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Summary. The study of familial disorders characterized by recurring changes in
neurodynamics, such as epileptic seizures, paralysis and headaches, provide oppor-
tunities to identify the mechanisms for dynamic changes in the nervous system.
Many of these diseases are channelopathies. The computational challenge is to un-
derstand how a constantly present molecular defect in an ion channel can give rise to
paroxysmal changes in neurodynamics. The most common of these channelopathies
is childhood absence epilepsy (CAE). Here we review the dynamical properties of
three neural microcircuits thought to be important in epilepsy: counter inhibition,
recurrent inhibition and recurrent excitation. Time delays, τ , are an intrinsic prop-
erty of these microcircuits since the time for a signal to travel between two neurons
depends on the distance between them and the axonal conduction velocity. It is
shown that all of these microcircuits can generate multistability provided that τ is
large enough. The term “multistability” means that there can be the co-existence
of two or more attractors. Attention is drawn to the transient dynamics which can
be associated with transitions between attractors, such as delay-induced transient
oscillations. In this way we link the paroxysmal nature of seizure recurrences in
CAE with time-delayed multistable dynamical systems. The tendency of children
with CAE to outgrow their epilepsy is linked to developmental changes in axonal
myelination which decrease τ .
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1 Introduction

Physicians use the evolution of an illness to formulate a diagnosis and guide a
treatment plan. Observations as to whether the disease onset is acute or sub-
acute and the course is self-limited, relapsing-remitting or chronic progressive
can be sufficient by themselves to significantly reduce the list of possibilities.
On the other hand, the experiences of mathematicians and physicists empha-
size that careful attention to how variables, namely something that can be
measured, change as a function of time, referred to herein as dynamics, can
uncover the identity of the underlying mechanisms. From this point of view
many diseases may be dynamical diseases and arise in physiologial control
mechanisms in which critical control parameters have been altered [1, 2, 3].
Consequently important clues related to diagnosis and treatment may be em-
bedded in the time-dependent changes in the relevant clinical variables, such
as changes in temperature, weight, blood cells number, the electrical proper-
ties of the brain and heart, and so on. As wearable devices for the continuous,
non-invasive monitoring of physiological variables become prevalent, it is likely
that disease dynamics will increasingly become a focus of attention.

A potentially important application of continuous monitoring of physio-
logical variables arises in the management of a patient with epilepsy. For these
patients issues related to patient morbidity, and even mortality, are more of-
ten than not due to the unpredictability of seizure occurrence rather than
to the seizure itself. For example, seizure occurrence while operating a mov-
ing vehicle could potentially be fatal. However, if seizure occurrence could
be predicted, then maybe the seizures can be aborted [4, 5, 6, 7, 8, 9]. At
the very least it might be possible to give the patient enough time to make
arrangements that minimize the effects of the impending seizure.

The study of inherited diseases of the nervous system which are character-
ized by recurring, paroxysmal changes in neurodynamics would be expected
to shed light onto the answers to these questions [10, 11, 12]. In 1995, Milton
and Black identified a number of familial disorders characterized by recur-
ring episodes of abnormal neurodynamics (see Table 1 in [13]). Examples of
the episodic changes in neurodynamics included epileptic seizures, headaches,
paralysis and abnormal movements. They referred to these diseases as dy-
namic diseases. Herein we use the abbreviation DD to refer to both dynam-
ical and dynamic diseases. Many of the DD’s identified by Milton and Black
were subsequently identified as channelopathies (Section 2). Channelopathies
arise because of mutations in the genes that encode for the protein subunit
components of ion channels of neurons and other exitable cells.

Paroxysmal changes in neurodynamics reflect transient losses in control by
neuro-physiological control mechanisms. The goal of this chapter is to identify
possible mechanisms for paroxysmal seizure recurrence in childhood absence
epilepsy (CAE). CAE is the most common and extensively studied epilepsy
associated with a channelopathy (Table 1). There are two important issues:
1) How can a constantly present molecular defect give rise to the recurring



4 John Milton, Jianhong Wu, Sue Ann Campbell and Jacques Bélair

seizures exhibited by the patient ? (Sections 5-7) and 2) Why do seizures in
CAE appear during childhood and then typically abate by late adolescence ?
(Section 8). Our literature review links the paroxysmal nature of seizure oc-
currence to dynamical systems which contain time delays and which exhibit
multistability. The tendency of children with CAE to outgrow their seizures
is linked with changes in τ related to developmental changes in brain myeli-
nation. Finally we discuss our findings in Section 9.

2 Dynamic diseases in neurology and psychiatry

A practical problem for identifying the critical parameters and underlying
control mechanisms for DD is that it is not often possible to monitor the
patient at the time the dynamics change. For this reason patients in which
paroxysmal events recur with a certain predictability are ideal candidates to
characterize the nature of the DD transition. Thus it becomes possible, at
least in principle, to use techniques such as multimodal imaging to document
the structure of the brain and the physiological changes that occur at the time
the changes in dynamics occur. The hope is that as more and more events are
recorded, it may be possible to identify the common features and hence the
critical control parameter(s).

Tables 1 and 2 summarize two groups of DD’s of the nervous system that
are potentially well suited for determination of how paroxysmal changes in
signs occur [12]. The first group includes those diseases in which paroxysmal
events can be repeatedly triggered with a certain predictability. The second
group includes those neurological and psychiatric disorders that appear in
infancy-childhood and then spontaneously disappear as the child gets older,
typically by mid to late adolescence (Table 2). It should be noted that the
clinical use of the words “periodic” and “paroxysmal” differs from their math-
ematical meaning. Typically physicians use the term “periodic” to mean that
the signs recur “every so often” or “every once in a while”. The term “paroxys-
mal” means that the onset of the signs occurs suddenly and without warning.

An exciting development has been the realization that many of the familial
paroxysmal and periodic neurological diseases are channelopathies. Ion chan-
nels are the transmembrane pores which allow ions to flow across membranes
in response to their electrochemical gradients. Although ion channels can be
formed by a single protein (e.g., the transmembrane chloride conductance
regulator in cystic fibrosis [14]), most often ion channels are formed from an
assembly of protein subunits each encoded by a different gene. Over 400 ion
channel genes have been identified: a useful resource is the Online Mendelian
Inheritance in Man (OMIM) website: www.ncbi.nlm.nih.gov/omim.

Many of the DD’s in Tables 1 and 2 are associated with gene mutations re-
lated to various ion channels including the voltage-gated Ca++, Cl−, K+, and
Na+ channels and the ligand-gated acetylcholine nictonic and γ-aminobutyric
acid A (GABAA) receptors. These ion channels are the “excitable” in the
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Table 1. Gene mutations in neurological DD’s characterized by paroxysmal events

Dynamic diseasea Mutated geneb Triggering eventsc

Channelopathies
Andersen-Tawil syndrome Kir2.1 None
Benign familial neonatal epilepsy SCN2A ?
Childhood absence epilepsy GABRA1, GABRA6, hyperventilation

GABRB3, GABRG2,
CACNA1H

Familial hemiplegic migraine CACNA1A minor head trauma,
cerebral angiography

Familial hyperplexia GRAR1, GLRB unexpected auditory
or tactile stimuli

Familial paroxysmal ataxia CACNA1A, KCNA1,CACNB4 stress, excitement
Hyperkalemic periodic paralysis SCN4A fasting, exercise, K+ foods
Hypokalemic periodic paralysis CACNA1S, SCN4A insulin, glucose
Juvenile myoclonic epilepsy DRD2, CACNB4, CLCN2 awakening

GABRA1, GABRD, EFHC1
Nocturnal frontal lobe epilepsy CHRNA4, CHRNB2, CHRNA2 Sleep I-II transition
Paroxysmal choreoathetosis/spasticity SLC2A1 alcohol, exercise,

sleep deprivation, stress
Paroxysmal non-kinesigenic dyskinesia MR-1 alcohol, coffee,

stress, fatigue
Paroxysmal kinesigenic dyskinesia PRRT2 sudden voluntary movement

a Clinical descriptions of these disorders and the identification of the gene mutations associated with
these disorders can be found on the OMIM website (see text).
b Site of mutation: voltage-gated calcium channel (CACNA1A, CACNA1H, CACNA1S, CACNB4),
cloride channel (CLCN2), dopamine receptor (DRD2), inward-rectifying potassium channel (Kir2.1),
voltage-gated potassium channel (KCNA1), voltage-gated sodium channel (SCN4A), acetylcholine nic-
tonic receptor (CHRNA4, CHRNA2, CHRNB2), glycine receptor (GLRA1, GLRB), GABAA recep-
tor (GABRA1, GABRA6, GABRB2, GABRB3), acetylcholine nictonic receptor (CHRNA4, CHRNA2,
CHRNB2), proline rich transmembrane protein (PRRT2), major histocompatibility complex related
gene protein (MR-1), solute carrier gene (SLC2A1).
c The triggering events refer to stimuli and behaviors most often reported by patients as precipitants of
“their attacks”.

