Codimension Two Bifurcations in a Ring of Identical Cells with Delayed Coupling

Sue Ann Campbell

Applied Mathematics, University of Waterloo

Collaborators: S. Bungay, I. Ncube, J. Wu, Y. Yuan Support: NSERC

Motivation

Many physiological systems have rings of similar neurons.

- Ability to synchronize
- Ability to respond differently to different inputs
- Coupling has time delays

Motivation

Many physiological systems have rings of similar neurons.

- Ability to synchronize
- Ability to respond differently to different inputs
- Coupling has time delays

Approach: Consider a simple model which can exhibit these properties.

Motivation

Many physiological systems have rings of similar neurons.

- Ability to synchronize
- Ability to respond differently to different inputs
- Coupling has time delays

Approach: Consider a simple model which can exhibit these properties.

Assumptions:

- Elements are capable of oscillating when isolated
- Elements, delays, coupling are identical \Rightarrow symmetry

Motivation

Many physiological systems have rings of similar neurons.

- Ability to synchronize
- Ability to respond differently to different inputs
- Coupling has time delays

Approach: Consider a simple model which can exhibit these properties.

Assumptions:

- Elements are capable of oscillating when isolated
- Elements, delays, coupling are identical \Rightarrow symmetry

Tool: Equivariant Bifurcation Theory

Background on Equivariant Bifurcation Theory

Let Γ be a group. The system $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ is called Γ-equivariant if it is invariant under the action of any member, γ, of the group:

$$
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}) \Leftrightarrow(\gamma \mathbf{x})^{\prime}=\mathbf{f}(\gamma \mathbf{x})
$$

Background on Equivariant Bifurcation Theory

Let Γ be a group. The system $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ is called Γ-equivariant if it is invariant under the action of any member, γ, of the group:

$$
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}) \Leftrightarrow(\gamma \mathbf{x})^{\prime}=\mathbf{f}(\gamma \mathbf{x})
$$

Example: Any model for ring of n identical neurons, with x_{j} the state of the $j^{\text {th }}$ neuron, is invariant under

- permutations: $x_{j} \rightarrow x_{j+1} \bmod n$
- reflections: $x_{j} \rightarrow x_{n+2-j} \bmod n$

Thus the equations are D_{n} - equivariant. D_{n} is the group of symmetries of an equilateral polygon with n sides.

Background on Equivariant Bifurcation Theory

Consequences: Bifurcations of system may be

- standard resulting in solutions where symmetry is unchanged
- equivariant resulting in solutions where symmetry is reduced (determined by subgroups of Γ)
Equivariant bifurcations are associated with
- repeated roots of the characteristic equation
- multiple branches of solutions emanating from the bifurcation

Background on Equivariant Bifurcation Theory

Consequences: Bifurcations of system may be

- standard resulting in solutions where symmetry is unchanged
- equivariant resulting in solutions where symmetry is reduced (determined by subgroups of Γ)
Equivariant bifurcations are associated with
- repeated roots of the characteristic equation
- multiple branches of solutions emanating from the bifurcation

References

M. Golubitsky, I. Stewart, and D.G. Schaeffer (1988), Singularities and Groups in Bifurcation Theory, volume 2. New York.
W. Krawcewicz and J. Wu (1999), Theory and applications of Hopf bifurcations in symmetric functional-differential equations. Nonlinear Anal., 35(7, Ser. A: Theory Methods):845-870.

Results for Ring of Neurons

Three types of Hopf bifurcation from the quiescent state are possible.

1. Standard Hopf: produces one synchronous oscillation
2. Standard Hopf: produces one antiphase oscillation (if n even)
3. Equivariant Hopf: produces $2(n+1)$ asynchronous oscillations of three types
(a) travelling wave (2)
(b) standing wave (n)
(c) mirror reflecting wave (n)

Results for Ring of Neurons

Three types of Hopf bifurcation from the quiescent state are possible.

