Exponential functions

An exponential function with base a has the form

$$
f(x)=a^{x}
$$

where $a>0, \quad a \neq 1$ (otherwise $f(x)=1$)
Any exponential function has

- Domain - \mathbb{R}
- Range - $(0, \infty)$
- horizontal asymptote at $y=0$ (x-axis)
e.g. $f(x)=2^{x}$

$$
f(x)=3^{x}
$$

What about $f(x)=\left(\frac{1}{2}\right)^{x}$?
note that $\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}=2^{-x}$. So, from what we have learned in the section about reflection, the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$ will be a reflection of $y=2^{x}$ along the y-axis.

Similarly, $f(x)=-3^{x}$ will have a graph which is a reflection of $f(x)=3^{x}$ along the x-axis.

ع.g. Sketch the graph of $f(x)=-3^{-x}+1$.
boln Well first have to reflect the graph of 3^{x} along the y-axis to get 3^{-x}, then reflect the result along the x-axis to get -3^{-x} and finally am upward shift by 1 unit to get the graph of $-3^{-x}+1$.

1

Solving Exponential Equations
When solving equations involving exponential functions, remember the important rule:-

For $a>0, a \neq 1, a^{x}=a^{y} \Delta \Rightarrow x=y$

* bases must be the same.
E.g. Solve the following:-
a) $3^{3 x}=3^{5}$
b) $3^{3 x}=9^{5}$
c) $4^{x^{2}+2}=8^{x^{2}}$
d) $\left(\frac{1}{7}\right)^{x}=(49)^{3 x+1}$
son a) $3^{3 x}=3^{5} \Rightarrow 3 x=5 \Rightarrow x=\frac{5}{3}$
b) $3^{3 x}=9^{5}$. The bases are different right now. However, observe $q=3^{2}$ and recalling the properties of exponents, we get

$$
3^{3 x}=\left(3^{2}\right)^{5}=3^{10} \Rightarrow 3 x=10 \Rightarrow x=\frac{10}{3} .
$$

c)

$$
\begin{aligned}
4^{x^{2}+2}=8^{x^{2}} & \Rightarrow\left(2^{2}\right)^{x^{2}+2}=\left(2^{3}\right)^{x^{2}} \\
& =2^{2 x^{2}+4}=2^{3 x^{2}} \\
& =2 x^{2}+4=3 x^{2} \\
& \Rightarrow x^{2}=4 \\
& \Rightarrow x=+2 \text { or } x=-2
\end{aligned}
$$

d)

$$
\begin{aligned}
\left(\frac{1}{7}\right)^{x}=(49)^{3 x+1} & \Rightarrow\left(7^{-1}\right)^{x}=\left(7^{2}\right)^{3 x+1} \\
& =07^{-x}=7^{6 x+2} \\
& =0 \quad-x=6 x+2 \Rightarrow 7 x=-2 \\
& =0 x=-\frac{2}{7} .
\end{aligned}
$$

note that the bases must be some for solving $a^{x}=a^{y}$.

Thus, for example, $3^{x}=5$ cannot be solved using this method. So we need better techniques [Logarithms]

The number "e"

Def e is a constant $(e \simeq 2.718281 \ldots)$ such that the graph of e^{x} has slope 1 at $x=0$. [Very important ie next chapter].
or

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \quad(\text { next chapters) }
$$

e is an extremely important constant w/ applications in maths, biology, finance etc.
egg. Sketch the graph of $e^{x-2}+3$.
sol

 move upurands
by 3-units