term excitable cell. The work of Hodgkin and Huxley links the dynamics of
excitable cells to the properties of the ion channels located in their membranes.
These models take the general form
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CV̇ (t) = −Iion(V,W1,W2, · · · ,Wn) + I0 (1)

Ẇi(t) = β
[Ŵi(V )−Wi]

Γ (V )

where V (t) is the membrane potential, Γ is a time constant, C is the membrane
capacitance, Iion is the sum of V -dependent currents through the various ionic
channel types, I0 is the applied current, Wi describe the fractions of channels
of a given type that are in various conducting states (e.g., open versus closed),
Ŵi(V ) describe the equilibrium functions and β is a temperature-like time
scale factor.

Over 50 years of work by mathematicians and neuroscientists have estab-
lished a quantitative agreement between experimental observations on neurons
and the predictions of (1) (for review see [15, 16, 17, 18, 19, 20]). The predicted
neuronal spiking dynamics include a variety of regular spiking and bursting
patterns. It can be anticipated that it should be possible to draw analogies
between abnormal neurodynamics and the clinical presentations. However,
neurons are not the only type of excitable cell. Cardiac and skeletal muscles
and certain endocrine cells such as pancreatic β-cells are also excitable. Thus
it is not difficult to appreciate the complexity of the clinical presentations and
inheritance patterns of this group of diseases [21, 22].

3 Childhood absence epilepsy (CAE)

CAE is a channelopathy that exhibits both paroxysmal dynamics and a de-
velopmental pattern (Tables 1 and 2). Many families with absence epilepsy
have a defect in one of the subunits of the γ-aminobutyric acid A (GABAA)
receptor. The GABAA receptor is an anion selective, ligand-gated ion channel
[23]. The concept that CAE reflects a disturbance of inhibition is supported by
both animal and human observations. For example, in cats, systemic injection
of penicillin, a weak GABAA receptor antagonist, causes a dose-dependent
transformation of sleep spindles to spike-wave discharges (SWD), the electro-
encephalographic (EEG) signature of CAE [24, 25]. In human CAE, GABA-
mimetic anti-epileptic drugs such as vigabatrin and tiagabine exacerbate ab-
sence seizures [26, 27].

Seizure onset is between the ages of 4-6 years and most commonly the
seizures disappear by mid to late adolescence. There are no long term cog-
nitive or behavioral sequelae. The seizures occur abruptly without warning
and consist of brief spells of staring and unresponsiveness typically lasting
10-20s. Minimal myoclonic jerks of the eyes and perioral automatisms can
often be observed during the seizure. The frequency of the spells can be very
high (100’s per day). The EEG recorded using electrodes placed on the scalp
changes during the seizure demonstrate the presence of generalized 3-4 Hz
SWDs (Figure 1a). Typically the seizure can be triggered at the bedside by
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Table 2. Paroxysmal neurological dynamic diseases of childhood and adolescence
which may be outgrown.

Dynamic diseasea Mutated geneb Triggering events Outgrown byc

Epilepsy
Benign familial infantile epilepsy PRRT2 18 months
Benign familial neonatal epilepsy SCN2A 7 yrs
Benign rolandic epilepsy 11p13 awakening adolescence
Absence epilepsy GABRA1, GABRA6, hyperventilation adolescence

GABRB3, GABRG2,
CACNA1H

Juvenile absence epilepsy EFHC1 awakening 3rd-4th decade

Juvenile myoclonic epilepsy DRD2,CACNB4, awakening 3rd-4th decade
CLCN2, GABRA1,
GABRD, EFHC1

Occipital epilepsy ? ? adolescence
Familial hyperekplexia GLRA1, GLRB unexpected auditory childhood

or tactile stimuli
Motor tics

Tourette’s syndrome ? anxiety, stress adolescence
Parasomnias

Bed wetting ? adolescence
Night terrors ? adolescence
Sleep walking 20q12-q13.12 stress, alcohol, adolescence

sleep deprivation
Sleep talking ? adolescence

Speech disorders
Stuttering ? adolescence

a Clinical descriptions of these disorders and the identification of the gene mutations associated
with these disorders can be found on the OMIM website.
b Site of mutation: EF-hand domain containing protein 1 (EFHC1), gene mutation located on
short arm of chromosome 11 (11p13), gene mutation long arm of chromosome 20 (20q12-q13.12).
See also legend for Table 1.
c These estimates are the most commonly observed age at which the troubling clinical signs
disappear.
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having the child hyperventilate. Seizures in CAE can often be aborted us-
ing brief sensory stimuli, for example, the mother shaking or speaking to the
child, a loud noise. The ability of sensory stimuli to abort seizures can also be
observed in patients with atypical absence seizures characterized by 1.5-2.5
Hz SWDs (Figure 1b) [28].

Fig. 1. Top: Scalp EEG changes recorded during a generalized seizure in 16 year old
with atypical absence epilepsy. Bottom: The application of a brief sensory stimulus
can shorten the length of the seizure. Figure reproduced from [28] with permission.

Current debates concern the mode of onset of absence seizures in CAE
[29, 30]. At the bedside, the classification of epileptic seizures was based on how
a seizure begins in the first split second as determined by 1) direct observations
of the clinical aspects of the seizure, and 2) correlation between the clinical
features of the seizures and the changes detected in the EEG. If the seizure
began in a focal area of the brain it was called a partial epileptic seizure. If the
seizure appeared to begin everywhere at the same time it was called a primary
generalized seizure. Thus historically seizures in CAE were considered to be
primary generalized.

However, the use of scalp EEG recordings is not sufficient to rule out the
possibility that absence seizures in CAE have a focal onset. For example,
it would be very difficult to distinguish a generalized seizure from a focal
onset seizure which rapidly generalizes. Indeed simple calculations based on
estimates of seizure propagation velocities suggest that the fastest way to
generalize a seizure is via reciprocal cortico-thalamic connections [31]. Depth
electrode recordings in patients with generalized seizures were the first to
demonstrate that seizure foci located in the frontal lobes could so rapidly
generalize that a focal onset would be missed from scalp EEG recording [32,
33].

A cortical site for absence seizure onset has been identified in a rodent
model for absence seizures [34]. It is located in peri-oral somatosensory cor-
tex. Recently high resolution EEG-MEG studies together with advanced signal
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analysis techniques of absence seizures in human CAE have shown the pres-
ence of localized areas of pre-seizure activation in frontal cortex, orbito-frontal
cortex, the mesial temporal lobe and the parietal lobe [35, 36, 37]. These obser-
vations are reminiscent of the concept developed for partial complex seizures
that emphasizes the role of a spatially extended epileptic system that regulates
the onset, maintenance and cessation of partial epileptic seizures [38, 39].

The above observations indicate that seizures in CAE are secondarily gen-
eralized. Here we focus our attention on the dynamics of seizure onset and do
not consider how the epileptic activity spreads from the epileptic focus once
the seizure is initiated.

4 Dynamical systems approaches to seizure onset

At the most basic level, a seizure represents a change in the activity of neu-
rons. The cortical interictal state is primarily characterized by low frequency
neuronal spiking [40, 41]. The hallmark of the onset of a seizure is a change
in neural spiking rates.

