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1 Introduction Lymnaea stagnalis, often termed the great pond
snail, is characterized in part by its ability to take in oxygen both cu-
taneously and aerially (via its rudimentary lung). The central nervous
system of the Lymnaea is composed of a relatively small number of large,
identifiable neurons. In 1990, Syed et al. [13] established that respiratory
rhythmogenesis in the Lymnaea is controlled by a 3-neuron central pat-
tern generator (CPG) as depicted in Figure 1. Syed et al. [13, 15] were
able to identify and culture the three neurons that make up the CPG,
both singly and together, where they reform the same connections as
are present in vivo. Based on various experimental manipulations, they
described the following characteristics of this network. One of these neu-
rons, the RPeD1 (Right Pedal Dorsal 1) neuron, is spontaneously active
and is responsible for the initiation of respiration, upon receipt of in-
put from the respiratory orifice. The other two neurons, VD4 (Visceral
Dorsal 4) and Ip3I (Input 3), are quiescent except during active respira-
tion. The VD4 neuron (which is responsible for inspiration) is connected
via reciprocal inhibitory synaptic connections to both the RPeD1 neu-
ron and the Ip3I neuron (which is responsible for expiration). The Ip3I
neuron has excitatory synaptic connections to RPeD1 while the return
connections are biphasic, i.e., excitatory via postinhibitory rebound.

The ultimate goal of this work is to develop a mathematical model of
the breathing CPG in the Lymnaea. The work described here focuses
on the development of a Hodgkin-Huxley type mathematical model of
the RPeD1 neuron which includes ionic currents for sodium, potassium,
and calcium. Results from model simulations are compared to available
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FIGURE 1: Central pattern generator that controls respiration in the
Lymnaea stagnalis.

experimental data.

2 The model A Hodgkin-Huxley type mathematical model is used
to describe the rate of change of membrane potential (V ) as

(1) Cm
dV

dt
= −INa − IK − ICa − IL

where Cm is the membrane capacitance, and INa,K,Ca,L are the total
sodium (Na), potassium (K), calcium (Ca), and leak (L) currents re-
spectively. The sodium current INa is a sum of two currents: a standard
sodium current INas and a persistent sodium current INap . Similarly,
the potassium current IK is a sum of two currents: a standard potas-
sium delayed rectifier current IKV and a potassium A current IA. The
individual currents are modelled in the standard way.

INas = gNam
3(V )h(V )(V − VNa),(2)

INap = gNapm
3
p(V )hp(V )(V − VNa),(3)

IA = gAq2(V )b(V )(V − VK),(4)

IKV = gKV n4(V )(V − VK),(5)

ICa = gCar(V )s(V )(V − VCa),(6)
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where gz, z ∈ {Na, Nap, A, KV, Ca} are the conductances, and Vx, x ∈
{Na, K, Ca} are the reversal potentials of the currents. The activation
variables m, mp, q, n and r, and inactivation variables h, hp, b and s,
are described by first order equations

(7)
dy

dt
=

y∞(V ) − y

τy(V )
, y ∈ {m, mp, h, hp, q, b, n, r, s}

where y∞(V ) denotes the respective steady-state activation/inactivation
functions, and τy(V ) the time constants of activation/inactivation.

The steady-state activation and inactivation functions are of the form

(8) y∞(V ) =
1

1 + exp

(

V −V
1/2

y

Ky

) , y ∈ {m, mp, h, hp, q, b, n, r, s}

where V
1/2
y is the half-activation voltage, and Ky is the rate or “slope

factor.”

The activation time constants are described by the following functions

τy(V ) =
τ0,y exp

( δy(V −V 1/2

y )

Ky

)

1 + exp
(V −V

1/2

y

Ky

)

, y ∈ {m, q, n}(9)

τmp(V ) = 11.7 + 0.004 exp

(

−V

7.6

)

(10)

τr(V ) = tr,(11)

where tr is a constant. The inactivation time constants were taken to
be voltage independent, i.e., constant:

τy(V ) = ty, y ∈ {h, hp, b, s}.

Values for all other parameters of the model were obtained either
directly from the literature or via fitting of experimental data found in
the literature. The values so obtained, and the sources, are given in
Table 1. The membrane capacitance was taken to be Cm = 0.333 µF in
accordance with data from [7].
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z y gz Vz V
1/2
y Ky τ0,y δy ty

µS mV mV mV ms ms

Na1 m 0.5 22 -34.74 -9.32 6.98 0.16
h -59.95 9.4 3.44

Nap
2 mp 0.25 22 -18 -16.4

hp -46 7.43 300
Ca3 r 0.05 80 -18.08 -7.2 10.5

s -24 8.7 90
KV4 n 0.2 -70 -42.5 -24.5 62.56 0.83
A4 q 0.01 -70 -62.3 -8.3 16.1 0.087

b -69.1 8.8 200
L5 0.00025 -12.2

1 Parameter values computed using data from [9] and [4].
2 Parameter values computed using data from [8].
3 Parameter values computed using data from [12] and [10].
4 Parameter values computed using data from [11].
5 Parameter values set so that the resting potential would be in the

physiological range given in [7].

TABLE 1: Parameter values used.