1. Standard Hopf: produces one synchronous oscillation
2. Standard Hopf: produces one antiphase oscillation (if n even)
3. Equivariant Hopf: produces $2(n+1)$ asynchronous oscillations of three types
(a) travelling wave (2)
(b) standing wave (n)
(c) mirror reflecting wave (n)

Questions:

1. When do these oscillations occur?
2. Are they stable?

Results for Ring of Neurons

Three types of Hopf bifurcation from the quiescent state are possible.

1. Standard Hopf: produces one synchronous oscillation
2. Standard Hopf: produces one antiphase oscillation (if n even)
3. Equivariant Hopf: produces $2(n+1)$ asynchronous oscillations of three types
(a) travelling wave (2)
(b) standing wave (n)
(c) mirror reflecting wave (n)

Answers: Model dependent.
Tools: Analytical and numerical bifurcation analysis for delay differential equations.

Background on Numerical Bifurcation Analysis

- Uses iterative procedure to approximate equilibrium points and periodic solutions.
- Can find both stable and unstable solutions.
- By varying parameter and repeating, can follow branches of solutions.
- By approximating eigenvalues/Floquet mulitpliers, can determine stability of solutions.
- Produces:
- One parameter bifurcation diagrams: plot of norm of solution as a function of a parameter.
- Two parameter plots of bifurcation curves.

Background on Numerical Bifurcation Analysis

Packages:

For ODES

- AUTO (E. Doedel et al.)
- Locbif (A. Khibnik et al.)
- Matcont (Y. Kuznetsov et al.)

For DDEs

- DDE-BIFTOOL (K. Engelborghs, D. Roose et al.)

Specific Model: Hopfield-type n-ring

n additive neurons coupled together such that each element receives three time delayed inputs: one from self $\left(\tau_{s}\right)$, two from the nearest neighbours (τ)
$\dot{u}_{j}(t)=-d u_{j}(t)+a f\left(u_{j}\left(t-\tau_{s}\right)\right)+b g\left(u_{j-1}(t-\tau)\right)+b g\left(u_{j+1}(t-\tau)\right)$,

$$
\begin{gathered}
j \bmod n \\
d>0, \tau_{s} \geq 0, \tau \geq 0
\end{gathered}
$$

$a \lesseqgtr 0:$ Feedback is inhibitory/excitatory
$b>0$: Coupling is inhibitory/excitatory

Specific Model: Hopfield-type n-ring

n additive neurons coupled together such that each element receives three time delayed inputs: one from self $\left(\tau_{s}\right)$, two from the nearest neighbours (τ)

$$
\dot{u}_{j}(t)=-d u_{j}(t)+a f\left(u_{j}\left(t-\tau_{s}\right)\right)+b g\left(u_{j-1}(t-\tau)\right)+b g\left(u_{j+1}(t-\tau)\right),
$$

$$
\begin{gathered}
j \bmod n \\
f(0)=g(0)=0, f^{\prime}(0)=g^{\prime}(0)=1, f^{\prime}(x), g^{\prime}(x)>0, x \neq 0 \\
-\infty<\lim _{x \rightarrow \pm \infty} f(x), g(x)<\infty \\
f(u)=\tanh (u), g(u)=\frac{1}{\alpha} \tanh (\alpha u)
\end{gathered}
$$

Hopfield-type Neural Networks with Delay

References

- C.M. Marcus, F.R. Waugh and R.M. Westervelt (1989), Phys. Rev. A, 39(1):347-359.
- C.M. Marcus, F.R. Waugh and R.M. Westervelt (1991), Phys. D, 51:234-247.
- J. Wu (1998), Trans. Amer. Math. Soc., 350(12):4799-4838.
- J. Wu, T. Faria, and Y.S. Huang (1999), Math. Comp. Modelling, 30(1-2):117-138.
- S. Guo and L. Huang (2003), Phys. D, 183:19-44.
- S. Guo, L. Huang and L. Wang (2004), Int. J. Bifur Chaos, 14:2799-2810.
- S. Guo (2005), Nonlinearity, 18:2391-2407.

