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Motivation

Many physiological systems have rings of similar neurons.

Ability to synchronize

Ability to respond differently to different inputs

Coupling has time delays
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Many physiological systems have rings of similar neurons.

Ability to synchronize

Ability to respond differently to different inputs

Coupling has time delays

Approach: Consider a simple model which can ex-
hibit these properties. 2
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n−1

 τ

Assumptions:

Elements are capable of oscillating when isolated

Elements, delays, coupling are identical ⇒ symmetry

Tool: Equivariant Bifurcation Theory
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Background on Equivariant Bifurcation Theory

Let Γ be a group. The system x
′ = f(x) is called Γ–equivariant if it is

invariant under the action of any member, γ, of the group:

x
′ = f(x) ⇔ (γx)′ = f(γx)
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Background on Equivariant Bifurcation Theory

Let Γ be a group. The system x
′ = f(x) is called Γ–equivariant if it is

invariant under the action of any member, γ, of the group:

x
′ = f(x) ⇔ (γx)′ = f(γx)

Example: Any model for ring of n identical neurons, with xj the state of

the jth neuron, is invariant under

permutations: xj → xj+1 mod n

reflections: xj → xn+2−j mod n

Thus the equations are Dn– equivariant. Dn is the group of symmetries

of an equilateral polygon with n sides.
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Background on Equivariant Bifurcation Theory

Consequences: Bifurcations of system may be

standard resulting in solutions where symmetry is unchanged

equivariant resulting in solutions where symmetry is reduced
(determined by subgroups of Γ)

Equivariant bifurcations are associated with

repeated roots of the characteristic equation

multiple branches of solutions emanating from the bifurcation
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Results for Ring of Neurons

Three types of Hopf bifurcation from the quiescent state are possible.

1. Standard Hopf : produces one synchronous oscillation

2. Standard Hopf : produces one antiphase oscillation (if n even)

3. Equivariant Hopf : produces 2(n + 1) asynchronous oscillations of
three types

(a) travelling wave (2)

(b) standing wave (n)

(c) mirror reflecting wave (n)
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Three types of Hopf bifurcation from the quiescent state are possible.

1. Standard Hopf : produces one synchronous oscillation

2. Standard Hopf : produces one antiphase oscillation (if n even)

3. Equivariant Hopf : produces 2(n + 1) asynchronous oscillations of
three types

(a) travelling wave (2)

(b) standing wave (n)

(c) mirror reflecting wave (n)

Questions:

1. When do these oscillations occur?

2. Are they stable?
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Results for Ring of Neurons

Three types of Hopf bifurcation from the quiescent state are possible.

1. Standard Hopf : produces one synchronous oscillation

2. Standard Hopf : produces one antiphase oscillation (if n even)

3. Equivariant Hopf : produces 2(n + 1) asynchronous oscillations of
three types

(a) travelling wave (2)

(b) standing wave (n)

(c) mirror reflecting wave (n)

Answers: Model dependent.

Tools: Analytical and numerical bifurcation analysis for delay differential

equations.
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Background on Numerical Bifurcation Analysis

Uses iterative procedure to approximate equilibrium points and
periodic solutions.

Can find both stable and unstable solutions.

By varying parameter and repeating, can follow branches of
solutions.

By approximating eigenvalues/Floquet mulitpliers, can determine
stability of solutions.

Produces:

One parameter bifurcation diagrams: plot of norm of solution as
a function of a parameter.

Two parameter plots of bifurcation curves.
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Background on Numerical Bifurcation Analysis

Packages:
For ODES

AUTO (E. Doedel et al.)

Locbif (A. Khibnik et al.)

Matcont (Y. Kuznetsov et al.)

