Lecture 6

Quadratic functions; Translations & Reflections

When working w/ quadratic functions, we should complete the square and write it as

$$y = a(x-h)^2 + k$$
 (1)

which is more useful as it gives more information. Graphs of quadratic functions are called parabolas.

- The point (h, R) & the vertex. This is the point where the graph has "peak/trough".
- If a >0 then the graph opens upward.
 If a <0 then the graph opens downward.

Then, finding the x + y intercepts and sketchings will be easy! The process of converting. $ax^2 + bx + c$ in the form (D) 2 called <u>Completing</u> the square. Following are the steps to follow for this:-

Steps in completing the square E.g. completing the square for y=2x2+ 4x+20 y = 2x2+4x+20 (1) Factor the coefficient on x² = $y = 2(x^2 + 2x) + 20$ from all x terms. We'll get (i.e., a=2, p=2, q=20)something like $y = a(x^2 + px) + q$. (2) Add and substract $\left(\frac{p}{2}\right)^2$ Add and substract $(\frac{p}{2})^{2} = 1$. within the brackets. $y = 2(x^{2}+2x+1-1)+20$ Remove the substracted term $= 2(x^{2}+2x+1)-2+20$ $= 2(x^{2}+2x+1) + 18$ from the brackets. $\frac{P}{2} = 1$ (3) Factor the bracketed term as $\Rightarrow y = 2(x+1)^2 + 18$ $\left(2+\frac{p}{2}\right)^{2}$ We're done! Done!

Ques:- Complete the square for
$$y = -3x^2 + 5x + 6$$
.
Sol:- Let's follow the steps listed above.
1) $y = -3(x^2 - \frac{5}{3}x) + 6$.
=P $a = -3$, $b = -\frac{5}{3}$, $g = 6$.

2)
$$\frac{1}{2} = -\frac{5}{3} = -\frac{5}{6}$$

Thus, $y = -3\left(x^2 - \frac{5}{3}x + \frac{25}{36} - \frac{25}{36}\right) + 6$
 $= 9 \quad y = -3\left(x^2 - \frac{5}{3}x + \frac{25}{36}\right) + \frac{25}{12} + 6$
3) $y = -3\left(x - \frac{5}{6}\right)^2 + \frac{97}{12}$

Graphing a Quadratic
To graph
$$y = a (x-h)^{2} + k$$

- plot y-intercept which one gets by setting x = 0.
- · plot x-intercept(s) which one gets by setting y=0.
- · Connect the points to make 1 if a >0.

11

Remark: The parabola may not have
$$x$$
-intercepts!
If $a \cdot k > 0$, then there are none.

E.g. Graph the quadratic
$$y = 2(\alpha + 1)^2 + 18$$
.
Selution The vertex & $(h_1R) = (-1, 18)$ as the
Standard form & $y = \alpha(\alpha - h)^2 + R$.
y-intercept. Set $x=0$ to get $y = 2 \cdot (1)^2 + 18 = 20$.
So y-intercept & $(0, 20)$.
x-intercept Note $\alpha \cdot R = 2 \cdot 18 = 36 > 0 = 0$ there are
no α -intercept.
[Note that when $y=0 = 2(\alpha + 1)^2 + 18 = 0 = 0$
 $(\alpha + 1)^2 = -9$ which can't happen as a square
can't be negative.]
The graph & opening
upward as $\alpha = 2 > 0$.
(1,18)
(0,20)

E.g. Graph the quadratic $y = -(x-1)^2 + 4$. solution. Vertex = (1,4)

also a=-1 => parabola opens down ,,

$$\frac{y-\text{intercept}}{y-\text{intercept}} \quad x = 0 \implies y = -(-1)^2 + 4 = 3 \implies y = -(-1)^2 + 4 \implies y = -(-1)^2 + (-1)^2$$

 $\frac{2-\text{intercept}}{2-\text{intercept}} \quad \therefore \quad Q \cdot R = -1 \cdot 4 = -4 = 0 \text{ there are z-interc-} - \text{epto}!$

$$\begin{array}{ccc} y = 0 & = 0 & -(x-1)^2 = -4 = 0 & (x-1)^2 = 4 \\ = 0 & (x-1) = \pm \sqrt{4} = \pm 2 = 0 & x = 3, -1 \end{array}$$

Thus x-intercepts are (3,0) and (-1,0).

f(x-c) is f(x) translated night by c-unit. This can be understood by observing that whatever value f(x) was taki--ng at x, f(x-c) will take the same value at x+c. Thus, we must move the graph towards slight.

Multiplying f(x) or x by a constant doesn't change the general shape of f(x), but it compresses or stretches f(x) honizontally or vertically.

32² stretches the graph in the vertical direction.