Dynamics is concerned with the description of how variables, such as those
related to neural spiking rates, change as a function of time. The fact that
the magnitude of a variable in future time will be known once we know its
initial value and rate of change per unit time is a fundamental property of the
differential equation

ẋ ≡ dx

dt
= f(x) , (2)

where x is, for example, the firing rate. The left-hand side of this equation
re-iterates the importance of the change in the variable per unit time and the
right-hand side states the hypothesis proposed to explain the time-dependent
changes in the variable. In this chapter we are particularly interested in the
role played by factors related to the physical separation of neurons on seizure
onset. These factors include the axonal conduction velocity, v, and the dis-
tance, r, between neurons. Consequently (2) becomes the delay differential
equation (DDE)

ẋ = f(x(t− τ)) , (3)

where τ = r/v is the time delay. An introduction to the numerical methods
available for the analysis of (3) is given in Appendix A. In order to obtain a
solution to (3) it is necessary to specify an initial function, φ, on the interval
[−τ, 0]. These initial values can be changed using brief external stimuli. This
observation is relevant to the clinical observation that brief sensory and elec-
trical stimuli can abort an absence seizure. From a dynamical systems point
of view this observation suggests multistability. To understand what is meant
by the term multistability, we need to consider the nature of the solutions of
(3).

Solutions of (3) can be classified by the qualitative nature of the changes in
the variable as a function of time. Fixed point solutions are solutions where the
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values of the variables are fixed in time. Such solutions would correspond to
a constant neural spiking rate. Periodic solutions are solutions which oscillate
in time with some fixed period. Such solutions would correspond to oscillatory
changes in spiking rate such as seen for a bursting neuron or population.

Another way that solutions can be classified is with respect to their re-
sponse to perturbations. From this perspective a solution is called stable if
solutions which have initial conditions close to the solution approach it in
the longterm, otherwise it is called unstable. Stable solutions will be observed
in numerical simulations and experiments. Unstable solutions will not persist
in the longterm, but may be observed transiently. It is possible that an un-
stable solution may correspond to a seizure [12]. Multistability refers to the
situation when there is more than one stable solution in the system: the long
term behavior of the system then depends on the starting, or initial conditions
and whether they system is subjected to any perturbations. If a system has
multiple stable solutions, then it must also have unstable solutions.

A parameter is a variable which changes so slowly in comparison to the
time scale of the variables of interest that it can be regarded as constant.
Examples of parameters relevant for the occurrence of an absence seizure
include τ , the number of GABA receptors, the receptor binding constant for
GABA, the parameters that govern the gating of the Cl− channel, and so
on. We will be particularly interested in how the number, type and stability
of solutions change as one or more parameters are changed. This is called a
bifurcation. Parameter values where this occurs are called bifurcation points.
When a bifurcation occurs in a system, the qualitative behaviour of the system
changes. For example, the system may transition from having a stable fixed
point as the long-term behavior to having a periodic solution as the long-term
behavior.

In summary, we use DDEs to describe the neurophysiological rules that
govern the change rates of the system variables. These equations are often
nonlinear and often involve neural physiological properties such as decay rates
of action potentials and gains, and interconnectivity of the population such
as synaptic connection weights, conduction velocities and time delays. These
neurophysical properties, synaptic weights and conduction velocities remain
constant in the time scale of the considered neurodynamics, and are called pa-
rameters. Naturally, solutions of the DDEs depend on both their initial values
and the parameters. Understanding dynamic diseases in systems described by
a DDE requires the examination of behaviors of solutions - evolutions with
respect to time of the variables - for a wide range of plausible initial conditions
and parameter values of the system. An important property of a dynamical
system is the emerging long-term behaviors, in which solutions from a set
of different initial conditions may converge to a particular solution which is
called an attractor. The set of initial conditions for which the corresponding
solutions converge to the attractor is called the basin of attraction. A dynam-
ical system may have multiple attractors for a particular parameter value.
This is called multistability. The same system with two different parameters
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may have different numbers and types of attractors, the critical values of pa-
rameters through which the system undergoes changes (bifurcations) in the
numbers and types of attractors are called bifurcation points. Often these
attractors take the form of fixed point solutions or limit cycles or periodic
solutions.

In Section 7.2 we outline how to determine the number and stability of
fixed points of a model, the nature of the possible bifurcations as a function
of τ and the conditions for the occurrence of multistability. Our particular
focus is on the situation when the time delay acts a bifurcation parameter. In
order to improve the flow of the presentation of the mathematical results, we
will not give references for all the standard results we use: these can be found
in [42, 43, 44], and a more complete (and abstract) approach to the theory of
delay differential equations can be found in [45] or [46].

5 Paroxysmal seizure occurrence

The hallmark of epilepsy is the paroxysmal nature of seizure occurrence
[28, 47] which can even be observed in human neocortical slices [48]. Many
computational models of absence seizures have examined topics related to
the identification of the mechanism of action of anticonvulsant medications,
the generation of the EEG and the nature of the mechanisms that re-
cruit large populations of neurons into the evolving seizure (for reviews see
[49, 50, 51, 52, 53]). Much less attention has been given to understanding how
a seizure begins when it does and why a seizure, once started, eventually stops
(for notable exceptions see [28, 47, 54]).

We take a dynamical systems approach. Our concern is on the dependence
of the solutions of the governing differential equations as regulating parame-
ters (e.g., nerve fiber length, conduction velocity) are changed and where these
solutions start from. Qualitative changes in these behaviors are called bifurca-
tions. To be more specific, we briefly recall here some basic concepts relevant
to dynamical systems in the context of DDEs. Under this paradigm, there are
four general types of mechanisms in delay differential equations that can pro-
duce a paroxysmal change in dynamics (Figure 2). Two of these mechanisms
involve changes in parameters and two involve changes in variables.

The first mechanism proposes that sudden changes in dynamics arise be-
cause of a change in an important parameter such as a feedback gain or τ
[1, 2, 3, 55]. The changes in dynamics correspond mathematically to bifurca-
tions in the relevant nonlinear equations which describe the affected physio-
logical system. Examples of DD’s which can be attributed to this mechanism
include Cheyne-Stokes respiration [2] and blood cell diseases characterized by
oscillations in blood cell number [56, 57, 58]. In terms of an explanation for an
absence seizure this approach requires two parameter changes: one parameter
change to explain the seizure onset, another to explain why the seizure stops.
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Fig. 2. Four mechanisms for producing a seizure (SZ). (a), a bifurcation caused by
moving a parameter across a stability boundary (dashed line), (b) a change between
two attractors caused by changes in the initial conditions, (c) a transient unstable
oscillation which arises as the system moves from one attractor to another, (d)
critical phenomena that arise when the dynamical system is tuned very close to a
stability boundary (dashed line).

The idea that seizure onset in CAE is related to changes in variables is
based on clinical observations (Figure 2b). A brief sensory or electrical stimuli
corresponds to a change in the initial function φ. This observation is suggestive
of a multistable dynamical system [28, 47]. Figure 2b illustrates this concept
of a dynamical system using the potential energy surface, U(x). The minima
(“valley”) corresponds to a stable solution and the maxima (“hill”) represent
an unstable solution. In this interpretation, the onset of a seizure corresponds
to a transition from one valley to the next, or in other words, a transition
into a basin of attraction associated with a seizure. Brief stimuli abort the
seizure by causing a transition from the seizure-related basin of attraction to
one associated with healthy brain dynamics. This mechanism for an absence
seizure also requires two changes in the variables: one change to explain seizure
onset, another to explain why the seizure stops.

There are two mechanisms which incorporate both the onset and cessa-
tion of the seizure. The first involves modification of the multistability con-
cept (Figure 2c). It relies on the observation that in time-delayed dynamical
systems, an unstable limit cycle can be associated with the separatrix that
separates two stable attractors [12, 59, 60, 61], i.e. the “hump” between the
“two valleys”. It must be emphasized that the stable attractors do not cor-
respond to the seizure, the seizure arises as a transient oscillation associated
with the transition between the attractors [10, 12]. In the two-neuron micro-
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circuits discussed in Section 7.2 delay-induced transient oscillations (DITOs)
are associated with the presence of an unstable limit cycle [59, 60].

The final mechanism is based on the concept that the parameters of neural
control mechanisms are tuned very close to the “edge of stability” (Figure 2d).
Indeed excitatory synaptic inputs to pyramidal neurons outnumber the in-
hibitory ones by 6.5 to 1 [62]. The fundamental concept is that a seizure might
correspond to a phase transition. Thus near the bifurcation point, a dynamical
system is expected to be characterized by collective behaviors for which it is
not possible to define a specific correlation length. There are two clinical obser-
vations consistent with this hypothesis. First, the distribution of seizure sizes
and times to occurrence exhibit power law behaviors [6, 63, 64, 65]. Second,
even for individuals who do not have clinically-evident seizures, micro-seizures
can be observed while the subject sleeps [66]. Thus from this point of view
clinical epilepsy is a disease which is characterized by larger events [67]. How-
ever, dynamical systems tuned toward the edge of stability are also expected
to generate a number of critical phenomena, such as critical slowing down
and amplitude amplification [68]. These phenomena have not been observed
for the majority of seizure occurrences [69].