Single Element

$$
\dot{u}_{j}(t)=-d u_{j}(t)+a f\left(u_{j}\left(t-\tau_{s}\right)\right)
$$

When isolated, each element acts as a simple oscillator and has three possible steady state behaviours.

1. Trivial fixed point, if

$$
-d<a<d \quad \text { and } \quad \tau_{s} \geq 0
$$

$$
a<-d \quad \text { ond } \quad \tau_{s}<\left\{\frac{1}{\sqrt{a^{2}-d^{2}}}\left[\operatorname{Arccos}\left(\frac{d}{-a}\right)\right]\right\} .
$$

Single Element

$$
\dot{u}_{j}(t)=-d u_{j}(t)+a f\left(u_{j}\left(t-\tau_{s}\right)\right)
$$

When isolated, each element acts as a simple oscillator and has three possible steady state behaviours.
2. Nontrivial fixed point, if

$$
0<d<a
$$

Single Element

$$
\dot{u}_{j}(t)=-d u_{j}(t)+a f\left(u_{j}\left(t-\tau_{s}\right)\right)
$$

When isolated, each element acts as a simple oscillator and has three possible steady state behaviours.
3. Oscillation about zero, if

$$
a<-d \quad \text { and } \quad \tau_{s}>\left\{\frac{1}{\sqrt{a^{2}-d^{2}}}\left[\operatorname{Arccos}\left(\frac{d}{-a}\right)\right]\right\} .
$$

Bifurcation of the Trivial Solution

Model
$\dot{u}_{j}(t)=-d u_{j}(t)+a f\left(u_{j}\left(t-\tau_{s}\right)\right)+b g\left(u_{j-1}(t-\tau)\right)+b g\left(u_{j+1}(t-\tau)\right)$,
clearly admits the trivial solution.
Linearization about the trivial solution:

$$
\dot{u}_{j}(t)=-d u_{j}(t)+a u_{j}\left(t-\tau_{s}\right)+b u_{j-1}(t-\tau)+b u_{j+1}(t-\tau)
$$

To investigate stability and bifurcation of the trivial solution, look for solutions: $\mathbf{u}=e^{\lambda t} \mathbf{k}, \lambda \in \mathbb{C}, \mathbf{k} \in \mathbb{C}^{n}$.

Bifurcations of the Trivial Solution

Characteristic equation of linearization about trivial solution.
n odd:

$$
\begin{aligned}
0= & \Delta_{0}(\lambda) \prod_{j=1}^{\frac{n-1}{2}} \Delta_{j}^{2}(\lambda) \\
= & \left(-\lambda-d+a e^{-\lambda \tau_{s}}+2 b e^{-\lambda \tau}\right) \\
& \prod_{j=1}^{\frac{n-1}{2}}\left(-\lambda-d+a e^{-\lambda \tau_{s}}+2 b e^{-\lambda \tau} \cos \frac{2 \pi j}{n}\right)^{2}
\end{aligned}
$$

Bifurcations of the Trivial Solution

Characteristic equation of linearization about trivial solution.
$n=2 k$ even:

$$
\begin{aligned}
0= & \Delta_{0}(\lambda) \Delta_{k}(\lambda) \prod_{j=1}^{k-1} \Delta_{j}^{2}(\lambda) \\
= & \left(-\lambda-d+a e^{-\lambda \tau_{s}}+2 b e^{-\lambda \tau}\right)\left(-\lambda-d+a e^{-\lambda \tau_{s}}-2 b e^{-\lambda \tau}\right) \\
& \prod_{j=1}^{k-1}\left(-\lambda-d+a e^{-\lambda \tau_{s}}+2 b e^{-\lambda \tau} \cos \frac{\pi j}{k}\right)^{2}
\end{aligned}
$$

