Exponential functions

An exponential function with base a has the form

$$f(x) = a^{\chi}$$

ashere $a > 0$, $a \neq 1$ (otherwise $f(x) = 1$)
Any exponential function has
• Domain - R
• Ronge - $(0, \infty)$
• horizontal superpote at $y = 0$
 $(\chi - axis)$

What about $f(x) = \left(\frac{1}{2}\right)^{x}$? note that $\left(\frac{1}{2}\right)^{\chi} = (2^{-1})^{\chi} = 2^{-\chi}$. So, from what use have learned in the section about reflection, the graph of $f(x) = \left(\frac{1}{2}\right)^{\chi}$ will be a π eflection of $y = 2^{\infty}$ along the y-axis. (-1,2) (0,1) (1,1/2)Similarly, $f(x) = -3^{\chi}$ will have a graph which is a reflection of f(x) = 3² along the z-asis. E.g. Sketch the graph of $f(x) = -3^{-\chi} + 1$. bot We'll first have to reflect the graph of 32 along the y-axis to get 3-2, then reflect the result along the x-axis to get -3-2 and finally on upward shift by I unit to get the graph of -3-x+1.

When solving equations involving exponential functions, remember the important rule:-

For
$$a > 0$$
, $a \neq 1$, $a^{n} = a^{n} \leq m = y^{n}$

E.g. solue the following:-
a)
$$3^{32} = 3^{5}$$
 b) $3^{32} = 9^{5}$

c)
$$4^{2^{2}+2} = 8^{2^{2}}$$
 d) $(\frac{1}{7})^{\chi} = (49)^{32+1}$
det $(\frac{1}{7})^{\chi} = (49)^{32+1}$
b) $3^{3\chi} = 3^{5} = p$ $3\chi = 5 = p$ $\chi = \frac{5}{3}$
b) $3^{3\chi} = 9^{5}$. The bases are different right now.
However, observe $9 = 3^{2}$ and recalling the properties
of exponents, use get
 $3^{3\chi} = (3^{2})^{5} = 3^{10} \Rightarrow 3\chi = 10 \Rightarrow \chi = 10$
c) $4^{2^{2}+2} = 8^{\chi^{2}} = 0$ $(2^{2})^{2^{2}+2} = (2^{3})^{2^{2}}$
 $= p \qquad 2^{2^{2}+4} = 2^{3\chi^{2}}$
 $= p \qquad 2^{2^{2}+4} = 3\chi^{2}$
 $= p \qquad \chi^{2} = 4$
 $= p \qquad \chi^{2} = 4$
 $= p \qquad \chi^{2} = 4$

d)
$$\left(\frac{1}{7}\right)^{\chi} = (49)^{3\chi+1} = (7^{-1})^{\chi} = (7^{2})^{3\chi+1}$$

= $7^{-\chi} = 7^{6\chi+2}$
= $7^{-\chi} = 6\chi+2 = 7^{-\chi} = -2$
= $7^{-\chi} = -2$.

Note that the bases must be some for solving $q^{\chi} = a^{\chi}$.

Thus, for example, $3^{\kappa} = 5$ cannot be solved usings this method. So use need better techniques [Logarithms]

e so an extremelys important constant us/ applications in maths, biology, finance etc.