6 Epileptic micro-circuits

Simultaneous recording of thalamic and cortical local field potentials during an
absence seizure in CAE demonstrated that the oscillations are detected in the
thalamus 1-2s before SWDs are observed in the cortex [70]. Thus it is currently
believed that the SWDs recorded by the scalp EEG during absence seizures are
generated by the thalamo-cortical-thalamo circuit shown in Figure 3 [71]. This
network involves reticular thalamic neurons (nRT), thalamic relay neurons
(TC) and cortical pyramidal neurons (CT). Inhibitory connections occur in
both the thalamus and the cortex. This same circuit is involved in sleep and
early investigators quickly recognized that the very mechanisms that generate
sleep spindles are “hijacked” in CAE to generate the SWD [24, 25, 72].

It is useful to keep in mind that the thalamocortical circuit shown in
Figure 3 is for a rodent model of absence epilepsy [73]. However, much of
the early work on absence seizure was done on feline brains [24, 25]. There
are important physiological and anatomical differences between the thalamus
of rodents and felines. For example, in rodents inhibitory interneurons are
absent in almost all thalamic relay nuclei [74]. Thus intrinsic inhibition is
absent in most of the thalamus and inhibition relies almost entirely on input
from nRT. In contrast, in the feline thalamus, intrinsic GABAergic inhibitory
interneurons are present throughout the thalamus, including its relay nuclei.
Here the nRT provides an additional external inhibitory input. The thalamus
in humans is much more developed that in rodents and felines [74, 75] and
hence we can expect even more differences.
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For unmyelinated axons, v ∼
√
d, and for myelinated axons, v ∼ dg

√
ln g,

where d is the axon diameter and g is the ratio of d to overall fiber diameter.
From Figure 3 it can be seen that there is a distribution in the length of
interneuronal axons: the length of axons associated with the intrathalamic
connections (nRT ↔ TC) are shorter (< mm’s) than those associated with
thalamo-cortical connections (CT ↔ nRT and CT ↔ TC) (∼ cm’s). Since
τ = r/v, we can anticipate that there will be a bimodal distribution of τ [76].
This segregation in terms of short and long τ is further increased by the facts
that 1) many of the cortico-thalamic axons are unmyelinated [77] (hence τ is
increased) and 2) gap junctions exist between nRT neurons [78, 79] (hence τ
is decreased).

Fig. 3. Corticothalamic circuit involved in the genesis of absence seizures and sleep
spindles. The cortical-thalamic distances between neurons are of the order of ∼ 5cm
and those within the thalamus are < 1mm. The cortico-cortical distances range from
< 1mm to 5− 10cm.

It is increasingly being recognized that the behavior of large ensembles
of neurons can be understood from smaller motifs involving 2-3 neurons
[80, 81, 82]. Figure 4a shows four microcircuit motifs which have been empha-
sized for the generation of epileptic seizures [81]: 1). recurrent inhibition (RI),
2) counter inhibition (CI), 3) recurrent excitation (RE) and 4) feedforward
inhibition (FFI). For CAE, the GABAA defect draws attention to those mi-
crocircuits which include an inhibitory component. Thus the thalamo-cortical
ciruit shown in Figure 3 can be interpreted as a FFI microcircuit (Figure 4
a and b). Indeed the FFI microcircuit has been considered to be critically
important for the generation of SWD recorded by the EEG.

However, recent observations cast doubt on the importance of the FFI mi-
crocircuit for seizure onset [73]. First, seizures occur in the Gria4−/− mice in
which the connection between nRT and CT neurons has been deconstructed
with optogenetic techniques [83]. Second, studies of olfactory cortex suggest
that whereas FFI and excitation are balanced, RI dominates the intracorti-
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cal excitations which are highlighted in our analysis [84]. Finally, as already
pointed out, absence seizures in CAE have a focal cortical onset. From a
mathematical perspective, FFI requires a model that involves three neurons.
Investigations of similar models [85] have shown that that the delay effects
we outline below likely do not play a role in such a circuit when it is isolated.
More complex nonlinear effects involving interactions with other microcircuits
[86] may be required to generate the multistable dynamics we emphasize here.
Therefore in the discussion which follows we emphasize the role of RI, RE and
CI for seizure onset.

Fig. 4. Four neural micro-circuits important for the generation of epileptic seizures.
(a) recurrent inhibition (RI), counter inhibition (CI), recurrent excitation (RE) and
d) feedforward inhibition (FFI). (b) Thalamocortical circuit important for CAE.
The dark neurons are inhibitory and the white faced ones are excitatory.

7 Multistability in time delayed microcircuits

The dominant theme of our discussion is that DDE models for the CI, RI and
RE microcircuits readily generate multistable dynamics. This multistability
is defined as the simultaneous co-existence, for fixed parameter values, of
two stable states, which may be two equilibrium solutions (steady states)
or two periodic solutions, or one equilibrium and one periodic solution. We
demonstrate this observation with three types of models: 1) integrate-and-fire
models, 2) Hopfield network models, and 3) Hodgkin-Huxley networks.

7.1 Multistability: integrate-and-fire model

The simplest model for RI that illustrates the interplay between τ and mul-
tistability is the integrate-and-fire model whose dynamics are shown in Fig-
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ure 5a. This recurrent inhibitory loop involves a single excitatory neuron, E,
and an inhibitory neuron, I [87]. The membrane potential, V , of E increases
linearly at a rate, R, until it reaches the firing threshold, Π. When V = Π,
E spikes and V is reset to the resting membrane potential, V0. The period is
T = Π/R. The spike generated by E excites I, which in turn after a time delay,
τ , delivers an inhibitory post-synaptic potential (IPSP) to E. In general the
effect of this IPSP will be to change the timing of the next spike generated
by E by an amount δ, where δ is a function of the phase at which the IPSP
arrives after E has fired. However, here we assume that δ is independent of
the phase and hence the effect of the IPSP when R > 0 is to decrease V by an
amount δ. This is equivalent to increasing the time that the next spike gener-
ated by E occurs by an amount δ. For simplicity we take V0 = 0 and define the
following dimensionless variables: τ∗ = τ/T , t∗ = t/T , v∗ = V/Π, ∆ = δ/Π,
so that the dimensionless firing threshold, period and voltage growth rate are,
respectively, Π∗ = 1, T ∗ = 1, R∗ = Π∗/T ∗ = 1. Dropping the asterisks we
see that the dynamics of the recurrent loop depend only on two parameters,
namely τ > 0 and ∆ ≥ 0. When τ < 1, E spikes periodically with period
1 + ∆. This is because decreasing the membrane voltage by an amount ∆ is
equivalent to increasing the interspike interval by 1 +∆.

Fig. 5. a) The time course of the membrane potential v for the integrate-and-fire
neuron E in a time-delayed RI. The dashed line indicates the threshold. b) Four
co-existence periodic attractors that occur when τ = 4.1 and ∆ = 0.8. The different
patterns are described by the number of inhibitory pulses between two successive
neuron spikings. Thus for the lower left pattern in b) we have going from left to
right, 0 inhibitory pulses between the first two spikes, 2 inhibitory pulses between
the next two spikes, then 2 inhibitory spikes, then 0, then 1. After this the pattern
repeats. Thus the shorthand label for this spike pattern is {02201}.

The essential condition for multistability in this dimensionless model is
that τ > 1 (Figure 5b). Complex behaviors become possible since the in-
hibitory pulses are not necessarily the result of the immediately preceding
excitatory pulse (Figure 5a). It can be shown that the solutions which arise
can be constructed from segments of length τ , where each segment satisfies
an equation of the form



Childhood absence epilepsy 17

τ = x+m+ x∆ ,

where m,n are positive integers and 0 < x < 1. For τ,∆ fixed, the total
numbers of pairs that satisfy this relationship is dτ/∆e, where the notation
d.e denotes the smallest integer greater than τ/∆. Since the number of (m,n)
segments is finite for a given τ and ∆, it follows that all solutions are periodic
with period S(1 +∆) where S is the number of excitatory spikes per period.

