Lecture 6
Quadratic functions; Translations \& Reflections

A quadratic function has the form

$$
y=a x^{2}+b x+c \quad, \quad a, b, c \in \mathbb{R}, \quad a \neq 0
$$

When working $w /$ quadratic functions, we should complete the square and write it as

$$
\begin{equation*}
y=a(x-h)^{2}+R \tag{1}
\end{equation*}
$$

which is more useful as it gives more information. Graphs of quadratic functions are called parabolas.

- The point (h, R) is the vertex. This is the point cohere the graph has "peak/trough".
- If $a>0$ then the graph opens upward.
- If $a<0$ then the graph opens downward.

Then, finding the $x \& y$ intercepts and Jketching will be easy!
The process of converting $a x^{2}+b x+c$ in the form (1) is called completing the square. Following are the steps to follow for this:-

Steps ie completing the square e.g. completing the square for $y=2 x^{2}+4 x+20$
(1) Factor the coefficient on x^{2} from all x terms. Well get something like $y=a\left(x^{2}+p x\right)$
(2) Add and substract $\left(\frac{p}{2}\right)^{2}$ within the brackets.

Remove the substracted term from the brackets.

Add and substract $\left(\frac{p}{2}\right)^{2}=1$.

$$
\begin{aligned}
y & =2\left(x^{2}+2 x+1-1\right)+20 \\
& =2\left(x^{2}+2 x+1\right)-2+20 \\
& =2\left(x^{2}+2 x+1\right)+18
\end{aligned}
$$

(3) Factor the bracketed term as

$$
\left(x+\frac{p}{2}\right)^{2}
$$

Were done!

$$
\begin{aligned}
& \frac{p}{2}=1 \\
\Rightarrow & y=2(x+1)^{2}+18
\end{aligned}
$$

Done!

Ques:- Complete the square for $y=-3 x^{2}+5 x+6$.
Sol:- Let's follow the steps listed above.
1)

$$
\begin{aligned}
& y=-3\left(x^{2}-\frac{5}{3} x\right)+6 . \\
& \Rightarrow \quad a=-3, p=-\frac{5}{3}, q=6 .
\end{aligned}
$$

2) $\frac{p}{2}=-\frac{5}{\frac{3}{2}}=-\frac{5}{6}$

Thus, $y=-3\left(x^{2}-\frac{5}{3} x+\frac{25}{36}-\frac{25}{36}\right)+6$

$$
\Rightarrow \quad y=-3\left(x^{2}-\frac{5}{3} x+\frac{25}{36}\right)+\frac{25}{12}+6
$$

3) $y=-3\left(x-\frac{5}{6}\right)^{2}+\frac{97}{12}$

Graphing a Quadratic
To graph $y=a(x-h)^{2}+k$

- plot vertex at (h, k).
- plot y-intercept which one gets by setting $x=0$.
- plot x-intercep ts) which one gets by setting $y=0$.
- Connect the points to make

Remark:- The parabola may not have x-intercepts! If $a \cdot k>0$, then there are none.
E.g. Graph the quadratic $y=2(x+1)^{2}+18$.
solutions The vertex is $(h, R)=(-1,18)$ as the standard form i $y=a(x-h)^{2}+R$.
y-intercept. Set $x=0$ to get $y=2 \cdot(1)^{2}+18=20$.
So y-intercept is $(0,20)$.
 no x-intercept.
[Note that when $y=0 \Rightarrow 2(x+1)^{2}+18=0 \Rightarrow$ $(x+1)^{2}=-9$ which con't happen as a square can't be negative.]

The graph is opening upward as $a=2>0$.

E.g. Graph the quadratic $y=-(x-1)^{2}+4$. solutiaic. vertex $=(1,4)$
also $a=-1 \Rightarrow$ parabola opens down
y-intercept $\quad x=0 \Rightarrow y=-(-1)^{2}+4=3 \Rightarrow$
y-intercept $亠(0,3)$
x-intercepts $\because Q \cdot R=-1.4=-4 \Rightarrow$ there are x-inters-- epto!

$$
\begin{array}{ll}
& y=0 \Rightarrow-(x-1)^{2}=-4 \Rightarrow(x-1)^{2}=4 \\
\Rightarrow & (x-1)= \pm \sqrt{4}= \pm 2 \Rightarrow x=3,-1
\end{array}
$$

Thew x-intercepts are $(3,0)$ ans $(-1,0)$.

Translations t Reflections

Suppose $f(x)$ ib a function with graph and let $c>0$ be a real number.

$f(x)-c \quad$ i translated down by c-units.

$f(x-c)$ is $f(x)$ translated right by c-units. This can be understood by observing that whatever value $f(x)$ was taki--ng at $x, f(x-c)$ will take the some value at $x+c$. Thus, we must move the graph towards right.

$f(x+c)$ io $f(x)$ translated left by c-unit.

- $f(x)$ is $f(x)$ reflected over the x-axis, as $-f(x)$ well take the negatuie of the value which $f(x)$ took.

$f(-x)$ is $f(x)$ reflected oven the y-axis.

Multiplying $f(x)$ or x by a constant doesn't change the general shape of $f(x)$, but it compresses or stretches $f(x)$ horizontally or vertically.
c. $f(x)$ is a vertical stretch/compression.

black- $\frac{1}{2} f(x)$ (i.e., $c=1 / 2$)

black -2f(x) (i.e., co)
$f(c \cdot x)$ is a horizontal stretch/ compression.

black - $f(c \cdot x), c<1$

black - $f(c, x), c>1$

In practice, we will have to apply a combination of above transformations to sketch the graph of a function.
E.g. Sketch $-3 x^{2}+2$.

Sol. We start with $f(x)=x^{2}$

$3 x^{2}$ stretches the graph in the vertical direction.

$-3 x^{2}$ is reflection along the x-axis.

and finally $-3 x^{2}+2$ is a translateai upwards by 2 unit.

which is the finals answer.
\qquad
\qquad

