Lecture 9

Weill start with the Logarithmic functions.

Logarithmic Functions

Logarithm is the inverse of exponential functions.
Let $a>0, a \neq 1$ as before and let $x>0$, then

$$
y=\log _{a} x \Longleftrightarrow a^{y}=x
$$

a is called the base of the logarithm.
Special Case :- If $a=e$ (the special constant we disc--ussed in Lecture 8) then
we denote it by $\ln (x)$, i.e.,
$\ln x=\log _{e} x$ - call this "natural logarithm".

Thus we get a way to switch b/w exponential equa--Lions and logarithm problems and to solve more exponential equations.
egg. $3^{2}=9 \Rightarrow \log _{3} 9=2$

$$
e^{x}=7 \Rightarrow \ln 7=x
$$

Domain :- $(0, \infty)$ [Recall the rules for finding the domain of a function]
Range :- \mathbb{R}
Vertical asymptote :- y-axis $(x=0)$ The graph of $\log _{a} x$ looks like

As you will notice from the graph that

$$
\log _{a}(1)=0,
$$

irrespective of what a is.

1) $\log _{a}(x \cdot y)=\log _{a} x+\log _{a} y$
2) $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
3) $\log _{a}\left(x^{r}\right)=r \log _{a} x$
4) $\quad \log _{a} 1=0$
5) $\log _{a} a=1$ and hence $\ln e=1$
6) $a^{\log _{a} x}=x$ and $\log _{a} a^{x}=x$

So, $e^{\ln x}=x$ and $\ln e^{x}=x$
Let's see how we com use properties of the logarithm to solve questions.
e.g. Simplify:- $\log _{2} 6+\log _{2} 4-\log _{2}\left(\frac{3}{4}\right)$

Sol" Use Prop. 1 and 2 to get

$$
\begin{aligned}
& \log _{2} 6+\log _{2} 4-\log _{2}(3 / 4)=\log _{2}\left(\frac{6 \cdot 4}{3 / 4}\right) \\
&=\log _{2}\left(\frac{6.4 \times 4}{3}\right)=\log _{2}(32) \\
&=\log _{2}\left(2^{5}\right) \\
&=5 \log _{2} 2 \quad(\text { By Prop. 3) } \\
&=5 \quad\left(\text { as } \log _{2} 2=1\right. \text { by } \\
&\quad \text { Prop. } 5) .
\end{aligned}
$$

e.g. Simplify: $\ln \left(x^{2}\right)+\ln (x)$

$$
=2 \ln (x)+\ln x=3 \ln x
$$

Suppose we want to simplify $\log _{2} 6-\log _{4} 9$.

Here the bases are different so we cannot apply any of the properties listed above.

Change of Base

Let $a, b, x>0, a \neq 1, b \neq 1$. Then we have the change of base formula

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

We typically use \ln 's when working with this

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

Let's come back to the question above $\log _{2} 6-\log _{4} 9$. Change both the expressions in e terms of \ln by
using the change of the base formula :-

$$
\begin{aligned}
\log _{2} 6-\log _{4} 9 & =\frac{\ln 6}{\ln 2}-\frac{\ln 9}{\ln 4}=\frac{\ln 6}{\ln 2}-\frac{\ln \left(3^{2}\right)}{\ln \left(2^{2}\right)} \\
& =\frac{\ln 6}{\ln 2}-\frac{2 \ln 3}{2 \ln 2}=\frac{\ln 6-\ln 3}{\ln 2} \\
& =\frac{\ln (6 / 3)}{\ln 2}=\frac{\ln 2}{\ln 2}=1
\end{aligned}
$$

Solving Logarithmic Equations
We com use the properties of the logarithms to solve equations for x.

Eng. Solve for x.

1) $\log _{x}(8 / 27)=3$
from the definition, $x^{3}=\frac{8}{27} \Rightarrow x=\sqrt[3]{8 / 27}$

$$
=\frac{2}{3}
$$

2)

$$
\begin{aligned}
\log _{4}(x)=5 / 2 & \Rightarrow 4^{\frac{5}{2}}=x \\
& \Rightarrow\left(2^{2}\right)^{5 / 2}=x
\end{aligned} \quad \Rightarrow 2^{5}=x .
$$

3)

$$
\begin{aligned}
\log _{2} 8=x \Rightarrow \log _{2} 2^{3}=x & \Rightarrow \quad 3 \log _{2} 2=x \\
& =3=x \quad\left(\cos \log _{2} 2=1\right)
\end{aligned}
$$

4) $\log _{2}(x)-\log _{2}(x-1)=1$

By using prop. 2 we get

$$
\begin{aligned}
\log _{2}\left(\frac{x}{x-1}\right)=1 \Rightarrow \frac{x}{x-1}=2^{1} & \Rightarrow x=2 x-2 \\
& \Rightarrow x=x=2
\end{aligned}
$$

Recall from Lecture 8 that we were unable to solve the equation $3^{x}=5$ as they had different base. We can solve such equations now using logarithms. we need to remember the following rule
for $a>0, a \neq 1$

$$
\log _{a} x=\log _{a} y \Longleftrightarrow x=y
$$

lo some base.

Let's look at $3^{x}=5$. Take \ln both sides to get

$$
\ln \left(3^{x}\right)=\ln 5 \Rightarrow x \ln 3=\ln 5 \Rightarrow x=\frac{\ln 5}{\ln 3}
$$

e.g. Solve $3^{2 x}=4^{x+1}$

Tare \ln both sides

$$
\begin{aligned}
\ln \left(3^{2 x}\right)=\ln \left(4^{x+1}\right) & \Rightarrow 2 x \ln 3=(x+1) \ln 4 \\
& \Rightarrow x(2 \ln 3-\ln 4)=\ln 4 \\
& \Rightarrow x=\frac{\ln 4}{2 \ln 3-\ln 4}
\end{aligned}
$$

Let's also note down om important formula which well use later.

$$
a^{x}=e^{x \ln a}
$$

\qquad 0