Despite the simplicity of this mechanism for generating multistability, it
makes a number of predictions that may be relevant for CAE. First, this model
draws attention to the importance of the long recurrent loops associated with
long τ ’s in generating paroxysmal events. For a given recurrent inhibitory
loop, multistability can arise either because T is decreased or because τ is
increased. Increasing the excitatory drive to cortex by, for example, up reg-
ulation of excitatory synapses, decreases T and hence would be expected to
produce multistability (seizures) as is observed experimentally [88, 89]. On
the other hand, brain maturation is associated with increased myelination of
neuronal axons which increases their conduction velocities (see Section 8),
thereby decreasing τ , and reducing the number of coexistent attractors. This
observation could explain why this epilepsy is particularly common in children
and why seizures tend to decrease in frequency, and even disappear altogether,
as the child gets older.

7.2 Multistability: Hopfield model

The next step is to examine models which describe the dynamics of two inter-
acting neurons. In particular we explore the dynamics exhibited by the motifs
in Figure 4a using the equations for a Hopfield network. For 2-neuron circuit
we have

ẋ1 = −k1x1(t) + ω11g11(x1(t− τ11)) + ω21g21(x2(t− τ21)) + I1 ,

ẋ2 = −k2x2(t) + ω22g22(x2(t− τ22)) + ω12g12(x1(t− τ12)) + I2 . (4)

In this model, the variables xj(t) (j = 1, 2) are the spiking rates of the neurons
at time t and the kj represent a natural decay of activity in the absence
of input. The parameters ωij represent the strength of the connections: ω11

and ω22 are the strengths of the self-connections; ω12 is the synaptic weight
from x2 to x1, ω21 is the weight from x1 to x2. The sign of ωij determines
whether the synapse is excitatory (ωij > 0) or inhibitory (ωij < 0). The
parameters Ij (j = 1, 2) are the external inputs to the neurons. The function
g(x) is sigmoidal and can be written in many ways, most commonly taken
as tanh(cx), xn/(c + xn), or 1/(1 + e−cx). Appendices B and C illustrate
applications of the use of readily available computer software packages for the
analysis of (4).

The CI, RE and RI micro-circuits depicted in Figure 4a correspond to the
following choices of signs in (4)
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CI [12, 59, 61, 60, 90]: ωij < 0
RE [90, 91, 92, 93, 94]: ωij > 0
RI [87, 90, 95, 96, 97, 98, 99, 100]: ω11, ω12 < 0, ω21, ω22 > 0
The fixed point solutions of a system with time delays, x̄, are the same

as those of the corresponding system with zero delay. Thus for (4) we obtain
(x̄1, x̄2) by setting ẋ1 = ẋ2 = 0 and solving

0 = −k1x̄1 + ω11g11(x̄1) + ω21g21(x̄2) + I1 , (5a)
0 = −k2x̄2 + ω22g22(x̄2) + ω12g12(x̄1) + I2 . (5b)

Since our model is two dimensional, we can also visualize the determination of
the fixed points geometrically (Figure 6). The fixed points are the intersection
points of the curves defined by these equations. It is possible to analyze the
equations in some detail to determine the number of possible equilibrium
points see e.g. [101, 102].

(a) RI circuit (b) RE circuit

Fig. 6. Nullclines showing single fixed point in RI case and multiple fixed points
in RE case. The solid line gives the x1-nullcline determined from (5a) and the
dashed line gives the x2-nullcline determined from (5b). The nonlinearity is gij(u) =
tanh(u − θ). Parameter values are (a) θ = 1.5, k1 = 1, ω11 = −0.6, ω21 = 1, I1 =
1.5, k2 = 1, ω12 = −1, ω22 = 0.5, I2 = 1.5 and (b) θ = 1.5, k1 = 1, ω11 = 0.2, ω21 =
1, I1 = 1.5, k2 = 1, ω12 = 1, ω22 = 0.7, I2 = 1.5.

To determine the stability of a fixed point we use linear stability analysis.
First we linearize (4) about a fixed point, x̄:

u̇1 = −k1u1(t) + a11u1(t− τ11) + a21u2(t− τ21) , (6)
u̇2 = −k2u2(t) + a22u2(t− τ22) + a12u1(t− τ12) ,
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where u(t) = x(t)− x̄ and aij = ωijg
′
ij(x̄i). This model will tell us about the

evolution of solutions which start close enough to a fixed point. To determine
whether these solutions grow or decay in time, we consider trial solutions of
the form u ∼ eλt. Substituting this form into (6) and simplifying we arrive at
the characteristic equation:

(λ+ k1 − a11e
−λτ11)(λ+ k2 − a22e

−λτ22)− a12a21e
−λ(τ12+τ21) = 0 . (7)

Any root λ of this equation leads to a solution of (6). The roots may be real
or complex. If all the roots have negative real parts then all solutions of (6)
decay to zero in the longterm. In this case the fixed point of (4) is stable. If
at least one root has positive real part the some solutions of (6) will grow in
time. In this case the fixed point of (4) is unstable. If any root has zero real
part then the stability is not determined by the linearization.

If there are no delays in the model, then (7) is a quadratic polynomial,
and has two roots which can be explicitly determined. The presence of the
delays means that there are an infinite number of roots. Nevertheless, math-
ematical analysis can be used to determine if the equilibrium point is stable
or not. In particular, one can show that all the roots except a finite number
(possibly zero) have negative real parts. Of particular interest is the fact that
the delays associated with the connections between the neurons only appear
in the combination τ12 + τ21. Thus, for the motifs we are considering, it is the
total delay of the loop that is important not the individual components, as is
well-known [85]. Note that the parameter a11 depends explicitly on ω11 but
may also depend implicitly on the other ωij through the value of the fixed
point, x̄1. Similarly for the other aij . This can complicate the analysis.

Bifurcations can occur in the system when a change of stability of an
equilibrium point occurs. From the discussion above this corresponds to the
situation when at least one root of the characteristic equation has zero real
part, and the rest have negative real parts. To begin we focus on the simplest
case, when the characteristic equation has a zero root (λ = 0). This situation
is associated with a bifurcation that creates or destroys fixed points, thus can
be important in the generation of multistability of fixed points.

In the micro-circuit model this type of bifurcation can occur if

(k1 − a11)(k2 − a22)− a12a21 = 0 . (8)

Recalling the definitions of the aij and the signs of the coupling, it is clear
that this type of bifurcation is possible in all the micro-circuits, but only under
some constraints for example:

CI a12 a21 sufficiently large, i.e., strong enough coupling between neurons
RE a11 > k1 and a22 > k2 or a11 < k1 and a22 < k2, i.e., similar self-coupling

on both neurons either strong or weak
RI a22 > k2 i.e., strong enough self-coupling on the inhibitory neuron
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The next and perhaps most important case is when the characteristic
equation has a pair of pure imaginary roots Ωi. Setting λ = Ωi in (7) and
separating pure and imaginary parts yield the pair of equations

k1k2 −Ω2 + a11a22 cos(Ω[τ11 + τ22]) + a12a21 cos(Ω[τ12 + τ21])− (9)
Ω[a22 sin(Ωτ22) + a11 sin(Ωτ11)]− k1a22 cos(Ωτ22)− k2a11 cos(Ωτ11) = 0 ,

(k1 + k2)Ω − a11a22 sin(Ω[τ11 + τ22]) + a12a21 sin(Ω[τ12 + τ21])− (10)
Ω[a22 cos(Ωτ22) + a11 cos(Ωτ11)]− k1a22 sin(Ωτ22) + k2a11 sin(Ωτ11) = 0 .

Fixing all the parameters except one, these equations can be solved for the
value of the control parameter at which the pure imaginary roots occur and the
corresponding value of Ω. Note that the equations are periodic with respect
to each of the delays. Thus, fixing all of the parameters except one delay, say
τij , if (Ω∗, τ∗ij) is a solution of these equations, then (Ω∗, τ∗ij + 2mπ/Ω), are
also solutions for any integer value of m.

Alternatively, equations (9)–(10) can be thought of as defining curves for
two control parameters in terms ofΩ and the other parameters. Figure 7 shows
two examples where the control parameters are the combinations τ12+τ21 and
a12a21.