3 Results Numerical simulations of the model were carried out
using XPPAUT, a differential equation simulation tool developed by
B. Ermentrout. See [3] for details. A Runge-Kutta fourth order solver
with stepsize 0.1 ms was used. Figure 2 illustrates the spontaneous spik-
ing behaviour of the model with the parameter values listed in Table 1.
While the frequency of the spiking, ≈ 0.65 Hz, is consistent with exper-
imental observations [7], the spike amplitude is smaller than that seen
in experiments. Examination of the individual currents indicate that
sodium initiates the spiking behaviour, after which calcium takes over.
The potassium current is involved in the repolarization phase, with IA

causing the shoulder of the action potential.

To determine the robustness of spiking in the model with respect to
the conductances, we carried out numerical bifurcation studies varying
each conductance separately. These studies were done using the AUTO
numerical continuation package [2] within the XPPAUT package. One
such study, using gNa as the bifurcation parameter, is shown in Figure 3.
In this example, stable oscillations exist between two limit points at
gNa = 0.4946 and 1.004. The unstable oscillations created by the limit
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FIGURE 2: Spontaneous spiking behaviour exhibited by a Hodgkin-
Huxley like model of the RPeD1 neuron. Initial conditions: V = −50,
m = mp = n = q = r = 0, h = hp = b = s = 1.

points are lost in subcritical Hopf bifurcations. A similar sequence of
bifurcations occurred for all the conductances. A summary of all the
numerical bifurcation studies is given in Table 3.

We also considered the situation where a constant applied current is
included in the voltage equation:

(12) Cm
dV

dt
= −INa − IK − ICa − IL + Iapplied

representing external input to the neuron. When the applied current
is varied, we observe the same bifurcation sequence as found for gCa.
Stable oscillations exist for Iapplied between −0.0024 µA (a limit point)
and 0.1533 µA (a supercritical Hopf bifurcation). In this range of Iapplied

the period of the oscillations decreases from 4168 ms to 180 ms.

4 Discussion and conclusions We have created a Hodgkin-Hux-
ley type model for the RPeD1 neuron of the freshwater pond snail,
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FIGURE 3: Numerical bifurcation curves for gNa. Thick/thin lines cor-
respond to stable/unstable equilibrium points, filled/open circles corre-
spond to stable/unstable periodic orbits. Stable oscillations occur for
gNa ∈ [0.4946, 1.004].

including 5 different ionic currents. Model results demonstrate spon-
taneous realistic spiking behaviour with a frequency that matches ex-
perimental results. Using numerical bifurcation analysis we established
bounds on the values of the conductances and the value of the ap-
plied current for the model to exhibit periodic behaviour. Within these
bounds, the frequency of the oscillations varies from 0.24 Hz to 7.75 Hz.

The bifurcation analysis is useful from a modelling standpoint, as
it establishes how robust the spiking behaviour is to variations in the
parameters. From Table 2, one can see that the model behaviour is quite
robust with respect to changes in the sodium conductances (gNa, gNap),
but less so with respect to changes in the calcium and delayed rectifier
potassium conductances (gCa, gKV ). The model is particularly sensitive
to changes in the potassium A current conductance (gA).

As discussed in the introduction, Lymnaea stagnalis does not breathe
continuously through its lungs, but alternates between cutaneous res-
piration while the animal is submerged and aerial respiration when it
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Parameter Bifurcation type Value Period Stable Oscillations
(µS) (ms)

gNa subcritical Hopf 0.4972 1450 [0.4946, 1.004]
limit point 0.4946 2103
limit point 1.004 238
subcritical Hopf 0.9171 175

gNap subcritical Hopf 0.2471 1477 [0, 0.2446]
limit point 0.2446 2175

gCa subcritical Hopf 0.0498 1468 [0.04967, 0.1339]
limit point 0.04967 2146
supercritical Hopf 0.1339 129

gA subcritical Hopf 0.01022 1541 [0, 0.01042]
limit point 0.01042 2345

gKV subcritical Hopf 0.1351 190 [0.1347, 0.2007]
limit point 0.1347 193
limit point 0.2007 2128
subcritical Hopf 0.2004 1458

TABLE 2: Location and type of bifurcation points for each conductance.

surfaces. How often the animal surfaces to breathe and the frequency of
its breathing at the surface depend on the amount of oxygen present in
the water, with more frequent breathing corresponding to lower oxygen
levels [14]. Experimental evidence [1] indicates that the regulation of
the breathing frequency is due to an excitatory input from an oxygen
sensing periphery neuron to the RPeD1 neuron. The increase in the
frequency of the spontaneous oscillations in our model RPeD1 neuron
as the applied current is increased suggests a mechanism for this ob-
servation: increase of the intrinsic RPeD1 oscillation frequency leads
to increase of the CPG network frequency which in turn leads to an in-
crease in breathing frequency. Clearly this needs further investigation in
a model for the full CPG network. Finally, we note that a small negative
applied current eliminates the oscillations in our model RPeD1 neuron.
This is consistent with experimental observations that inhibitory input
from periphery neurons [5] or other interneurons [6] can suppress the
oscillations of the RPeD1 neuron.
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