Bifurcations of the Trivial Solution

- Simple roots with zero real part of $\Delta_{0}(\lambda)=0$ correspond to (standard) bifurcations giving rise to nontrivial synchronous solutions, i.e. with
$u_{j}(t)=u_{j+1}(t), j \bmod n$.
- Simple roots with zero real part of $\Delta_{k}(\lambda)=0$ correspond to (standard) bifurcations giving rise to asynchronous solutions with $u_{j}(t)=-u_{j+1}(t), j \bmod n($ anti-phase $)$.
- Simple roots with zero real part of the other $\Delta_{j}(\lambda)=0$ correspond to equivariant bifurcations giving rise to asynchronous solutions with other symmetries.

Bifurcation Curves

Determine bifurcation curves in terms of the coupling parameters b, τ.
Synchronous pitchfork: $b=\frac{d-a}{2}$
Synchronous Hopf: $b=b_{0}^{ \pm}(\omega), \tau=\tau_{H 0 k}^{ \pm}(\omega)$

$$
\begin{aligned}
b_{0}^{ \pm}(\omega) & = \pm \frac{1}{2} \sqrt{d^{2}+a^{2}+\omega^{2}+2 a \omega \sin \left(\omega \tau_{s}\right)-2 a d \cos \left(\omega \tau_{s}\right)} \\
\tau_{H 0 k}^{ \pm}(\omega) & = \begin{cases}\mathcal{T}_{2 k}, & d-a \cos \left(\omega \tau_{s}\right)<0 \\
\mathcal{T}_{2 k+1}, & d-a \cos \left(\omega \tau_{s}\right)>0\end{cases}
\end{aligned}
$$

where

$$
\mathcal{I}_{l}(\omega)=\frac{1}{\omega}\left\{\operatorname{Arctan}\left[\frac{-\omega-a \sin \left(\omega \tau_{s}\right)}{d-a \cos \left(\omega \tau_{s}\right)}\right]+l \pi\right\}
$$

Bifurcation Curves

Determine bifurcation curves in terms of the coupling parameters b, τ.
Equivariant pitchfork: $b=\frac{d-a}{\cos \frac{2 \pi j}{n}}$
Equivariant Hopf: $b=b_{j}^{ \pm}(\omega)=\frac{b_{0}^{ \pm}}{\left|\cos \frac{2 \pi j}{n}\right|}, \tau=\tau_{H j k}^{ \pm}(\omega)$

$$
\tau_{H j k}^{ \pm}(\omega)= \begin{cases}\mathcal{T}_{2 k}, & d-a \cos \left(\omega \tau_{s}\right)<0 \quad j=1,2, \ldots,\left[\frac{n-1}{4}\right] \\ \mathcal{T}_{2 k+1}, & d-a \cos \left(\omega \tau_{s}\right)>0 \\ \mathcal{T}_{2 k+1}, & d-a \cos \left(\omega \tau_{s}\right)<0 \quad j=\left[\frac{n}{4}+1\right], \ldots,[\underline{n} \\ \mathcal{T}_{2 k}, & d-a \cos \left(\omega \tau_{s}\right)>0\end{cases}
$$

Y. Yuan and S.A. Campbell (2004), JDDE 16(1), 709-744.

Bifurcation Curves $n=3, d=1, a=-1.5$

$\tau_{s}=0.3$

$\tau_{s}=1.0$

Bifurcation Curves $n=6, d=1, a=-0.5$

$\tau_{s}=0.7$

$\tau_{s}=5.0$

Criticality of Synchronous Bifurcations

From analysis of existence of equilibria.

- Synchronous pitchfork bifurcation (at $b=\frac{d-a}{2}$) is always supercritical
- For n even, standard pitchfork bifurcation (at $b=\frac{a-d}{2}$) is always supercritical.

Criticality of Synchronous Bifurcations

From analysis of existence of equilibria.

