for somatic and dendritic voltage

respectively. During a signal (or spike) from the presynaptic cell, the
presynaptic voltage increases. If VS2

surpasses some threshold, VW , then
the AMPA current of the postsynaptic cell activates with a time con-
stant of 1 ms. Otherwise, the current will not activate. The activation
degrades with a time constant τW . This is modelled via the following
equation

(8)
dW1

dt
= H(VS2

− VW ) −
W1

τW

where H(x) is the Heaviside function: H(x) = 1 if x ≥ 0, H(x) =
0 otherwise. We set VW = 40 mV and τW = 2 ms in accordance
with Traub [10] and Nadkarni and Jung [5]. To maintain a biologically
realistic model, the two individual cell models should not be identical.
Thus, we alter some variables of “cell 2” slightly, while keeping them
close to the values for cell 1.

3.1 Coupled cell results Traub et al. [9] stated that the AMPA
synapse is primarily responsible for the synchronization of two neurons,
and that when AMPA blockers are applied, the neurons are reported to
desynchronize rapidly. To demonstrate that this characteristic is upheld
in our model, we couple two cell models with an AMPA synapse and
apply a constant input to the dendritic compartment of each cell. Cell
1 receives a stronger dendritic input than cell 2 and hence undergoes a
longer burst and subsequently spikes at a faster rate that cell 2. With a
weak AMPA connection the cells do not synchronize, but with a strong
enough AMPA connection, they do. These results are illustrated in
Figure 4

Similar results are obtained when the cells receive a sinusoidal input
to the somatic compartment. We set the frequency and strength of
the input to be different for both cell 1 and cell 2, so the cells do not
synchronize on their own. If the neuron models are connected with a
sufficiently strong AMPA conductance, then the cell with the weaker
input will synchronize to the cell with the stronger input. We show
an example of these results in Figure 5, where the cells are connected
strongly (ḡAMPA1

= ḡAMPA2
= 0.2 mS/cm2) until t = 500 ms, and

weakly (ḡAMPA1
= ḡAMPA2

= 0.01 mS/cm2) after t = 500 ms. We set
the input to be IScell1

(t) = IS1
sin(2πt/100) + 1 so IScell1

(t) fluctuates
between −0.25 and 2.25. Similarly we set IScell2

(t) = IS2
sin(2πt/130)+

1, so IScell2
(t) has a slightly different period.
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FIGURE 4: Cell 1 receives dendritic input ID1
= 2.0µA/cm2, cell 2

receives dendritic input ID2
= 1.25 µA/cm2. (a) A weak AMPA con-

nection: gAMPA2
= 0.04 mS/cm2. (b) A strong AMPA connection:

gAMPA2
= 0.2 mS/cm2.

4 Discussion Due to their susceptibility to excessive bursting and
the organized nature of the hippocampal CA1 region, CA1 pyramidal
neurons have been a focus of research involving seizure activity for many
years [8, 9]. Biophysical models of these neurons exist [8, 9], but for
large networks or the analysis of key characteristics, a simpler model may
be required. Thus, we created a two-compartment model of hippocam-
pal CA1 neurons. The model reproduces qualitatively and quantitatively
much of the characteristic behaviour of a CA1 neuron, as identified by
[9]. That is, when the soma or proximal dendrites are stimulated with
a current less than 1 nA (IS < 1 nA), a train of action potentials
is exhibited. However, if the same current stimulates the distal den-
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FIGURE 5: (a) The voltage of cell 1 and its corresponding input,
IScell1

(t). Note the synchronization to its input. (b) The voltage of
cell 2 and the input from cell 1, IScell1

(t). Cell 2 is synchronized to cell
1 until t = 500 ms, at which point it desynchronizes. At t = 500 ms the
connection goes from strong to weak, and the applied sinusoidal current
to cell 2 dominates.

drites (ID < 1 nA), a full dendritic calcium spike with somatic burst
is produced, followed by low frequency action potentials. The bursting
mechanisms were analyzed in detail, and the slow variables q and [Ca2+]
were shown to influence the generation of a burst and the length of the
interspike interval. It is clear from our analysis that a two compartment
model is the minimal conductance based model which can reproduce
the appropriate bursting behaviour. The benefit of our simplified model
is that key parameters involved in characteristic behaviour can be ana-
lyzed, and since it maintains its biological relevance, predictions about
potential behavioural responses can be made. In addition, computa-
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tional efficiency ensures that large networks can be created easily. As a
first step toward such network models, we have implemented an AMPA
synapse model and used it to investigate synchronization of two coupled
CA1 neurons.

REFERENCES

1. P. Andersen, R. Morris, D. Amaral, T. Bliss and J. O’Keefe, The Hippocampus
Book, Oxford University Press, New York, NY, 2007.

2. A. Destexhe, Z. F. Mainen and T. J. Sejnowski, Kinetic models of synaptic
transmission, in Methods in Neuronal Modeling, Ch. 1, MIT Press, Cambridge,
USA, 1998.

3. G. B. Ermentrout, Simulating, analyzing, and animating dynamical systems:
a guide to XPPAUT for researchers and students, Soc. Industrial Appl. Math.,
Philadelphia, P.A., USA, 2002.

4. T. H. Lanthorn, J. Storm and P. Andersen, Current-to-frequency transduction
in CA1 hippocampal pyramidal cells: slow prepotentials dominate the primary
range firing, Experimental Brain Research 53 (1984), 431–443.

5. Suhita Nadkarni and Peter Jung, Synaptic inhibition and pathologic hyperex-
citability through enhanced neuron-astrocyte interaction: A modeling study,
J.Integrative Neuroscience 4(2) (2005), 207–226.

6. Paul F. Pinsky and John Rinzel, Intrinsic and network rhythmogenesis in a
reduced Traub model for CA3 neurons, J. Comput. Neuroscience 1 (1994),
39–60.

7. P. A. Schwartzkroin, Secondary range rhythmic spiking in hippocampal neu-
rons, Brain Research 149 (1978), 247–250.

8. Roger D. Traub and R. Llinás, Hippocampal pyramidal cells: significance of
dendritic ionic conductances for neuronal function and epileptogenesis, J. Neu-
rophysiology 42(2) (1979), 476–495.

9. Roger D. Traub, Robert K. S. Wong, Richard Miles and Hillary Michelson,
A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp
data on intrinsic conductances, J. Neurophysiology 66(2) (1991), 635–650.

10. Roger D. Traub, Richard Miles and György Buzsáki, Computer simulation of
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