Under appropriate conditions on the nonlinearities in the model (the func-
tions gij) the system will undergo a Hopf bifurcation at these points, leading to
the creation of a periodic solution. The stability of this solution also depends
on the nonlinearities. See [43, 46, 103, 104, 105] for more details.

It is well known that the presence of delay in a model can facilitate the
occurrence of Hopf bifurcations, this is known as a delay-induced Hopf bifur-
cation. In the micro-circuit model, it is straight forward to show that Hopf
bifurcations are not possible if there are no delays (i.e. τij = 0) regardless of
the signs of the connection weights.

More complex bifurcations can occur if the characteristic equation has
multiple roots with zero real part. In models with delay it has been shown
that such behavior is quite prevalent if the system has multiple delays
[103, 106, 107]. Such points, which correspond to intersection points on the
bifurcation curves shown in Figure 7, can lead to multistability and more
complex dynamics [104, 105]. Examples of this behavior are illustrated in
Figure 8.

We briefly outline some situations that can occur. If the characteristic
equation has a double zero root (a Bogdanov-Takens bifurcation point), it is
possible to have multistability between a slowly varying periodic solution and
one or more fixed points. This has been shown to occur in the RI [108] and
CI [85, 107] microcircuits. If the characteristic equation has a zero root and
a pure imaginary pair it is possible to have multistability between a periodic
solution and one or more fixed points. If the characteristic equation has two
pairs of pure imaginary eigenvalues without resonance, then it is possible to
have bistability between periodic orbits with an unstable two torus (or the
reverse). This has been shown to occur in the CI and RI microcircuits [85, 107].
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(a) τ11 = 1 (b) τ11 = 3

Fig. 7. Bifurcation curves for an RI circuit in connection strength-delay parameter
space. The curves are determined by equations (9)–(10). Due to the periodicity with
respect to τ12 +τ21 in these equations, there is an infinite set of curves, of which two
are shown. The parameter values for kj , ωjj , Ij , j = 1, 2 are given in Figure 6(a),
τ22 = 0 and τ11 as shown. When the delay in the local loop of the inhibitory neuron,
τ11, is large enough intersection points can occur. The fixed point is stable to the
right of the curves.

Recalling our interpretation of this model in terms of firing rates, we can
give biological meaning to these figures. For example, in Figure 8e the neurons
are firing at some steady rate when a brief stimulus switches this to a large
amplitude oscillatory firing rate. This spontaneously disappears after some
time and the system settles on a (different) steady firing rate. The large am-
plitude oscillation correponds to an unstable periodic orbit, which is present
due to the delay in the system. With no delay, the system merely switches
between two different firing rates (Figure 8a). The oscillatory behaviour is
sometimes referred to as a delayed induced transient oscillation (DITO). Our
main point is that the DITO behaviour is very reminiscent of the seizure
behaviour observed Figure 1.

7.3 Multistability: Hodgkin-Huxley models with delayed recurrent
loops

The next step is examine the effects of the ion channels on the dynamics of
delayed recurrent loops. Foss et al. [87] described the membrane potential of
the excitatory neuron E using the following Hodgkin-Huxley model (HH) by
considering the effect of IPSP as self-feedback
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Fig. 8. Bistability between fixed points separated by an unstable limit cy-
cle (DITO). a)-c) CI circuit. d)-f) RE circuit. Details of the CI circuit are
given in [59] and the XPPAUT program ditto.edo can be downloaded from
faculty.jsd.claremont.edu/jmilton/Math_Lab_tool/Programs/XPPAUT. The
program and parameters for the RE circuit are given in Appendix B. The initial
conditions are chosen to place the dynamics near the separatrix that separates the
two co-existent stable fixed points. In each case we show only the activity of one
of the neurons and τ = τ12 = τ21. Note that the duration of the DITO’s is much
longer than τ .


Cx′(t) = −gNam3h(x(t)− ENa)− gKn4(x(t)− Ek)

−gL(x(t)− EL)− F (x(t− τ)) + Is(t),
m′(t) = αm(x)(1−m)− βm(x)m,
n′(t) = αn(x)(1− n)− βn(x)n,
h′(t) = αh(x)(1− h)− βh(x)h ,

(11)

where F (x) is the signal function which describes the effect of the inhibitory
neuron I on the membrane potential of the excitatory neuron E, and τ is
the time lag. Other variables and parameters include the membrane potential
(x(t)), the membrane capacitance (C), the stimulus (Is). Constants gNa and
gK are the maximum conductance of sodium and potassium ion channels, the
constant gL is the conductance of leakage channel, constants ENa, EK and



Childhood absence epilepsy 23

EL are empirical parameters called the reversal potential. There are three
(gating) variables (m,n, h) that describe the probability that a certain channel
is open, and these variables evolve according to the aforementioned system of
ordinary differential equations with functions α and β indexed by (m,n, h)
appropriately. The initial function φ in the interval [−τ, 0] were assumed to
have the form of neural spike trains. Namely, it is given by a sum of square
pulse functions.

With sufficiently large Is that makes the neuron fire successively, several
coexisting periodic attractors were found [87, 102, 109] (Figure 9). Solutions
starting from domains of attraction of these periodic solutions exhibit exotic
transient behaviors but eventually become periodic.

Fig. 9. Four coexisting attracting periodic solutions generated by the excitatory
neuron E for the Hodgkin-Huxley model (HH) given by equations (11). The right-
hand side is the blow up of the solutions in a given period (not delay τ) to clearly
illustrate the patterns of solutions.

The corresponding linear integrate-and-fire model (LIF) and quadratic
integrate-and-fire model (QIF) are given by



24 John Milton, Jianhong Wu, Sue Ann Campbell and Jacques Bélair

x′(t) = −βx(t)− F (x(t− τ)) + Is(t), (12)
x′(t) = β(x− µ)(x− γ)− F (x(t− τ)) + Is(t), (13)

with the firing time tf :

tf : x(t) = ϑ1 and x′(t)|t=tf > 0,

and the firing threshold ϑ1. These models can also exhibit multistability in
terms of coexisting attractive periodic solutions, when the absolute refractori-
ness is incorporated. Each time the excitatory neuron fires a spike, a feedback
is delivered at time τ later. The type of multistability not only depends on
the time delay τ but also on the effective timing of the feedback impacting
on the excitatory neuron. The total timing of the feedback is the portion of
the duration when the spike is above the firing threshold. An important fac-
tor determining the effective timing of the feedback is the absolute refractory
period, a short period after the firing of a spike during which the neuron is
not affected by inputs at all. Systematic analysis can be conducted for both
the linear integrate-and-fire model and quadratic integrate-and-fire model to
determine when multistability occurs, how many coexisting attractive peri-
odic solutions appear and their patterns (inter-spike intervals and oscillatory
patterns within these intervals). See [102].

We note that multistability is also observed in RI models which take into
account the phase resetting properties of each neuron in the loop [97, 110]. The
advantage of this approach is that the phase resetting curve can be measured
experimentally and thus all parameters in the model are known.

8 Developmental aspects

The developmental pattern of seizure recurrences in CAE suggests that there
must be processes that are evolving on time scales of the order of years which
modify the impact of the defect in the GABAA on neurodynamics at a given
age. There are two main changes that occur in the human brain between 3-4
years of age and adolescence.

First there are changes in synaptic density, namely the number of synapses
per unit volume of cortical tissue [111, 112, 113]. At birth the infant brain
has a synaptic density nearly equal to that of the adult brain [112]. Beginning
within the first year of life there is a 30-40 % increase in synaptic density
which peaks in the frontal cortex between ages 3-4 [113]. This is followed by
a process of synaptic elimination so that by adolescence the synaptic density
is again approximately equal to that of the adult.

Second, there are changes in axonal myelination and hence axonal conduc-
tion velocities. The active period for axonal myelination in the brain begins
during the 28 week of gestation and then slows by mid to late adolescence. In
some of the anterior association areas of the cortex, myelination continues un-
til the 5th decade [114, 115]. The changes in myelination occur in a predictable
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spatial and temporal sequence [115]. Myelination proceeds in a posterior to
anterior direction so that sensory pathways myelinate first, followed by motor
pathways and then the association areas. Within a given functional circuit,
sub-cortical structures myelinate before cortical regions. The corpus callo-
sum, the major white matter bundle connecting the two hemispheres, begins
myelinating at 4 months post-natally and is not complete until mid to late
adolescence: the anterior part is the last to myelinate. The time course for the
disappearance of absence seizures in CAE coincides with the myelination of
the long association and commissural fibers in the anterior quadrants of the
brain. Thus the ages during which seizure activity is highest corresponds to
the time when synapses are being eliminated from the brain and the myelina-
tion of axons is increasing. In particular the disappearance of absence seizures
coincides with the myelination of the long association and commissural fibers
in the anterior quadrants of the brain which connect different regions of cortex
within the same hemisphere (association fibers) and between the two hemi-
sphere (commissural fibers).