- Synchronous pitchfork bifurcation (at $b=\frac{d-a}{2}$) is always supercritical
- For n even, standard pitchfork bifurcation (at $b=\frac{a-d}{2}$) is always supercritical.

From centre manifold analysis.

- Synchronous Hopf bifurcation is super/subcritical if

$$
a\left(\tau_{s}-\tau\right)\left(\omega \sin \left(\omega \tau_{s}\right)-d \cos \left(\omega \tau_{s}\right)\right)-\tau\left(d^{2}+\omega^{2}\right)-d \lesseqgtr 0
$$

- For n even, Hopf bifurcation to anti-phase oscillations is super/subcritical under the same conditions.
Y. Yuan and S.A. Campbell (2004), JDDE 16(1), 709-744.

Criticality of Synchronous Bifurcations

Example: $n=3, d=1, a=-1.5$
Theoretical Result: All branches of synchronous and antiphase Hopf bifurcation are supercritical everywhere for $\tau_{s} \leq 1.2$.

Criticality of Synchronous Bifurcations

Example: $n=3, d=1, a=-1.5$
Theoretical Result: All branches of synchronous and antiphase Hopf bifurcation are supercritical everywhere for $\tau_{s} \leq 1.2$.
Numerical Result: $\tau_{s}=1, \tau=2.9591$

Stability of Synchronous Periodic Solutions

Numerical Result: $n=3, d=1, a=-1.5, \tau_{s}=1, \tau=2.9591$
Synchronous solutions

Criticality of Equivariant Hopf

Theorem

Let $m=1+\tau\left(1+\omega^{2}\right)-a\left(\tau-\tau_{s}\right)\left(\cos \left(\omega \tau_{s}\right)-\omega \sin \left(\omega \tau_{s}\right)\right)$. There exists $2(n+1)$ branches of asynchronous periodic solutions of period p_{j} near $\frac{2 \pi}{\beta_{H j}}$ bifurcated from the zero solution of the system:

Criticality of Equivariant Hopf

Theorem

Let $m=1+\tau\left(1+\omega^{2}\right)-a\left(\tau-\tau_{s}\right)\left(\cos \left(\omega \tau_{s}\right)-\omega \sin \left(\omega \tau_{s}\right)\right)$. There exists $2(n+1)$ branches of asynchronous periodic solutions of period p_{j} near $\frac{2 \pi}{\beta_{H j}}$ bifurcated from the zero solution of the system:
(1) 2 phase-locked oscillations: $x_{i}(t)=x_{i+1}\left(t \pm \frac{j p_{j}}{n}\right)$ for $i(\bmod n)$; when $m<0$, they are supercritical and orbitally asymptotically stable; when $m>0$, they are subcritical and orbitally unstable;

Criticality of Equivariant Hopf

Theorem

Let $m=1+\tau\left(1+\omega^{2}\right)-a\left(\tau-\tau_{s}\right)\left(\cos \left(\omega \tau_{s}\right)-\omega \sin \left(\omega \tau_{s}\right)\right)$. There exists $2(n+1)$ branches of asynchronous periodic solutions of period p_{j} near $\frac{2 \pi}{\beta_{H j}}$ bifurcated from the zero solution of the system:
(1) 2 phase-locked oscillations: $x_{i}(t)=x_{i+1}\left(t \pm \frac{j p_{j}}{n}\right)$ for $i(\bmod n)$; when $m<0$, they are supercritical and orbitally asymptotically stable; when $m>0$, they are subcritical and orbitally unstable;
(2) n unstable mirror-reflecting waves: $x_{i}(t)=x_{n+2 k-i}(t)$ for $i($ $\bmod n)$ and $k=1,2, \cdots, n$; when $m<0$, they are supercritical, whereas when $m>0$, they are subcritical;

