
Whole Bag Cell Neuron Synthesis

Having derived parameters for potassium and calcium is not enough to con-
struct the action potential of a whole bag cell neuron.  Variability between 
neurons is signi�cant enough that one bag cell’s calcium kinetics may not 
produce an action potential with another bag cell’s potassium kinetics.  Fur-
ther, the maximal conductances in Equa-
tion 2 for each current depends on prop-
erties that vary from experiment to exper-
iment (such as the patch size, ampli�er 
settings, and concentration of channels at 
the detection electrode).  To �nd a param-
eter space in a region consistent with ex-
perimental results, a genetic algorithm 
will be employed (right), having yielded 
successful results in the past (right, inset).

Mathematical Modeling

�e task of deriving a system of the form in Figure  2 requires gradual con-
struction, beginning with the base currents that make up the action poten-
tial (green region).  �e key observable of electrical activity in the neuron is 
the membrane potential and has the form of a leaky capacitor,

Where the change in membrane potential V is governed by the capacitance, 
C, and the instantaneous value of the applied, calcium, and potassium cur-
rents are given, respectively, by the right hand side.  With the exception of 
the constant applied current, IA, the current have the form, 

�at is, the xth current is a function of the maximal conductance gx, the acti-
vation function, m(V), the inactivation function h(V), and the driving force, 
(V-Vx), where Vx is the reversal potential of the ion current.   Experimental-
ists observe kinetics by isolating currents and performing voltage clamp ex-
periments.  We therefore construct each current model independently from  
raw data provided by Neil Magoski [4,5,8,9, Acknowledgements].

Calcium Channel
�e primary component of the upstroke is a calcium channel that exhibits 
use-dependence.  A series of pulses to a channel with use-dependence will 
return a successively lower peak current with each subsequent pulse (Figure 
3, le�).  To model this phenomena, the calcium channel’s activation kinetics 
are �rst �t to model, using the standard Hodgkin-Huxley framework,

�e functions, mss and τm, are function �t directly from experimental data.  
To model the use-dependence, a di�erential equation is added to the system 
to keep track of calcium concentration in a small intracellular domain near 
the calcium channels:

where s is the calcium concentration in the internal domain, ICa is the calci-
um current, Pb is the probability of a single ion channel being bound to a 
bu�er (presumably calmodulin), F is Faraday’s constant, b is the rate of calci-
um dissipation, v is the volume of the internal calcium domain, D describes 
the rate of di�usion of calcium out of the internal domain.  �e calcium-de-
pendent inactivation is then 

Together, Equations (3)-(5) describe the evolution of the calcium current as 
a function of membrane potential and calcium concentration.  For some pa-
rameters, the system exhibits use dependence (Figure 3, le�) comparable to 
the experimental result (Figure 3, right).

Aplysia Bag Cell Neuron

In the abdominal ganglia of the seaslug, Aplysia, bag cell neurons regulate 
egg-laying behavior.  �ought to be initiated by upstream acetylcholine in 
nature [7], the a�erdischarge is evoked by a pulse-like stimulus in the lab (Fig-
ure 2, Onset).  Two varieties of calcium-dependent nonselective cation chan-
nel are indicated in the transition from the steady state to the limit cycle ruin.  
�e �rst is voltage-independent and acts to depolarize the resting potential 
(Figure 2, Onset) as a function of calcium concentration [8], while the second 
is voltage dependent [9] and contributes to the repetitive �ring of the a�erdis-
charge (Figure 2, A�erdischarge).  During the a�erdischarge, an additional 
potassium current and a second-messenger systems are candidates for regula-
tors of a refractory period in the bag cell (Figure 2, Refractory). In addition to 
a�erdischarge behavior, the bag cell neuron also behaves as a typical neuron 
for a standard brief stimulus (Figure 6, green region).  To model these base 
currents, the Hodgkin-Huxley model [1] is used as a framework. Unlike the 
canonical Hodgkin-Huxley model (derived from the squid giant axon) the 
Aplysia bag cell neuron relies on calcium for the upstroke of its action poten-
tial, which displays some use-dependence, and there are at least two channels 
involved in the potassium current.

Motivation
In endeavoring to understand the basis 
of neural function, the �eld of theoreti-
cal neuroscience has gained traction in 
the last 20 years. �is traction has been 
largely due to the observation and 
mathematical modeling of the electro-
chemistry underlying neuron function 
in the squid giant axon over 60 years 
ago [1].  Today, there are three widely 
used classi�cations of mathematical 
neuron model: threshold spiking, os-
cillatory, and bursting neurons (Fig-
ures 1a-c), but these prototypical 
neuron models do not capture the di-
versity of neuron dynamics as they 
appear in nature and modi�cations are 
o�en necessary, particularly when second-messenger systems (governed by 
molecular reaction kinetics) are involved in neuron function.  One such ex-
ample is stimulus-dependent transient bursting.  

Transient Bursting Cycle

In nature, transient bursting cycles in neurons serves a broad range of func-
tions,  including working memory in humans, motor function in turtles, and 
escape responses in lamprey [2] as well as lactation and birth in mammals 
[3].  Aplysia has emerged as a model organism for this transient behavior, in 
which the phenomena is referred to as the a�erdischarge [4,5,6].  As is 
common of neurons that exhibit transient bursting, the persistent electrical 
activity of the neuron in an active state is associated with the release of neu-
ropeptides that modulate function downstream [7], making them important 
high-level signaling neurons.
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In addition to reproducing use-dependence experiments in bagt cell neu-
rons, the same parameter regime can also reproduce the standard activation 
experiments, at least over time courses relevant to the action potential (Fig-
ure 4).  �e model used here originated from a formulation of use depen-
dence in Aplysia abdominal ganglion [10].

Potassium Channels

Little ground has been made in separating the kinetics of the two potassium 
channels because ambiguities lie in �tting procedures.  Four equations of the 
form in Equation 3 must be �t to a summation of two equations of the de�ni-
tion of the current (Equation 2).  �e �tting program is applied to each volt-
age clamp trace independently, and therefore has no information about other 
voltage-dependent traces.  O�en, the resulting kinetics are noisy (Figure 5, 
bottom) despite a well-approximated �t (Figure 5, top).  In order to gain 
some control over the result in the kinetics, paramater forcing is used.  �e 
upper and lower bounds of the �t are determined as a deviation from the ex-
pected Botlzmann kinetics (Figure 6, bottom).  �e resulting �t loses some 
speci�city in favor of generality, but maintains the important qualitative 
properties of current response.
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