Lecture 28

Now that we know, how to find the derivature of a function, we can talk about higher order derivaturies as well.

The dnd charitratic of
$$f(x)$$
 denoted by
 $f''(x)$ or $f^{(2)}(x)$ &
 $f''(x) = (f'(x))'$, i.e., first find $f'(x)$
and then differentiate that.
 3^{nd} derivature of $f(x)$ is
 $f'''(x) = f^{(3)}(x) = (f''(x))'$, i.e., now differ-
-entriate the dnd derivature of $f(x)$.
 $f'''(x) = f^{(4)}(x) = (f''(x))'$ is the 4th derivative
of $f(x)$ and so on.

e.g. If
$$f(x) = x^{5} + 4x^{4} + 2x^{3} + 5x + 3$$

Then $f'(x) = 5x^{4} + 16x^{3} + 6x^{2} + 5$
 $f''(x) = (5x^{4} + 16x^{3} + 6x^{2} + 5)'$
 $= 20x^{3} + 48x^{2} + 12x$
 $f'''(x) = (20x^{3} + 48x^{2} + 12x)'$
 $= 60x^{2} + 96x + 12$
 $f'''(x) = (60x^{2} + 96x + 12)'$
 $= 120x + 96$

*** * ***

$$f'''(x) = \left(-\cos x - \frac{1}{x^2}\right)'$$
$$= \sin x + \frac{2}{x^3} \cdots$$

An application If the distance is given by
$$f(t)$$

then velocity = $f'(t)$
acceleration = $f''(t)$.

(Recall the last problem on the midterm).

Que. If the distance covered by a runner is given
by
$$f(t) = t^3 + 3t$$
, what is the acceleration
at $t = 28$.

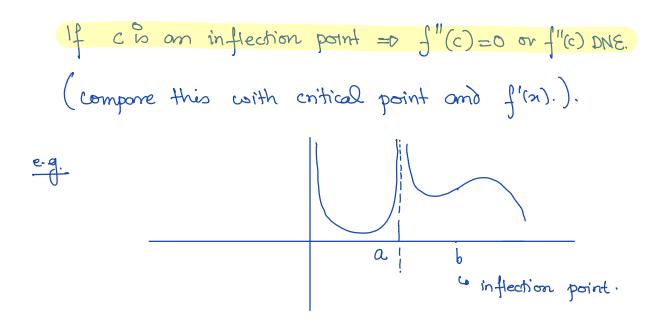
dol. acceleration =
$$f''(t)$$

 $f'(t) = 3t^2 + 3$
 $f''(t) = 6t$
= $f''(2) = 12m/s^2$ = 0 the acceleration at
& see $b = 12m/s^2$.

Concavity
Recall that
$$f'(x)$$
 is the vate of change of f .
dimilarly, $f''(x)$ is the vate of change of f' .
Now when $f'(x) > 0 \implies f(x)$ is increasings
 $f'(x) > 0 \implies f'(x)$ is increasings
 $f''(x) > 0 \implies f'(x)$ is increasing.
 $f''(x) < 0 \implies f'(x)$ is increasing.
Thus when $f''(x) > 0$ there $f'(x)$ is increasing.
Thus when $f''(x) > 0$ there $f'(x)$ is increasing.
 $= 0$ the slope of the tangent line to $f(x)$ is
increasing $= 0$ for looks like.
 $\int - concave$ up
 $-slope$ increasing.
Dimilarly when $f''(x) < 0 \implies f'(x)$ is decreasing.
 $= 0$ the slope of the tangent line to $f(x)$ is decreasing.
 $= 0$ the slope of $f(x) = 0$ for looks like.
 $\int - concave$ up
 $-slope$ increasing.
 $= 0$ for looks like.
 $f'(x) < 0 \implies f'(x)$ is decreasing.

Thus

for) is concave up on an interval I if f"(x)>0 on I. f(n) is concave down on I if $f''(x) \neq 0$ on I.



Que find the intervals of concavity for $f(x) = 3x^{5} + 5x^{2} - 20x^{3} + 4$ $10|^{n} = f'(x) = 15x^{4} + 20x^{3} - 60x^{2}$ $f''(x) = (f'(x))^{1}$ $= 60x^{3} + 60x^{2} - 120x$ $= 60x(x^{2} + x - 2)$ = 60x(x+2)(x-1)

$$f''(x)$$
 exists energeshere and $f''(x) = 0$
of $x=0$, $x=-2$ and $x=1$

" These are the inflection points.

If $\chi \in (-\infty, -2) = p + f'(\pi) < 0 = p$ concave down If $\chi \in (-2, 0) = p + f''(\pi) > 0 = p$ concave up If $\chi \in (0, 1) = p + f''(\pi) < 0 = p$ concave down If $\chi \in (1, \infty) = p + f''(\pi) > 0 = p$ concave up

Quen find the intervals of concavity of
$$f(x) = \frac{1}{x}$$

Lot $f'(x) = -\frac{1}{x^2}$
and $f''(x) = \frac{2}{x^3}$
 $f''(x) = \frac{2}{x^3}$
However $x = 0$ is NOT in the domain = $p = x = 0$
 $f''(x) = p = \frac{2}{x^3}$
 $f''(x) =$

$$x \in (0, \infty) \implies f''(x) > 0 = r concaue up.$$

We'll use the concavity for curve sketchings in the next lecture. Before that, let's see how to use f"(n) for finding local max/mein.

Decond Derivature Test for local Max/min Let c be a critical point of france (france) (france)

Then if
$$f''(c) > 0 = p c is a local min.$$

 $f''(c) < 0 = p c is a local max.$

Que find the critical points and local max/min
of
$$f(x) = x^3 - 3x^2 - 9x + 1$$
.
bol for critical points
 $f'(x) = 3x^2 - 6x - 9 = 3(x^2 - 2x - 3) = 0$
 $=0$ $3(x - 3)(x + 1) = 0$
 $=0$ $x = 3$ and $x = -1$ are the
critical points as $f'(x)$ exists
everywhere.

To check local max/min, use use the and derivative test.

$$f''(x) = 6x - 6 = 6(x - 1)$$

$$f''(3) = 6(3 - 1) = 12 > 0 = 2 = 3 & a \ local$$

$$men.$$

$$f''(-1) = 6(-1 - 1) = -12 < 0 = 2 = -1 & a \ local$$

$$mon.$$