Trisections \& Heegard splittings
(Notes by S.Dwivedi)

- Heegard Splittings \longrightarrow Morse Theory
- Diagrams
- Trisections

Eventual goal - reach trisections 1.4 dim analog of something 3-dimensional

Expository fall.
Def: - Let M^{3} be a 3 -manifold. A Heegard splitting of M : $M^{3}=H_{g}^{3} V_{\Sigma} H_{g}^{3}$; where

$$
\begin{aligned}
& H g=b^{g} s^{\prime} \times B^{2} ; \partial H g=\#^{g} s^{\perp} \times s^{1}=\sum_{g} \\
& \{\partial(x \# y)=\partial x \# \partial y\} \\
& \begin{array}{l}
\text { surface of } \\
\text { genus } g
\end{array}
\end{aligned}
$$

$g \rightarrow$ genus of the handlebody Hg $4^{g} \leadsto$ Boundary corrected sum

Examples
(1) $\quad S^{3}=B^{3} U_{S^{2}} B^{3} \quad\left(S^{2}=B^{2} U_{S}, B^{2}\right)$ lo genus zero
(2) $S^{3}=H_{1} \cup H_{1}, H_{1}=$ solid tonus

3) Stabilization H^{2}

from stabilization :- If we have a Heegard splitting of genus g thew it has a Heegard splitting of all higher genus.

Theorem:- Given M^{3}, \exists Meg and splitting of genus g for some g.
Proof
$\rightarrow 3$ manifolds are triangulizable [Moise, Bing $50 \% \mathrm{~s}$
\rightarrow Fix $M \simeq K^{0}$ simplicial complex

- let $H^{\prime}=v\left(K^{(1)}\right)$

$$
\cong H_{g}(\text { some }
$$

- let $H^{2}=M \backslash v\left(K^{(1)}\right)$

$$
=v\left(\text { dual to } k^{(1)}\right)
$$

Hen $M=H_{g} U_{\Sigma g} H_{g}$
$2^{\text {nd }}$ proof :-
Def ${ }^{n}:-D \quad A$ function $f: M \rightarrow \mathbb{R}$ is called
Morse if f has no degenerate critical points where degenerate \Longleftrightarrow Hess $\left.f\right|_{\text {pt }}$ is singular.

- He index of a critical point b the index of Hess $f=$ \# of negative eigenvalues.

Morse

$h=x^{3}-t x$ is Morse
There are lots of Morse functions, they are generic t stable.

Morse Lemma Let $f: M \longrightarrow \mathbb{R}$ be Morse and p be a critical point (index k). Then there are coordinates sot.

$$
f=-x_{1}^{2} \cdots-x_{k}^{2}+x_{k+1}^{2}+\cdots+x_{n}^{2}
$$

Prop:- Let $f: X \rightarrow \mathbb{R}$ be Morse $w /$ no critical points (X a cobordism from $M_{0} \rightarrow M_{1}$) Then $X \cong M_{0} \times I \quad\left(M_{0} \cong M_{1}\right)$.

1 so the topology is not changing outsicle a nod of critical point.

Proof [Sketch]

- pick g
- Look at $\nabla_{g} f=v$

$$
-d f(v)=1
$$

$$
\Phi: M_{0} \times I \longrightarrow X
$$

$(p, t) \longmapsto$ "flow p by V for time t ".

Proposition:- Let $f: X \rightarrow \mathbb{R}$ be Morse w/ one critical pt w/ index R. Then

$$
\begin{aligned}
& X \cong\left(M_{0} \times I\right) \cup\{k \text {-handle }\{ \\
& h_{k}=D^{k} \times D^{n-k} \text { attached along } S^{k-1} \times D^{k} \\
& \partial h_{k}=S^{k-1} \times D^{n-k} \cup D^{k} \times S^{n-k-1}
\end{aligned}
$$

$$
\operatorname{dim}=2
$$

$\operatorname{dim} 3$

Fact : \rightarrow for M^{3} we can arrange the following

$f^{-1}(a) \cong \Sigma_{g}$ for some g as " a " is a reg--ular value.

$$
\begin{aligned}
& f^{-1}((-\infty, a]) \cong H_{g} \\
& f^{-1}([a, \infty)) \cong H_{g}
\end{aligned}
$$

Clain:-D We can build M "inside out"

$$
\begin{aligned}
& (3-h) \\
& \frac{\uparrow 2-h}{\sum \times I} \\
& \frac{\downarrow^{2}-h}{(3-h)}
\end{aligned}
$$

We can describe Mw/ a diagram.

Heres how:-

- Start $\omega / \Sigma \times I$.
- Attach 2-handles to
$\sum x\{0\}$ and $\sum x\{\perp\{$ via α, β.
HAAAAAAC glue so that c gets sent to α.
- Then "fill" w/ 3-handles
- Attach 2-handles to $\sum \times\{\perp\{$ and glue so that the core gets sent to β. Again "fill" w/ 3-handle.

Imagine having a donst and fill the gap w/ a ball \sim Rill the genus.

The original $\sim B^{3} U_{s^{2}} B^{3}$
geiere M^{3}, \exists a Heegard splitting of certain genus. (no lower bound for genus g).

Theorem:- [Laudenbach \rightarrow Poénaru] Any diffeomorphism of $\#^{k} S^{2} \times S^{2}$ extends across $\operatorname{t}^{R} S^{1} \times B^{3}$.