Criticality of Equivariant Hopf

Theorem

Let $m=1+\tau\left(1+\omega^{2}\right)-a\left(\tau-\tau_{s}\right)\left(\cos \left(\omega \tau_{s}\right)-\omega \sin \left(\omega \tau_{s}\right)\right)$. There exists $2(n+1)$ branches of asynchronous periodic solutions of period p_{j} near $\frac{2 \pi}{\beta_{H j}}$ bifurcated from the zero solution of the system:
(1) 2 phase-locked oscillations: $x_{i}(t)=x_{i+1}\left(t \pm \frac{j p_{j}}{n}\right)$ for $i(\bmod n)$; when $m<0$, they are supercritical and orbitally asymptotically stable; when $m>0$, they are subcritical and orbitally unstable;
(2) n unstable mirror-reflecting waves: $x_{i}(t)=x_{n+2 k-i}(t)$ for $i($ $\bmod n)$ and $k=1,2, \cdots, n$; when $m<0$, they are supercritical, whereas when $m>0$, they are subcritical;
(3) n unstable standing waves: $x_{i}(t)=x_{n+2 k-i}\left(t-\frac{\omega}{2}\right)$ for $i($ $\bmod n)$ and $k=1,2, \cdots, n$; when $m<0$, they are supercritical, whereas when $m>0$, they are subcritical;

Criticality of Equivariant Hopf

Proof

Uses centre manifold reduction and equivariant bifurcation theory.

Reference

Y. Yuan, S.A. Campbell and S. Bungay (2005), Nonlinearity 18, 28272846.

Periodic Solutions from Equivariant Hopf

$$
n=3, d=1, a=-1.5, \tau_{s}=1, \tau=0.73125, b \approx 1.5
$$

Criticality of Equivariant Hopf

Example 1: $n=3, d=1, a=-1.5, \tau_{s}=1$,
$f(u)=g(u)=\tanh (u)$
Theoretical Result: Bifurcations are always supercritical.

Criticality of Equivariant Hopf

Example 1: $n=3, d=1, a=-1.5, \tau_{s}=1$,
$f(u)=g(u)=\tanh (u)$
Theoretical Result: Bifurcations are always supercritical.
Numerical Result: $\tau=0.73125$
Equivariant periodic branch continuation

Stability of Periodic Solutions

Example 1: $n=3, d=1, a=-1.5, \tau_{s}=1$,
$f(u)=g(u)=\tanh (u)$
Numerical Result: $\tau=0.73125$
Phase-locked solutions

Stability of Periodic Solutions

Example 1: $n=3, d=1, a=-1.5, \tau_{s}=1$, $f(u)=g(u)=\tanh (u)$
Numerical Result: $\tau=0.73125$
Mirror reflecting solutions

Stability of Periodic Solutions

Example 1: $n=3, d=1, a=-1.5, \tau_{s}=1$,
$f(u)=g(u)=\tanh (u)$
Numerical Result: $\tau=0.73125$
Standing wave solutions

Criticality of Equivariant Hopf

Example 2: $n=3, d=1, a=-1.5, \tau_{s}=1$,
$f(u)=\tanh (u), g(u)=\frac{5}{2} \tanh \left(\frac{2}{5} u\right)$
Theoretical Result: $m>0$ for ω small, then undergoes sign change.

Criticality of Equivariant Hopf

Example 2: $n=3, d=1, a=-1.5, \tau_{s}=1$,
$f(u)=\tanh (u), g(u)=\frac{5}{2} \tanh \left(\frac{2}{5} u\right)$
Theoretical Result: $m>0$ for ω small, then undergoes sign change.
Numerical Result: $\tau=2.8$
Equivariant periodic branch continuation

Criticality of Equivariant Pitchfork

Theorem: The trivial solution undergoes a D_{n} equivariant pitchfork bifurcation along $b=\frac{d-a}{\cos \frac{2 \pi j}{n}}$ giving rise to $4 n$ branches of equilibria:

