Lecture 7

Recall from Lecture 1 that

A polynomial of degree n is a function of the form $y = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$

Here $a_i \in \mathbb{R}$, $i = 0, \dots, n$, $a_n \neq 0$.

Domain = R Ronge = R <u>it degree n's odd</u>

We can use the techniques from Lecture 6 to sketch the graph of polynomials.

<u>e.g.</u> Sketch $y = -(x-2)^3 + 2$. <u>sol</u>. We start with the graph of x^3 .

note that the *z*-intercept
$$(y=0)$$
 is
 $0 = -(z-2)^3 + 2 = 0$ $(z-2)^3 = 2 = 0$ $x = \sqrt[3]{2+2}$
 $= 3.26$
and *y*-intercept $(z=0)$ is $y = -(0-2)^3 + 2 = 10$.

Kecall from Lecture 2. that
A rational function is of the form
$$\frac{p(x)}{q(x)}$$

where p(x) and $q_r(x)$ are polynomials, $q_r(x) \neq 0$. The points where $q_r(x) = 0$ are not in the domain. At these points, f has a <u>vertical asymptote</u>.

e.g.
$$y = \frac{1}{x}$$
 has domain $(-\infty, 0) \cup (0, \infty)$
vertical asymptote $\leftarrow \frac{1}{2}$
Thus, $y = \frac{1}{x}$ has a $= \frac{1}{2}$ the second of the sec

For a stational function,
$$\frac{p(x)}{q_r(x)}$$
, $\frac{p(a) \neq 0}{q_r(x)}$ and
 $q(a)=0$ then $\frac{p(x)}{q_r(x)}$ has a vertical asymptote at $x=a$.

Remark :- Finding honizontal asymptote requires the knowledge
of limit, which we will do later.
e.g. for
$$y = \frac{x^2 - 3x + 2}{x^2 - 3x}$$
 find :- a) vertical asymptotes
b) x -intercepts
c) y -intercept.
Aduttoin $p(x) = x^2 - 3x + 2 = (x - 2)(x - 1)$
 $g(x) = x^2 - 3x = x(x - 3)$

a) For vertical asymptotes, we need to solve
$$q_{1}(x) = 0$$

= p $x(x-3) = 0 = p$ $x = 0$ and $x = 3$.
Also, $p(0) = 2 \neq 0$ and $p(3) = 2 \neq 0$

b) For finding x-intercepto, we set
$$y=0$$

= $\frac{\chi^2 - 3\chi + 2}{\chi^2 - 3\chi} = 0 = \rho \qquad \chi^2 - 3\chi + 2 = 0$

=
$$(\chi - 2)(\chi - 1) = 0$$
 = $\chi = 1$ or $\chi = 2$
Thus the χ -intercepts are $(1, 0)$ and $(2, 0)$.

c) For finding y-intercepts, we put x = 0. However, x = 0 is not in the domain. Thus, no y-intercepts.

E.g. Give an example of a stational function with
i) vertical asymptotes at
$$x = 5$$
 and $x = 10$ and
ii) y-intercept at $(0,1)$.

<u>Solution</u> Since we must have vertical asymptotes at x = 5 and k = 10 = p in the denominator, we must have (x-5)(x-10). Now y-intercept as (0,7) means that when we put x = 0, we must get 7. There are many such functions, e.g.

$$f(x) = \frac{50}{(x-5)(x-10)} \quad \text{or} \quad f(x) = \frac{2}{(x-5)(x-10)} + 7$$

$$f(x) = \frac{x^2 + 3x + 50}{(x-5)(x-10)}$$

Thus, there are mony solutions. In such cases, writing ony one solution is sufficient.