Lecture 4
Lines 4 Linear functions

Weill work w/ cartesian coordinates (x, y) : x-coordinate: how far left/right
y-coordinate : how far up/down

Quadrant II

Quadrant III
Quadrant I

Lines A line has an equation $y=m x+b$.
$m=$ slope of the line
$b=y$-intercept (where the line crosses

$$
\text { Slope }=\frac{\text { "rise" }}{\text { "run" }}=\frac{\text { change in } y}{\text { change in } x}
$$

Given two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ on the line, we can calculate the slope of the line as

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

egg.

Line ω / positive Slope

$$
(m>0)
$$

Line w/ negative slope $(m<0)$

Some Facts

- Horizontal lines have slope $m=0$.
- Vertical lines have "infinite" slope or undefined slope

$$
(m=\infty) .
$$

- Two lines are parallel if they have the same slope.

- Two lines are perpendicular il one has slope m and the other has slope $\frac{-1}{\mathrm{~m}}$. The lines meet at 90°.

Following are the types of questions which we can ask about lines:-

1) Find equation of a line through 2 given points.
2) Find equation of a line $w /$ slope m and passing through a given point $\left(x_{0}, y_{0}\right)$.
3) Find equation of a line through a ginew point $\left(x_{0}, y_{0}\right)$ which is parallel or perpendicular to another line.

Let's see how to tackle each of the above questions.
\&.g. 1) Find the equatioie of a line through $(1,1)$ and $(3,-4)$.
solutrean note that the slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-1}{3-1}$

$$
=-\frac{5}{2}
$$

Thus we know that $y=-\frac{5}{2} x+b$.
Fo find b, substitute the x and y values of any of the geviere points. Putting $x=1=y$ gives
$1=-\frac{5}{2}+b=0 \quad b=\frac{7}{2}$. So the equation of the line io $y=-\frac{5}{2} x+\frac{7}{2}$.
2) Find the equatioie of the line through $(1,3)$ and parallel to $y=3 x+5$.

Solution note that parallel lines have the Jame Jlope $\Rightarrow \quad m=3$. Thus $y=3 x+b$. To find b,
sub. $x=1, y=3 \Rightarrow 3=3.1+b \Rightarrow b=0$.
Thus, the equatioie of the line is $y=3 x$.
3) Find the equatioie of the line through $(1,3)$ and perpendicular to $3 y-5 x=1$.

Joluteair Note that $3 y-5 x=1$ doesn't have the slope 5 as it is not yet ire the form $y=m x+b$.
We have $y=\frac{5}{3} x+\frac{1}{3} \Rightarrow$ slope $=\frac{5}{3}$
now slope of the perpendicular line is $\frac{-1}{\frac{5}{3}}=\frac{-3}{5}$
$\Rightarrow \quad y=-\frac{3}{5} x+b$. now sub. $x=1, y=3$ to get $b=\frac{18}{5}$ and so the equatioie of the line i: $y=-\frac{3}{5} x+\frac{18}{5}$.

Graphing Lines
To graph a line, just plot two points and connect them.
e.g. Graph $y=3 x+1$.

Soluteric Note that the y-intercept $=1$ \Rightarrow the line goes through $(0,1)$.
Now plug any value of x, say $x=1$ to get $y=4$. Thus we have two points: $(0,1)$ and $(1,4)$.

Determining where two lines meet
If two lines meet at a point then their y-values Should be the same. Hence use just equate the y values and solve for x. Once we find x, we find y by putting the x-value back ie the equations.
e.g. Where do $y=x+1$ and $y=-x-1$ intersect? solutiaie we have $x+1=-x-1$

$$
\Rightarrow \quad 2 x=-2 \Rightarrow x=-1
$$

now $x=-1 \Rightarrow y=-1+1 \Rightarrow y=0$. Thess the point of intersection is $(-1,0)$.

Weill start with functions now.

Now, we will learn about functions.

Definition A function B a rule that assigns to each element of one set exactly one element from another set.
notation

$$
\begin{gathered}
y=f(x) \\
x=\text { independent variable } \\
y=\text { dependent variable }
\end{gathered}
$$

The domain of a function is the set of all possible values that x can take. [input]

The range of a function is the set of all possible values that y can take. [output]

E.g. Function	Domain	Rouge
$y=x^{2}$	$\mathbb{R}($ all real nos $)$ or $(-\infty, \infty)$	$[0, \infty)$
$y=\sqrt{x}$	$[0, \infty)$ (can't take $\sqrt{-}$ of negative)	$[0, \infty)$
$y=\sin (x)$	\mathbb{R}	$[-1,1]$