Criticality of Equivariant Pitchfork

Theorem: The trivial solution undergoes a D_{n} equivariant pitchfork bifurcation along $b=\frac{d-a}{\cos \frac{2 \pi j}{n}}$ giving rise to $4 n$ branches of equilibria:

- $2 n$ branches of standing wave equilibria, $\left(\pm x^{*}, 0, \mp x^{*}, \ldots\right)$ and permutations, where x^{*} satisfies

$$
-x^{*}+a \tanh \left(x^{*}\right)+b \tanh \left(-x^{*}\right)=0
$$

these branches are alway supercritical;

Criticality of Equivariant Pitchfork

Theorem: The trivial solution undergoes a D_{n} equivariant pitchfork bifurcation along $b=\frac{d-a}{\cos \frac{2 \pi j}{n}}$ giving rise to $4 n$ branches of equilibria:

- $2 n$ branches of standing wave equilibria, $\left(\pm x^{*}, 0, \mp x^{*}, \ldots\right)$ and permutations, where x^{*} satisfies

$$
-x^{*}+a \tanh \left(x^{*}\right)+b \tanh \left(-x^{*}\right)=0 ;
$$

these branches are alway supercritical;

- $2 n$ branches of mirror reflecting equilibria, $\left(\pm x^{*}, \pm y^{*}, \pm x^{*}, \ldots\right)$ and permutations, where x^{*}, y^{*} satisfy

$$
\begin{aligned}
-x^{*}+a \tanh \left(x^{*}\right)+b \tanh \left(x^{*}\right)+b \tanh \left(y^{*}\right) & =0 \\
-y^{*}+a \tanh \left(y^{*}\right)+2 b \tanh \left(x^{*}\right) & =0
\end{aligned}
$$

these branches may be sub- or supercritical.

Criticality of Equivariant Pitchfork

Using numerical continuation software DDE-BIFTOOL.

Example: $n=3, d=1, a=-1.5, \tau_{s}=1, \tau=1$,
$f(u)=g(u)=\tanh (u)$

Standing wave equilibria

Mirror reflecting equilibria

Codimension Two Bifurcations

Generically, need two parameters for such points to occur.
Examples: Points in parameter space where characteristic equation has

- double zero root (Bogdanov-Takens)
- one zero root and a pair of pure imaginary roots (steady state/Hopf interaction)
- two pairs of pure imaginary roots (Hopf/Hopf interaction)

Occur where two codimension one bifurcation curves intersect.

Codimension Two Bifurcations

Model with $n=3$

Codimension Two Bifurcations - Synchronous Hopf/Pitchfork

Theoretical Result: There exist two secondary bifurcations emanating from the codimension two bifurcation point.

Codimension Two Bifurcations - Synchronous Hopf/Pitchfork

Theoretical Result: There exist two secondary bifurcations emanating from the codimension two bifurcation point.

- A secondary Hopf bifurcation creating a (synchronous) limit cycle about each nontrivial (synchronous) equilibrium points.

Codimension Two Bifurcations - Synchronous Hopf/Pitchfork

Theoretical Result: There exist two secondary bifurcations emanating from the codimension two bifurcation point.

- A secondary Hopf bifurcation creating a (synchronous) limit cycle about each nontrivial (synchronous) equilibrium points.
- A pitchfork bifurcation of limit cycles where these limit cycles are destroyed as they collide with the (synchronous) limit cycle about the trivial solution.

Codimension Two Bifurcations - Synchronous Hopf/Pitchfork

Theoretical Result: There exist two secondary bifurcations emanating from the codimension two bifurcation point.

- A secondary Hopf bifurcation creating a (synchronous) limit cycle about each nontrivial (synchronous) equilibrium points.
- A pitchfork bifurcation of limit cycles where these limit cycles are destroyed as they collide with the (synchronous) limit cycle about the trivial solution.

References:
J. Guckenheimer and P.J. Holmes (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Chapter 7), Springer-Verlag.
Y.A. Kuznetsov (1995), Elements of Applied Bifurcation Theory, (Chapter 8) Springer-Verlag.

