Trisections are a decomposition of 4-manifolds that take inspiration from Heegaard splittings. Let's talk about this first.

Definition: A Heegaard splitting of M^3 is a decomposition $M = H_+ \cup H_-$ where $H_+ = S^1 \times B^2$, $H_- = S^1$.

(Recall: $D(X \times Y) = D X \# D Y$)

There's a proof of existence:

\rightarrow 3-manifolds are triangulable [Moise, Bing 1952] but this is a hard fact that depends on $\dim M = 3$.

A regular nbhd of the 1-skeleton is a handlebody; its complement is also a handlebody since this is a regular nbhd of the dual simplex.

\rightarrow It's not entirely obvious this is smooth, but it's true. \square

We will give another proof that is more adapted to higher
We first need some Morse theory.

Defn: A function $f: M \to \mathbb{R}$ is called Morse if it has no degenerate critical points.

(Recall: degenerate means $\text{hess } f_p$ is singular)

Moral: generic functions are Morse: they're dense (open) in the set of smooth functions.

The index of a critical point is $\text{index } (\text{Hess } f)_p$; i.e. the number of negative eigenvalues.

Morse Lemma: let $f: M \to \mathbb{R}$, $p \in M$ be a non-deg. critical point. Then in coordinate charts at, $f = x_1^2 + \ldots + x_k^2 - x_{k+1}^2 - \ldots - x_n^2$ (f has index k)
Proof is bare hands, multivariable calc.

Remarks:
- critical pts are isolated.
- want to move/cancel critical pts.

Theorem: Let X be a cascade from M_0 to M_1, and $f : X \to \mathbb{R}$ be Morse & have no critical points. Then $X \cong M_0 \times I$; in particular $M_0 \cong M_1$.

Proof: Pick q. Then $\Phi : X \to M_0 \times I$ is defined by flow along $V_q f$. This is a diffeo by ODE theorem.

Moreover, f transforms to proj_1 under Φ.

Take $W = (df)^\#$; then set $v = \frac{W}{\|W\|}$. Then $\|v\| = 1$.

$$df(v) = g(W, v) \equiv \frac{1}{\|W\|} g(W, W) \equiv 1.$$
\(\phi(t,p) = " \text{flow along } V \text{ by time } t \text{ from } p. " \)

Details to check, but this works. \(\square \)

\(\rightarrow \text{Moral:} \) If we don't see critical pts, topology is a product. When there is a critical pt, topology changes.

Theorem: Let \(f: X \to \mathbb{R} \) have a single critical point of index \(k \). Then \(X \cong (M_o \times I) \cup \{k\text{-handle}\} \).

Proof: Picture. \(h_k = D^k \times S^{n-k} \), attached along \(S^k \times S^{n-k} \) comp.

\(\rightarrow \) 1-handle: \(D^1 \times D^0 \) attached along \(S^0 \times S^0 \), etc.

\[h_1 = D^1 \times D^0 \text{ attached via } S^0 \times D^1. \]
Moral: Morse functions give you a CW-decay.

Theorem: Let \(f : X \to R \) Morse with critical points of index \(k, l \) st. \(k < l \). Then we can slide the index \(k \) peak beneath the index \(l \) one.

\[
\text{ascending/descending manifolds intersect transversely in } f^{-1}(b).
\]

With the right dimension count, this means not at all.

Moral: We can arrange the critical points for \(f \) to be in increasing order.

Back to Heegaard splittings:

\[
\begin{array}{c}
\text{3} \\
\text{2} \\
\text{1} \\
\text{0}
\end{array}
\quad
\begin{array}{c}
\{3\} \\
\{2\} \\
\{1\}
\end{array}
\]

\((\text{Same } \# \text{ of } 1\text{s as } 2\text{s})\)
\[f^{-1}(\frac{3}{2}) = \Sigma g; \quad \text{Moreover,} \quad f^{-1}(\frac{3}{2}, \frac{1}{2}) \cong \text{He} \quad \cong f^{-1}(\frac{1}{2}, \frac{1}{2}) \]

Which is the desired decomposition! Great.

\[\text{Heegaard splittings can equiv. be thought of as taking } \Sigma \times I \text{ and attaching } 2\text{-handles in both directions.} \]

I.e., \(D^2 \times I^1 \) along \(S^1 \times S^1 \); thickened curves.

Claim: isotopy class of embeddings doesn't matter

Claim: Cop entirely with \(B^3 \)'s. [Cerf theorem]

With these: diagrams!

\[\text{Theorem [Reidemeister-Singer]} \quad \text{Every 3-manifold admits a Heegaard splitting. Moreover any two given splittings are stably isotopic. (correct sum w/ } S^3 \text{)} \]
Diagrammatically, this means any two diagrams are hand slide-diffeo equivalent eventually.

Theorem: [Waldhausen] Every splitting of S^3 is stabilized.

Theorem: [Haken's Lemma] Heegaard splittings of reducible manifolds are reducible.

Remarks: Heegaard splittings/diagrams are useful for various things:
- Heegaard-Floer homology
- Minimal surfaces are H^3?

Note: This means we can't bisect 4-manifolds.

Definition: Let X be a 4-manifold. A (g, k_1, k_2, k_3)-trisection of X is a decomposition: