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RESONANT CODIMENSION TWO BIFURCATION 

IN THE HARMONIC OSCILLATOR 


WITH DELAYED FORCING 


ABSTRACT. We study a delay differential equation model- 
ing the harmonic oscillator with forcing which depends on the 
state and the derivative of the state at  some time in the past. 
We perform a linearized stability analysis of the equation and 
describe the location of Hopf and steady state bifurcations in 
the parameter space. A complete description of the location 
of points in parameter space where the characteristic equation 
possesses two pairs of pure imaginary roots, fi w l ,  fiwz  with 
w l  :w2 = m :n,m,n E Z+, is given. 

1. Introduction. Consider the harmonic oscillator with forcing 
which depends on the state and/or derivative of the state. In real 
physical systems such forcing terms are often time delayed, especially 
when they represent feedback. This gives rise to the delay differential 
equation 

where f may be nonlinear. By analogy with a mass spring system, 
we will refer to x(t), x(t) as, respectively, the position and velocity at 
time t, b as the damping constant and a as the spring constant. In 
most physical systems a > 0 and b 2 0; however, we won't make such 
restrictions. TI and 7 2  are the time delays, assumed to be nonnegative. 
This equation and its variants have been used to model a number of 
systems, [I, 4, 12, 23, 24, 251; see also [9 and references therein]. 
While there is no physical reason to assume the delays in x and x are 
the same, this is usually done to simplify the analysis. We will follow 
this practice and take TI = TZ = T. (For an exception see [6].) 

Equation (1)has a fixed point (equilibrium) solution x(t) = x*, found 
by solving ax* = f (x*,O). In a similar manner to that for ordinary 
differential equations, the equation may be linearized around this fixed 
point leading to 
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where d = Dl f (x*, 0), g = D2 f (x*, 0). To study the stability of the 
fixed point, we look for solutions of (2) of the form x(t) = exp(Xt), 
which leads to the characteristic equation 

For clarity we review some terminology. The roots of the characteris- 
tic equation are commonly called the eigenvalues of the fixed point. It 
can be shown [15, 171 that the fixed point is (linearly) stable if all of 
its eigenvalues have zero real parts, and (linearly) unstable if at  least 
one of its eigenvalues has positive real part. Thus changes of stability 
of the fixed point may occur when an eigenvalue has zero real part, i.e., 
when there is real, zero eigenvalue or a pure imaginary pair. The former 
indicates the presence of a steady state bifurcation which, depending 
on the nonlinearity f, may be a pitchfork, transcritical or saddle node 
bifurcation. Under suitable conditions on f ,  see, e.g., [15, Chapter 101 
the latter indicates the presence of a Hopf bifurcation. 

The characteristic equation (3) has been studied by many authors 
12, 3, 4, 5, 7, 9, 11, 13, 18, 23, 271, who have shown the presence 
of both steady state and Hopf bifurcations under various conditions 
on the parameters. In certain cases, [9] it is also possible to show the 
presence of points where the characteristic equation has two pairs of 
pure imaginary roots, =tiwl, =tiw2. As such points commonly occur 
where two curves of Hopf bifurcation cross, we refer to them as points 
of double Hopf bifurcation. 

Here we are primarily concerned with the situation when the forcing 
depends only on the position or the velocity, but not both (this 
corresponds to taking g = 0 or d = 0 in (2)). These two cases 
possess points of double Hopf bifurcation that are resonant, that 
is, the imaginary parts (frequencies of the Hopf bifurcations) obey 
w1 :w2 = m : n f o r s o m e m , n E  Z. 

The outline of the paper is as follows. In Section 2 we consider the 
stability analysis of (2) under the restrictions mentioned. In Section 3 
we show explicitly where the points of resonant double Hopf bifurcation 
for the equation are located in parameter space. In Section 4 we 
discuss the implications of these results for the full equation (1) and 
the physical systems it models. 










