Codimension Two Bifurcations - Synchronous Hopf/Pitchfork

Numerical Result: Using DDE-BIFTOOL
Example: $n=3, d=1, a=-1.5, \tau_{s}=1$

Codimension Two Bifurcations - Synchronous Hopf/Pitchfork

Numerical Result: Using DDE-BIFTOOL
Example: $n=3, d=1, a=-1.5, \tau_{s}=1, \tau=1.8$

3ifurcation Interactions - Equivariant Hopf/Synchronous Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1$

Bifurcation Interactions - Equivariant Hopf/Synchronous Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1, \tau=1.5317$

Bifurcation Interactions - Synchronous Hopf/Equivariant Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1$

Standing wave equilibria

Bifurcation Interactions - Synchronous Hopf/Equivariant Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1$

Standing wave equilibria

Mirror reflecting equilibria

3ifurcation Interactions - Synchronous Hopf/Equivariant Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1, \tau=0.41318$

Codimension Two Bifurcations - Equivariant Hopf/Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1$

Standing wave equilibria

Codimension Two Bifurcations - Equivariant Hopf/Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1$

Standing wave equilibria

Mirror reflecting equilibria $=$

Codimension Two Bifurcations - Equivariant Hopf/Pitchfork

Example: $n=3, a=-1.5, \tau_{s}=1, \tau=4$

Patterns of Oscillation

Conjectures

Conjecture 1

Consider a codimension two bifurcation point involving a standard pitchfork bifurcation and a D_{n} equivariant Hopf bifurcation of an equilibrium point. There will be a secondary equivariant Hopf bifurcation emanating from the codimension two point, giving rise to $2 n+2$ branches of periodic orbits (n standing wave oscillations, n mirror reflecting oscillations and 2 phase-locked oscillations) about each equilibria produced by the pitchfork bifurcation. There will also be $2 n+2$ pitchfork bifurcations of limit cycles emanating from the codimension two point.

Conjectures

Conjecture 2

Consider a codimension two bifurcation point involving a D_{n} equivariant pitchfork bifurcation and a standard Hopf bifurcation of an equilibrium point. Note that the pitchfork bifurcation gives rise to $2 n$ standing wave equilibria and $2 n$ mirror reflecting equilibria. There will be $4 n$ secondary standard Hopf bifurcations emanating from the codimension two point, giving rise to $4 n$ synchronous periodic orbits, one about each of the $4 n$ asynchronous equilibria. There will also be $2 n$ pitchfork bifurcations of limit cycles emanating from the codimension two point.

Conjectures

Conjecture 3

Consider a codimension two bifurcation point involving a D_{n} equivariant pitchfork bifurcation and a D_{n} equivariant Hopf bifurcation of an equilibrium point. There will be $8 n$ secondary standard Hopf bifurcations emanating from the codimension two point, giving rise to $8 n$ branches of periodic orbits, two about each of the $4 n$ equilibria produced by the equivariant pitchfork bifurcation. There will also be $4 n$ pitchfork bifurcations of limit cycles.

Conclusions

1. Symmetry in model leads to multiple patterns of oscillation.
2. Delay in model leads to multiple branches of Hopf bifurcation
3. Symmetry + Delay in model leads to multistability

Note: Systems with different models for individual neurons still exhibit same bifurcation structure.
N. Burić and D. Todorivic (2003), Phys. Rev. E, 67:0066222.
S.A. Campbell, R. Edwards and P. van den Driessche (2004), SIAM J. Appl. Math., 65(1):316-335.
N. Burić, I. Grozdanović and N. Vasović (2005), Chaos, Sol. \& Frac., 23:1221-1233.

Future Work/Open Problems

- Effect of small perturbation to symmetry.
- Normal form analysis of codimension two bifurcation points involving equivariant bifurcations.
- Extension to systems with distributed delay.