For DDEs

DDE-BIFTOOL (K. Engelborghs, D. Roose et al.)
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Specific Model: Hopfield-type n-ring

2

1

3 4

n

n−1

  τ

 τ

s

n additive neurons coupled together such that
each element receives three time delayed inputs:
one from self (τs), two from the nearest neigh-
bours (τ )

u̇j(t) = −duj(t)+af(uj(t−τs))+bg(uj−1(t−τ))+bg(uj+1(t−τ)),

j mod n

d > 0, τs ≥ 0, τ ≥ 0

a
<
> 0 : Feedback is inhibitory/excitatory

b
<
> 0 : Coupling is inhibitory/excitatory
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Specific Model: Hopfield-type n-ring

2

1

3 4

n

n−1

  τ

 τ

s

n additive neurons coupled together such that
each element receives three time delayed inputs:
one from self (τs), two from the nearest neigh-
bours (τ )

u̇j(t) = −duj(t)+af(uj(t−τs))+bg(uj−1(t−τ))+bg(uj+1(t−τ)),

j mod n

f(0) = g(0) = 0, f ′(0) = g′(0) = 1, f ′(x), g′(x) > 0, x 6= 0

−∞ < lim
x→±∞

f(x), g(x) < ∞

f(u) = tanh(u), g(u) = 1

α
tanh(αu)
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Hopfield-type Neural Networks with Delay
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Single Element

u̇j(t) = −duj(t) + af(uj(t − τs))

When isolated, each element acts as a simple oscillator and has three
possible steady state behaviours.

1. Trivial fixed point, if

−d < a < d and τs ≥ 0

or

a < −d and τs <

{

1√
a2 − d2

[

Arccos

(

d

−a

)]}

.
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Single Element

u̇j(t) = −duj(t) + af(uj(t − τs))

When isolated, each element acts as a simple oscillator and has three
possible steady state behaviours.

2. Nontrivial fixed point, if

0 < d < a.
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Single Element

u̇j(t) = −duj(t) + af(uj(t − τs))

When isolated, each element acts as a simple oscillator and has three
possible steady state behaviours.

3. Oscillation about zero, if

a < −d and τs >

{

1√
a2 − d2

[

Arccos

(

d

−a

)]}

.
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Bifurcation of the Trivial Solution

Model

u̇j(t) = −duj(t)+af(uj(t−τs))+bg(uj−1(t−τ))+bg(uj+1(t−τ)),

clearly admits the trivial solution.

Linearization about the trivial solution:

u̇j(t) = −duj(t) + auj(t − τs) + buj−1(t − τ) + buj+1(t − τ).

To investigate stability and bifurcation of the trivial solution, look for solu-

tions: u = eλt
k, λ ∈ |C, k ∈ |Cn.
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Bifurcations of the Trivial Solution

Characteristic equation of linearization about trivial solution.

n odd :

0 = ∆0(λ)

n−1

2
∏

j=1

∆2
j(λ)

= (−λ − d + ae−λτs + 2be−λτ )
n−1

2
∏

j=1

(

−λ − d + ae−λτs + 2be−λτ cos
2πj

n

)2
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Bifurcations of the Trivial Solution

Characteristic equation of linearization about trivial solution.

n = 2k even :

0 = ∆0(λ)∆k(λ)

k−1
∏

j=1

∆2
j(λ)

= (−λ − d + ae−λτs + 2be−λτ )(−λ − d + ae−λτs − 2be−λτ )
k−1
∏

j=1

(

−λ − d + ae−λτs + 2be−λτ cos
πj

k

)2
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Bifurcations of the Trivial Solution

Simple roots with zero real part of ∆0(λ) = 0 correspond to
(standard) bifurcations giving rise to nontrivial synchronous
solutions, i.e. with
uj(t) = uj+1(t), j mod n.

Simple roots with zero real part of ∆k(λ) = 0 correspond to
(standard) bifurcations giving rise to asynchronous solutions with
uj(t) = −uj+1(t), j mod n (anti-phase).

Simple roots with zero real part of the other ∆j(λ) = 0 correspond
to equivariant bifurcations giving rise to asynchronous solutions with
other symmetries.
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Bifurcation Curves

Determine bifurcation curves in terms of the coupling parameters b, τ .

