Lecture 5

In this lecture, we will learn about functions.
Definition A function is a rule that assigns to each element of one set exactly one element from another set.
notation

$$
\begin{gathered}
y=f(x) \\
x=\text { independent variable } \\
y=\text { dependent variable }
\end{gathered}
$$

The domain of a function io the set of all possible values that $x$ can take. [input]

The range of a function is the set of all possible values that $y$ can take. [output]

| E.g. Function | Domain | Romge |
| :--- | :---: | :---: |
| $y=x^{2}$ | $\mathbb{R}($ all real nos) |  |
| or $(-\infty, \infty)$ | $[0, \infty)$ |  |
| $y=\sqrt{x}$ | $[0, \infty)$ <br> (can't take $\sqrt{-}$ of negative) | $[0, \infty)$ |
| $y=\sin (x)$ | $\mathbb{R}$ | $[-1,1]$ |

When finding the domain of a function, remember the following:-

1) No dividing by 0 .
2) No square root $\sqrt{ }$ (or even root $\sqrt[n]{ }, n$ even) of negative numbers.
z) No logarithm of a number $\leq 0$.
e.g. Find the domain of $f(x)$.
3) $f(x)=\frac{3}{(x-1)(x-7)}$

Sol. The denominator can't be $0 \Rightarrow x-1 \neq 0$ and $x-7 \neq 0 \Rightarrow x \neq 1$ and $x=7$. All other values of $x$ are allowed. Thus, domain is

$$
\{x \in \mathbb{R} \mid x \neq 1, x \neq 7\{\text { or }(-\infty, 1) \cup(1,7) \cup(7, \infty) \text {. }
$$

2) $f(x)=\sqrt{x+3}$

Sol. we must have $x+3 \geq 0 \Rightarrow x \geq-3$. Then the domain is $\quad\{x \in \mathbb{R} \mid x \geq-3\}$ or $[-3, \infty)$.
3) $f(x)=\frac{\sqrt{x^{2}-5 x+6}}{x}$

Dol. We must have $x \neq 0$ and $x^{2}-5 x+6 \geq 0$
$\Rightarrow \quad x \neq 0$ and $(x-3)(x-2) \geq 0$

$\Rightarrow$ the domain is $(-\infty, 0) \cup(0,2] \cup[3, \infty)$.

Ques. How do we know if an equatioie defines a function?
Ans:- We use the vertical line test.

Vertical Line Test:- If any vertical lime intersects a graph at move than one point the it is NOT the graph of a function.



Evaluating functions: To evaluate $y=f(x)$ at a point $x=a$, simply replace every, $x$ in $f(x)$ by $a$.
e.g. If $f(x)=x^{2}+\sqrt{x}$ then

- $f(0)=0^{2}+\sqrt{0}=0 \quad$ • $f(1)=1^{2}+\sqrt{1}=2$
- $f(-1)$ is not allowed
- $f(x+h)=(x+h)^{2}+\sqrt{x+h}$ as -1 is not in the domain.

Composition of functions:-
We can build new functions from old ones using composition.
The composition of functions $f$ and $g$ is the function $f \circ g$ which is defined by

$$
(f \circ g)(x)=f(g(x))
$$

(i.e., first apply $g$ then apply $f$ ).

Similarly, we can define $g \circ f$ by

$$
g \circ f(x)=g(f(x))
$$

(first find $f(x)$ and then apply $g$ to the result).
e.g. If $f(x)=x^{2}+x$ and $g(x)=5 x-2$, then

$$
\begin{aligned}
(f \circ g)(x)=f(g(x))=f(5 x-2) & =(5 x-2)^{2}+(5 x-2) \\
& =25 x^{2}+4-10 x+5 x-2 \\
& =25 x^{2}-5 x+2
\end{aligned}
$$

$$
\begin{aligned}
(g \circ f)(x)=g\left(x^{2}+x\right) & =5\left(x^{2}+x\right)-2 \\
& =5 x^{2}+5 x-2
\end{aligned}
$$

So,

$$
\begin{aligned}
& f \circ g(1)=25 \cdot(1)^{2}-5 \cdot 1+2=22 \\
& g \circ f(1)=5 \cdot(1)^{2}+5 \cdot 1-2=8
\end{aligned}
$$

Warning Usually $f \circ g \neq g \circ f$. This can be seen from the above example as well.