It is not known whether changes in synapses and/or changes in axonal
conduction velocities are most important for expression of absence seizures in
CAE. However, the observation that there are no long term cognitive impair-
ments in CAE patients and the intelligence of children with CAE is within
normal limits provided that their seizures are well controlled suggests that
it is unlikely that seizure generation is related to abnormalities in synaptic
density. On the other hand, with the advent of diffusion tensor imaging (DTI)
techniques, abnormalities in myelination have been identified in children with
CAE, particularly in the anterior part of the corpus callosum [116]. Similar
abnormalities have been reported in a rat model for absence epilepsy [117].
Although these associations do not prove causality, they do suggest the pos-
sibility that the dependence of axonal conduction velocities (and hence time
delays) on myelination might be an important parameter for this dynamic
disease.

In a similar manner, the developmentally dependent changes related to
τ may also explain the bimodal incidence of all types of epilepsy shown in
Figure 10. Epileptic seizures are most common in the young and the elderly.
Studies on aging monkeys suggest that increases in axonal conduction velocity
are related to the death of oligodendrocyctes, namely the cell type responsi-
ble for myelinating axons in the brain. When an oligodendrocyte dies, other
oligodendrocytes remyelinate the axon. However, the new myelin sheaths are
thinner and the internode distances are shorter. Consequently, v is decreased
and τ is increased.

Although the concept that the brain is most susceptible to generating
seizures when τ is long is appealing, it may be an oversimplification. Indeed
mean field estimates of cortical instability boundaries suggest that as v in-
creases (τ decreases), the cortical model is able to reproduce SWDs [119].
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Fig. 10. Age-related incidence of epilepsy in industrialized societies. The data is
from [118] and we have pooled data for males and females.

9 Discussion

The brain is a high-dimensional and complex dynamical system. The high di-
mensionality arises because the number of neurons is large and signals between
them are time delayed. The dynamics of the microcircuit building blocks of
the brain, such as CI, RE and RI, all exhibit multistability. Thus it is not
surprising that many authors have emphasized metaphors for brain dynamics
that take the form of potential landscapes with many “hills” and “valleys”
[28, 67, 120, 121]. Moreover this landscape itself continually changes as a result
of changes in states of arousal, aging, and as the brain learns and adapts to its
environment [12, 122]. Frequent transitions between the attractors (“hills”)
lead to mesoscopic states in which dynamics are bounded and time-dependent.
A lower bound for neurodynamics is ensured because excitatory connections
exceed inhibitory ones and the upper bound is the result of neural refractori-
ness, accommodation and limited energy resources.

Our approach has emphasized that clinically significant changes in neu-
rodynamics, such as the occurrence of an epileptic seizure, may be more re-
lated to the unstable states that separate attractors (“hills”) than to the
stable attractors [28, 47]. This concept can be most readily understood in
the context of the DDEs that describe the microcircuits which generate DI-
TOs [12, 59, 60, 61, 93]; however, DITO-like phenomena can also arise in
other contexts as well [123]. A DDE corresponds to an infinite dimensional
dynamical system since the number of initial conditions that must be speci-
fied to obtain a solution is infinite. Each initial condition is associated with
an eigenvalue. For the unstable solution that separate two attractors, there
must be at least one positive eigenvalue. This means that in the long time
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the solutions must converge on one of the attractors. However, the short-time
behaviors are influenced by the eigenvalues which have negative real parts.
Consequently, the dynamical behaviors can be momentarily “trapped” in the
vicinity of the unstable fixed-point. Our suggestion is that these “momentarily
trapped” behaviors can sometimes be manifested as an epileptic seizure.

The study of the dynamics of neural microcircuits at the benchtop has
a long history. Most often “hybrid” analogues of microcircuits are created
in which a neuron interacts with an electronic device to collectively form a
microcircuit (for a review see [124]). Modern day approaches use optogenetic
techniques to manipulate neural microcircuits in situ [83]. However, it is not
yet known how changes at the level of ion channels, e.g. the GABAA receptor
in CAE, result in episodic seizure recurrences. It is possible that this will
become clear as we understand the rules that relate the dynamics of single
microcircuit to those of large ensembles of microcircuits. In this way the study
of CAE may not only bring relief to its sufferers and their families, but also
provide insights into how the brain functions.
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Appendix A: Numerical methods

Two numerical techniques which can aid in the study of delay differential
equations such as (4),(11),(12) and (13) are numerical simulation and numer-
ical bifurcation analysis.

Numerical simulation determines an approximate solution of a differential
equation for a given choice of the initial state. Recall that for a delay differen-
tial equation, the initial state is a function which determines the value of the
solution for t in [−τ, 0]. For example, for the two-neuron Hopfield networks
described by (4), the initial state is specified as follows

x1(t) = φ1(t), x2(t) = φ2(t), −τ ≤ t ≤ 0.

Typically φ1, φ2 are taken to be a constant, i.e.,

x1(t) = x10, x2(t) = x20, −τ ≤ t ≤ 0 ,

which is reasonable for most experimental systems. It should be noted that
only solutions which are stable can be accurately approximated using nu-
merical simulation. The presence of unstable solutions may be deduced from



28 John Milton, Jianhong Wu, Sue Ann Campbell and Jacques Bélair

transient behavior, but details of the structure cannot be found through nu-
merical simulation.

There are two commonly used programs for the numerical integration of
delay differential equations. The free, stand-alone package XPPAUT [125] can
perform numerical integration using a variety of fixed-step numerical meth-
ods. The program is run through a graphical user interface which is used not
just to visualize results, but also to modify parameters, initial conditions and
even the numerical integration method. The main benefit of this program is
its flexibility and the ease with which different simulations can be compared.
Information on how to download the package as well as documentation and tu-
torials are available at www.math.pitt.edu/~bard/xpp/xpp.html. The book
[126] gives a overview of the package including many examples. XPPAUT
code for the micro-circuit example (4) considered in this chapter is included
in Appendix B. The MATLAB function, DDE23 [127], is a variable step size
numerical integration routine for delay differential equations. A tutorial on
this routine available at www.mathworks.com/dde_tutorial and the DDE23
code for the micro-circuit example in Appendix B is given in Appendix C. A
benefit of using DDE23 is that results may be visualized using the extensive
graphing tools of MATLAB.

Numerical bifurcation analysis has two aspects: the approximation of a
solution and the calculation of the stability of this solution. The approxi-
mation of a solution done using numerical continuation, which uses a given
solution for a particular parameter value to find a solution for a different
(but close) parameter value. Numerical continuation can find both stable and
unstable equilibrium and periodic solutions. More complex solutions (such as
tori) are not implemented in all packages. Once the continuation has found an
equilibrium solution to a desired accuracy, a numerical bifurcation program
determines approximations for a finite set of the eigenvalues with the largest
real part. The stability of periodic orbits can be numerically determined in
a similar way. Numerical bifurcation packages generally track the stability of
equilibrium points and periodic orbits, indicating where bifurcations occur.

One commonly used package that carries out numerical bifurcation anal-
ysis for delay differential equations is DDE-BIFTOOL [128], which runs in
MATLAB. An overview of the numerical methods used in this package and
some examples of applications can be found in [129]. The user manual and
information on how to download the package are available at
twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml

A list of other software available for working with delay differential equa-
tions can be found at
twr.cs.kuleuven.be/research/software/delay/software.shtml
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Appendix B: Delay differential equations using XPPAUT

Here we illustrate the use of XPPAUT for simulating the neural micro-circuits
shown in Figure 4 using the Hopfield equations described by (4). Our focus
is on how time delay differential equations (DDE) are handled in XPPAUT
and how stimuli in the form of pulses can be used to cause switches between
attractors.