Synchronous pitchfork: b =
d − a

2

Synchronous Hopf: b = b±
0
(ω), τ = τ±H0k(ω)

b±
0
(ω) = ±1

2

√

d2 + a2 + ω2 + 2aω sin(ωτs) − 2ad cos(ωτs)

τ±H0k(ω) =

{

T2k, d − a cos(ωτs)
>
< 0

T2k+1, d − a cos(ωτs)
<
> 0

,

where

Tl(ω) =
1

ω

{

Arctan

[

−ω − a sin(ωτs)

d − a cos(ωτs)

]

+ lπ

}

.
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Bifurcation Curves

Determine bifurcation curves in terms of the coupling parameters b, τ .

Equivariant pitchfork: b =
d − a

cos 2πj
n

Equivariant Hopf: b = b±j (ω) = b±
0

| cos
2πj

n
|
, τ = τ±Hjk(ω)

τ±Hjk(ω) =























T2k, d − a cos(ωτs)
>
< 0 j = 1, 2, . . . ,

[

n−1

4

]

T2k+1, d − a cos(ωτs)
<
> 0

T2k+1, d − a cos(ωτs)
>
< 0 j =

[

n
4

+ 1
]

, . . . ,
[

n−1

2

]

T2k, d − a cos(ωτs)
<
> 0

Y. Yuan and S.A. Campbell (2004), JDDE 16(1), 709-744.
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Bifurcation Curves n = 3, d = 1, a = −1.5
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Bifurcation Curves n = 6, d = 1, a = −0.5
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Criticality of Synchronous Bifurcations

From analysis of existence of equilibria.

Synchronous pitchfork bifurcation (at b = d−a
2

) is always
supercritical

For n even, standard pitchfork bifurcation (at b = a−d
2

) is always
supercritical.

– p.17



Criticality of Synchronous Bifurcations

From analysis of existence of equilibria.

Synchronous pitchfork bifurcation (at b = d−a
2

) is always
supercritical

For n even, standard pitchfork bifurcation (at b = a−d
2

) is always
supercritical.

From centre manifold analysis.

Synchronous Hopf bifurcation is super/subcritical if

a(τs − τ)(ω sin(ωτs) − d cos(ωτs)) − τ(d2 + ω2) − d
<
> 0.

For n even, Hopf bifurcation to anti-phase oscillations is
super/subcritical under the same conditions.

Y. Yuan and S.A. Campbell (2004), JDDE 16(1), 709-744.
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Criticality of Synchronous Bifurcations

Example: n = 3, d = 1, a = −1.5
Theoretical Result: All branches of synchronous and antiphase Hopf
bifurcation are supercritical everywhere for τs ≤ 1.2.
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Criticality of Synchronous Bifurcations

Example: n = 3, d = 1, a = −1.5
Theoretical Result: All branches of synchronous and antiphase Hopf
bifurcation are supercritical everywhere for τs ≤ 1.2.
Numerical Result: τs = 1, τ = 2.9591
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Stability of Synchronous Periodic Solutions

Numerical Result: n = 3, d = 1, a = −1.5, τs = 1, τ = 2.9591
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Criticality of Equivariant Hopf

Theorem
Let m = 1 + τ(1 + ω2) − a(τ − τs)(cos(ωτs) − ω sin(ωτs)). There
exists 2(n + 1) branches of asynchronous periodic solutions of period

pj near 2π
βHj

bifurcated from the zero solution of the system:
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stable; when m > 0, they are subcritical and orbitally unstable;
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supercritical, whereas when m > 0, they are subcritical;
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Criticality of Equivariant Hopf

Theorem
Let m = 1 + τ(1 + ω2) − a(τ − τs)(cos(ωτs) − ω sin(ωτs)). There
exists 2(n + 1) branches of asynchronous periodic solutions of period

pj near 2π
βHj

bifurcated from the zero solution of the system:

(1) 2 phase-locked oscillations: xi(t) = xi+1(t± j pj

n
) for i( mod n);

when m < 0, they are supercritical and orbitally asymptotically
stable; when m > 0, they are subcritical and orbitally unstable;

(2) n unstable mirror-reflecting waves: xi(t) = xn+2 k−i(t) for i(
mod n) and k = 1, 2, · · · , n; when m < 0, they are
supercritical, whereas when m > 0, they are subcritical;

(3) n unstable standing waves: xi(t) = xn+2 k−i(t − ω
2
) for i(

mod n) and k = 1, 2, · · · , n; when m < 0, they are
supercritical, whereas when m > 0, they are subcritical;
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Criticality of Equivariant Hopf

Proof

Uses centre manifold reduction and equivariant bifurcation theory.

