

Given two points (x_1, y_1) , (x_2, y_2) on the line, we can calculate the slope of the line as

$$m = \frac{\vartheta_2 - \vartheta_1}{\varkappa_2 - \varkappa_1}$$

Some Facts

- · Honizontal lines have slope m=0.
- Vertical lines have "infinite" slope or undefined slope $(m = \infty)$.
- Two lines are parallel if they have the same slope.

Following are the types of questions which we can ask about lines:-

- 1) Find equation of a line through 2 given points.
- 2) Find equation of a line w/ slope m and passing through a given point (20, y.).

3) Find equation of a line through a given point (20, y.) Which is parallel or perpendicular to another line.

Let's see how to tackle each of the above questions.

E.g. 1) (find the equation of a line through (1.1) and
(3,-4).
solution note that the slope
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 1}{3 - 1}$$

 $= -\frac{5}{2}$

Thus we knows that
$$y = -\frac{5}{2}x + b$$
.
Jo find b, substitute the x and y values of any of
the geniere points. Putting $x = 1 = yp$ gives
 $1 = -\frac{5}{2} + b = p$ $b = -\frac{7}{2}$. So the equation of the
line $\Im = \frac{7}{2}x + \frac{7}{2}$.

2) Find the equation of the line through (1,3) and parallel to y = 3x+5. <u>Adution</u> note that parallel lines have the same slope = p = m = 3. Thus y = 3x+6. To find b, sub. x = 1, y = 3 = $0 = 3 = 3 \cdot 1 + 6 = 0 = 0$. Thus, the equation of the line is y = 3x.

We name
$$y = \frac{5}{3}x + \frac{1}{3} = p$$
 slope = $\frac{5}{3}$

now slope of the perpendicular line is
$$-\frac{1}{5} = -\frac{3}{5}$$

= $\mathcal{Y} = -\frac{3}{5}x+b$. Now sub. $x=1$, $y=3$ to get
 $b = \frac{18}{5}$ and so the equation of the line b
 $\mathcal{Y} = -\frac{3}{5}x+\frac{18}{5}$.

e.g. Graph
$$y = 3z \pm 1$$
.
Solution Note that the y-intercept = 1
=P the line goes through (0,1).
Now plug any value of z , say $z = 1$ to get
 $y = 4$. Thus we have two points: (0,1) and
(1,4).
 $y = 4$.

Determining where two lines meet

If two lines meet at a point their y-values should be the same. Hence we just equate the y values and Jolve for x. Once we find x, we find y by putting the x-value back in the equation.

e.g. Where do
$$y = x + 1$$
 and $y = -x - 1$ intersect?
solution we have $x + 1 = -x - 1$
 $= p \quad 2x = -2 = p \quad x = -1$

nous $\chi = -1 = P$ $\mathcal{Y} = -1 + 1 = P \mathcal{Y} = 0$. These the point of intersection is (-1, 0).

We'll start with functions now.

Now, we will learn about functions.

notation

$$\chi = f(\alpha)$$

 $\chi = independent variable$
 $\chi = dependent variable$

The domain of a function is the set of all possible values that 2 can take. [input]

The range of a function is the set of all possible values that y can take. [output] E.g. Function Romge Domain $[0,\infty)$ R (all real no.s) $\chi = \chi^2$ or $(-\infty, \infty)$ $y = \sqrt{z}$ $[0,\infty)$ $[0,\infty)$ (can't take Joy negative) [-1,1] $y = \sin(x)$ R