In our experience installing XPPAUT on PC computers is quite straight-
forward. However, problems can arise when installing XPPAUT on Mac com-
puters. The IT department at The Ohio State University has prepared a very
useful installation guide for Mac users which can be accessed at

https://docs.math.osu.edu/mac/how-tos/install-xpp-xppaut-mac/

# Note: in ODE files, comments are preceded by #
#
# This program numerically integrates the
# Hopfield neural net equations with delay.
# We show the parameter choices for a RE circuit.
# However, the parameter choices we recommend for CI and RI
# are given in Comments 3-4. Note that the # command can be used
# to comment out lines of code which are not required.
#
# EQUATIONS

# See Comment 1

x1’= -k1*x1+w11*f1(delay(x1,tau11))+w21*f2(delay(x2,tau21))+I1+Istim1
x2’= -k2*x2+w12*f1(delay(x1,tau12))+w22*f2(delay(x2,tau22))+I2+Istim2
f1(x)=tanh(n1*(x-theta1))
f2(x)=tanh(n2*(x-theta2))

# See Comment 2

Istim1=I11*(heav(t-tstart1)-heav(t-tend1))
Istim2=I22*(heav(t-tstart2)-heav(t-tend2))

# PARAMETERS
# These parameters will reproduce Figure 8 b)

# See Comments 3, 4

p k1=1,k2=1
p w11=0.5,w21=1,w22=0.5,w12=0.5
p tau11=1,tau12=7,tau21=7,tau22=15
p n1=1,n2=1,theta1=1.5,theta2=1.5
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p I1=1.5,I2=1.5
p I11=0.805,tstart1=100,tend1=120
p I22=0,tstart2=100,tend2=120

# INITIAL CONDITIONS

See Comment 5

init x1=0.5,x2=0.6
x1(0)=0.5
x2(0)=0.6

# CHANGES FROM XPP’S DEFAULT VALUES

# See Comment 6

@ total=400,dt=.01,xhi=400,maxstor=2000000,delay=10

done

Comments:

1. Terms of the form x(t− τ) become delay(x,tau) in XPPAUT. See also
Comment 5.

2. Switches between co-existing attractors are made by using square pulses.
The magnitude of the pulse is given by I11,I22. The onset of the pulse
occurs at tstart and the end of the pulse occurs at tend.

3. Counter inhibition (CI). Make the following parameter changes to the RE
program (above):

w12=w21=-1.2
w11=-0.1,w22=-0.2
tau11=tau22=6, tau12=tau21=4.5
I11=I22=1
tstart1=tstart2=300
tend1=tend2=320

with the initial conditions:

init x1=1,x2=2.1
x1(0)=1
x2(0)=2.1

For these choices of the parameters, there are three coexisting attrac-
tors: two stable fixed points and a stable limit cycle. As the time delays
tau12,tau21 are decreased the limit cycle dusappears.

4. Recurrent inhibition (RI). Make the following parameter changes to the
RE program (above):
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w11=-0.6, w12=-1, w21=1, w22=0.5
tau11=3,tau12=4.5,tau21=4.5,tau22=0
I11=0.45, tstart1=450 tend1=470
I22=0

with the initial conditions:

init x1=2,x2=2.1
x1(0)=2
x2(0)=2.1

For these choices of the parameters, there is bistability between two limit
cycles with an unstable torus in between. Changing the delays just a little
eliminates the bistability.

5. In mathematics, the initial function, φ, for a DDE is defined on the inter-
val [−τ, 0]. However, in XPPAUT φ is divided into two parts: the initial
condition at t=0, φ(0), and a function φ(s) where s ∈ [−τ, 0). The default
choice is φ(s) = 0. The commands x1(0)=0.1 and x2(0)=0.2 set φ(s) to a
constant value. A look up table can be used to introduce an arbitrary φ(s)
as shown in [59]. In running a XPPAUT program for a DDE it is necessary
to open three windows Initial Data, Delay ICs and Parameters. The
Initial Data panel will show the initial data, the Delay ICs will show
φ(s) and the Parameters panel will show the parameter choices to be
used for the simulation. An important point is that to run the simulation
one must click on ‘OK’ for each panel and then click on ’Go’ on one of
these panels. Failure to do this will result in numerical errors since the
initial function will not be handled correctly. Finally when determining
the nullclines it is important to set all of the delays to 0.

6. The parameter delay should be greater than tau. The parameter delay
reserves the amount of memory needed to store φ for each variable. Since
one of the goals of the simulation is to see the effect of changing τ on
the dynamics, it is convenient to set delay slightly higher that the largest
delay anticipated. If the program runs out of memory, the amount of
memory reserved for this purpose can be increased by using the command
maxstor.

Appendix C: Delay differential equations using Matlab’s
dde23

For users that have access to the latest version of Matlab, it is possible to
integrate the Hopfield equations described by (4) using dde23. Here we give
the code that integrates the RE model for the same parameters as described
above. Note that two m files are required: delay_circuit.m supplies the
parameters and performs the integration; DRHS.m gives the equations to be
integrated. The symbol % comments out the parts of the code that are not
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needed for the RE circuit. In order to run this program, put both files in the
same directory and then type delay_circuit()
DRHS.m

function yp = DRHS(t,y,Z);

global k W n theta I Istim tstart tend;

% Z(i,j) = xi(t-tauj)
% tau=[tau11,tau12,tau21,tau22]
ylag11 = Z(1,1); % x1(t-tau11)
ylag12 = Z(1,2); % x1(t-tau12)
ylag21 = Z(2,3); % x2(t-tau21)
ylag22 = Z(2,4); % x2(t-tau22)
yp = [
-k(1)*y(1) + W(1,1)*tanh(n(1)*(ylag11-theta(1))) ...
+ W(2,1)*tanh(n(2)*(ylag21-theta(2))) ...
+ I(1) + Istim(1)*(heaviside(t-tstart(1))-heaviside(t-tend(1)));
-k(2)*y(2) + W(1,2)*tanh(n(1)*(ylag12-theta(1))) ...
+ W(2,2)*tanh(n(2)*(ylag22-theta(2))) ...
+ I(2) + Istim(2)*(heaviside(t-tstart(2))-heaviside(t-tend(2)));
];

Note: The entries for yp are very long. The ... is the Matlab code for breaking
up long equations into shorter ones.

delay_circuit.m

function delay_circuit()
clear all;
close all;
clc;
global tau;
global k W n theta I Istim tstart tend;

% Initialization
% delays
tau11=0.001;
tau22=15;

% other parameters
w11=0.5;
w21=1;
w12=0.5;
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w22=0.5;
theta=[1.5,1.5]’;
I=[1.5,1.5]’;
n=[1,1]’;
k=[1,1]’;

% stimulation parameters
I11=0.805;
tstart1=100;
tend1=120;
I22=0;
tstart2=100;
tend2=120;

% initial conditions
y10=0.5;
y20=0.6;

% start/end values of t
t0=0;
t1=1000;

% min/max for plotting
umin = 0;
umax = 3;

% matrix form of parameters
W=[[w11,w21]’,[w12,w22]’]
Istim=[I11,I22]’
tstart=[tstart1,tstart2]’
tend=[tend1,tend2]’
% initial conditions
yi =[y10,y20]’
% integration time
interval=[t0, t1];

% First plot
tau=[tau11, 1., 1., tau22]
sol = dde23(’DRHS’,tau,yi,interval);
fig1 = figure(1);
subplot(3,1,1);
plot(sol.x,sol.y(2,:),’-b’,’LineWidth’,2);
title(’\tau_{12}=\tau_{21}=1’);
xlabel(’time t’);
ylabel(’x_2(t)’);
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axis([t0 t1 umin umax]);
grid on;

% Second plot
tau=[tau11, 6., 6., tau22]
sol = dde23(’DRHS’,tau,yi,interval);
subplot(3,1,2);
plot(sol.x,sol.y(2,:),’-b’,’LineWidth’,2);
title(’\tau_{12}=\tau_{21}=6’);
xlabel(’time t’);
ylabel(’x_2(t)’);
axis([t0 t1 umin umax]);
grid on;

% Third plot
tau=[tau11, 7., 7., tau22]
sol = dde23(’DRHS’,tau,yi,interval);
subplot(3,1,3);
plot(sol.x,sol.y(2,:),’-b’,’LineWidth’,2);
title(’\tau_{12}=\tau_{21}=7’);
xlabel(’time t’);
ylabel(’x_2(t)’);
axis([t0 t1 umin umax]);
grid on;

end
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