Reference

Y. Yuan, S.A. Campbell and S. Bungay (2005), Nonlinearity 18, 2827-

2846.
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Periodic Solutions from Equivariant Hopf

n = 3, d = 1, a = −1.5, τs = 1, τ = 0.73125, b ≈ 1.5
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Criticality of Equivariant Hopf

Example 1: n = 3, d = 1, a = −1.5, τs = 1,
f(u) = g(u) = tanh(u)
Theoretical Result: Bifurcations are always supercritical.
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Criticality of Equivariant Hopf

Example 1: n = 3, d = 1, a = −1.5, τs = 1,
f(u) = g(u) = tanh(u)
Theoretical Result: Bifurcations are always supercritical.
Numerical Result: τ = 0.73125
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Stability of Periodic Solutions

Example 1: n = 3, d = 1, a = −1.5, τs = 1,
f(u) = g(u) = tanh(u)
Numerical Result: τ = 0.73125
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Stability of Periodic Solutions

Example 1: n = 3, d = 1, a = −1.5, τs = 1,
f(u) = g(u) = tanh(u)
Numerical Result: τ = 0.73125
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Stability of Periodic Solutions

Example 1: n = 3, d = 1, a = −1.5, τs = 1,
f(u) = g(u) = tanh(u)
Numerical Result: τ = 0.73125
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Criticality of Equivariant Hopf

Example 2: n = 3, d = 1, a = −1.5, τs = 1,

f(u) = tanh(u), g(u) = 5
2

tanh(2
5
u)

Theoretical Result: m > 0 for ω small, then undergoes sign change.
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Criticality of Equivariant Hopf

Example 2: n = 3, d = 1, a = −1.5, τs = 1,

f(u) = tanh(u), g(u) = 5
2

tanh(2
5
u)

Theoretical Result: m > 0 for ω small, then undergoes sign change.
Numerical Result: τ = 2.8
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Criticality of Equivariant Pitchfork

Theorem: The trivial solution undergoes a Dn equivariant pitchfork

bifurcation along b = d−a

cos
2πj

n

giving rise to 4n branches of equilibria:
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Criticality of Equivariant Pitchfork

Theorem: The trivial solution undergoes a Dn equivariant pitchfork

bifurcation along b = d−a

cos
2πj

n

giving rise to 4n branches of equilibria:

2n branches of standing wave equilibria, (±x∗, 0,∓x∗, . . .) and
permutations, where x∗ satisfies

−x∗ + a tanh(x∗) + b tanh(−x∗) = 0;

these branches are alway supercritical;
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Criticality of Equivariant Pitchfork

Theorem: The trivial solution undergoes a Dn equivariant pitchfork

bifurcation along b = d−a

cos
2πj

n

giving rise to 4n branches of equilibria:

2n branches of standing wave equilibria, (±x∗, 0,∓x∗, . . .) and
permutations, where x∗ satisfies

−x∗ + a tanh(x∗) + b tanh(−x∗) = 0;

these branches are alway supercritical;

2n branches of mirror reflecting equilibria, (±x∗,±y∗,±x∗, . . .)
and permutations, where x∗, y∗ satisfy

−x∗ + a tanh(x∗) + b tanh(x∗) + b tanh(y∗) = 0

−y∗ + a tanh(y∗) + 2b tanh(x∗) = 0;

these branches may be sub- or supercritical.
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Criticality of Equivariant Pitchfork

Using numerical continuation software DDE-BIFTOOL.
Example: n = 3, d = 1, a = −1.5, τs = 1, τ = 1,
f(u) = g(u) = tanh(u)

