Lecture 7
Recall from lecture I that

A polynomial of degree n is a function of the form

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

Here $a_{i} \in \mathbb{R}, i=0, \ldots, n, a_{n} \neq 0$.
Domain $=\mathbb{R}$
Range $=\mathbb{R}$ if degree n is odd

We can use the techniques from lecture 6 to sketch the graph of polynomials.
e.g. Sketch $y=-(x-2)^{3}+2$.
sol. We start with the graph of x^{3}.

$\therefore(x-2)^{3}$ will shift the graph by 2 units towards right.

$-(x-2)^{3}$ will reflect the above graph along the x-axis.

finally $-(x-2)^{3}+2$ will move the above graph upwards by 2 units.

note that the x-intercept $(y=0)$ is

$$
\begin{aligned}
0=-(x-2)^{3}+2 \Rightarrow(x-2)^{3}=2 \Rightarrow x & =\sqrt[3]{2}+2 \\
& \simeq 3.26
\end{aligned}
$$

and y-intercept $(x=0)$ b $\quad y=-(0-2)^{3}+2=10$.
Recall from Lecture 2 that
A rational function is of the form $\frac{p(x)}{q(x)}$
where $p(x)$ and $q(x)$ are polynomials, $q(x) \neq 0$.
The points where $q(x)=0$ are not in the domain. At these points, f has a vertical asymptote.
e.g. $y=\frac{1}{x}$ has domain $(-\infty, 0) \cup(0, \infty)$

Thus, $y=\frac{1}{x}$ has a
 horizontal asymptote at $y=0(x$-axis $)$

For a rational function, $\frac{p(x)}{q(x)}$, is $p(a) \neq 0$ and $q(a)=0$ then $\frac{p(x)}{q(x)}$ has a vertical asymptote at $x=a$.

Remark :- Finding horizontal asymptote requires the Knowledge of limits, which we will do later.
e.g. For $y=\frac{x^{2}-3 x+2}{x^{2}-3 x}$ find :- a) vertical asymptotes
b) x-intercepts
c) y-intercept.
solutiaie $p(x)=x^{2}-3 x+2=(x-2)(x-1)$

$$
q(x)=x^{2}-3 x=x(x-3)
$$

a) For vertical asymptotes, we need to solve $q(x)=0$

$$
\Rightarrow \quad x(x-3)=0 \quad \Rightarrow \quad x=0 \text { and } x=3 \text {. }
$$

Also, $p(0)=2 \neq 0$ and $p(3)=2 \neq 0$
\therefore both $x=0$ and $x=3$ are vertical asymptotes.
b) For finding x-intercepts, we set $y=0$

$$
\begin{aligned}
& =0 \quad \frac{x^{2}-3 x+2}{x^{2}-3 x}=0 \Rightarrow \quad x^{2}-3 x+2=0 \\
& =\quad(x-2)(x-1)=0 \Rightarrow \quad x=1 \quad \text { or } x=2
\end{aligned}
$$

Thus the x-intercepts are $(1,0)$ and $(2,0)$.
c) For finding y-intercepts, we put $x=0$. However, $x=0$ is not in the domain. Thus, no y-intercepts.
E.g. Give an example of a rational function with
i) vertical asymptotes at $x=5$ and $x=10$ and
ii) y-intercept at $(0,1)$.

Solution Since we must have vertical asymptotes at $x=5$ and $x=10 \Rightarrow$ in the denominator, we must have $(x-5)(x-10)$.
Now y-intercept as $(0,7)$ means that when we put $x=0$, we must get 7 . There are many p such functions, e.g.

$$
\begin{array}{cl}
f(x)=\frac{50}{(x-5)(x-10)} & \text { or } f(x)=\frac{x}{(x-5)(x-10)}+7 \\
f(x)= & \text { or } \\
& \frac{x^{2}+3 x+50}{(x-5)(x-10)}
\end{array}
$$

Thus, there are many solutions. In such cases, writing any one solutiair is sufficient.

