Lecture 5

In this lecture, we will learn about functions.

notation
$$y = f(x)$$

 $x = independent variable$
 $y = dependent variable$

The domain of a function is the set of all possible values that x can take. [input]

The stange of a function is the set of all possible values
that
$$y$$
 can take. [output]
E.g. Function Domain Range
 $y = x^2$ R (all real no.s) [0,00)
 $y = \sqrt{x}$ [0,00]
 $y = \sqrt{x}$ [0,00] [0,00]
 $(\operatorname{can't} \operatorname{take} \operatorname{J-op} \operatorname{negative})$ [0,00]
 $y = \operatorname{sin}(x)$ R [-1,1]

2)
$$f(x) = \sqrt{2+3}$$

bolin use ment have $x+3 \ge 0 = P$ $z \ge -3$. Thus the domain b $\int z \in \mathbb{R} | z \ge -3 \int z$ or $[-3, \infty)$.
3) $f(x) = \frac{\sqrt{2^2 - 5z + 6}}{z}$

<u>Ques</u> How do we know if an equation defines a function? <u>Ane:</u> We use the <u>vertical line test</u>.

<u>Vertical Line Test</u>: - If any vertical line intersects a graph at more than one point the it is NOT the graph of a function.

Evaluating functions: To evaluate
$$y = f(x)$$
 at a point
 $x = a$, simply replace every x in $f(x)$
by a .
e.g. If $f(x) = x^2 + \sqrt{x}$ then

• $f(0) = 0^2 + \sqrt{0} = 0$ • $f(1) = 1^2 + \sqrt{1} = 2$ • f(-1) % not allowed • $f(2+h) = (2+h)^2 + \sqrt{2+h}$ ap -1 is not in the domain.

We can build new functions from old ones usings composition.

The composition of functions f and g to the function
fog which to defined by
$$(f \circ g)(x) = f(g(x))$$

(i.e., first apply g then apply f).
Similarly, we can define gof by
gof(x) = g(f(x))
(first find f(x) and then apply g to the secoult).

e.g. If
$$f(x) = x^2 + x$$
 and $g(x) = 5x - 2$, then
 $(f \circ g)(x) = f(g(x)) = f(5x - 2) = (5x - 2)^2 + (5x - 2)$
 $= 25x^2 + 4 - 10x + 5x - 2$
 $= 25x^2 - 5x + 2$

$$(g \circ f)(x) = g(x^{2}+x) = 5(x^{2}+x) - 2$$

= $5x^{2}+5x-2$
So, $f \circ g(1) = 25 \cdot (1)^{2} - 5 \cdot 1 + 2 = 22$
 $g \circ f(1) = 5 \cdot (1)^{2} + 5 \cdot 1 - 2 = 8$
Narringe Usually, $f \circ g \neq g \circ f$. This can be seen from