−4 −3.5 −3 −2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

b

x 1, x
2, x

3

−4 −3.5 −3 −2.5
−4

−3

−2

−1

0

1

2

3

4

b

x 1, x
2, x

3

Standing wave equilibria Mirror reflecting equilibria

– p.27



Codimension Two Bifurcations

Generically, need two parameters for such points to occur.
Examples: Points in parameter space where characteristic equation has

double zero root (Bogdanov-Takens)

one zero root and a pair of pure imaginary roots (steady state/Hopf
interaction)

two pairs of pure imaginary roots (Hopf/Hopf interaction)

Occur where two codimension one bifurcation curves intersect.
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Codimension Two Bifurcations

Model with n = 3
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Codimension Two Bifurcations – Synchronous Hopf/Pitchfor k

Theoretical Result: There exist two secondary bifurcations emanating
from the codimension two bifurcation point.
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A pitchfork bifurcation of limit cycles where these limit cycles are
destroyed as they collide with the (synchronous) limit cycle about
the trivial solution.
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Codimension Two Bifurcations – Synchronous Hopf/Pitchfor k

Theoretical Result: There exist two secondary bifurcations emanating
from the codimension two bifurcation point.

A secondary Hopf bifurcation creating a (synchronous) limit cycle
about each nontrivial (synchronous) equilibrium points.

A pitchfork bifurcation of limit cycles where these limit cycles are
destroyed as they collide with the (synchronous) limit cycle about
the trivial solution.
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Codimension Two Bifurcations – Synchronous Hopf/Pitchfor k

Numerical Result: Using DDE-BIFTOOL
Example: n = 3, d = 1, a = −1.5, τs = 1
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Example: n = 3, a = −1.5, τs = 1, τ = 1.5317
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Bifurcation Interactions – Synchronous Hopf/Equivariant Pitchfork
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Example: n = 3, a = −1.5, τs = 1, τ = 4
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Patterns of Oscillation
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Conjectures

Conjecture 1

Consider a codimension two bifurcation point involving a standard pitch-

fork bifurcation and a Dn equivariant Hopf bifurcation of an equilibrium

point. There will be a secondary equivariant Hopf bifurcation emanating

from the codimension two point, giving rise to 2n+2 branches of periodic

orbits (n standing wave oscillations, n mirror reflecting oscillations and 2

phase-locked oscillations) about each equilibria produced by the pitchfork

bifurcation. There will also be 2n + 2 pitchfork bifurcations of limit cycles

emanating from the codimension two point.

– p.40



Conjectures

Conjecture 2

Consider a codimension two bifurcation point involving a Dn equivari-

ant pitchfork bifurcation and a standard Hopf bifurcation of an equilibrium

point. Note that the pitchfork bifurcation gives rise to 2n standing wave

equilibria and 2n mirror reflecting equilibria. There will be 4n secondary

standard Hopf bifurcations emanating from the codimension two point,

giving rise to 4n synchronous periodic orbits, one about each of the 4n

asynchronous equilibria. There will also be 2n pitchfork bifurcations of

limit cycles emanating from the codimension two point.
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Conjectures

Conjecture 3

Consider a codimension two bifurcation point involving a Dn equivariant

pitchfork bifurcation and a Dn equivariant Hopf bifurcation of an equilib-

rium point. There will be 8n secondary standard Hopf bifurcations em-

anating from the codimension two point, giving rise to 8n branches of

periodic orbits, two about each of the 4n equilibria produced by the equiv-

ariant pitchfork bifurcation. There will also be 4n pitchfork bifurcations of

limit cycles.
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Conclusions

1. Symmetry in model leads to multiple patterns of oscillation.

2. Delay in model leads to multiple branches of Hopf bifurcation

3. Symmetry + Delay in model leads to multistability

Note: Systems with different models for individual neurons still exhibit
same bifurcation structure.

N. Burić and D. Todorivic (2003), Phys. Rev. E, 67:0066222.

S.A. Campbell, R. Edwards and P. van den Driessche (2004), SIAM
J. Appl. Math., 65(1):316-335.
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23:1221-1233.
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Future Work/Open Problems

Effect of small perturbation to symmetry.

Normal form analysis of codimension two bifurcation points
involving equivariant bifurcations.

Extension to systems with distributed delay.
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