Lecture 28

Higher Order derivatuies; concavity
Now that we know, how to find the derivative of a function, we can talk about higher order clesivativis as well.

The $2^{\text {nd }}$ clerivativi of $f(x)$ denoted by

$$
\begin{aligned}
& f^{\prime \prime}(x) \text { or } f^{(2)}(x) \text { o } \\
& f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime}, \text { i.e., first find } f^{\prime}(x)
\end{aligned}
$$

and then differentiate that.
$3^{\text {nd }}$ derivatuie of $f(x)$ is

$$
f^{\prime \prime \prime}(x)=f^{(3)}(x)=\left(f^{\prime \prime}(x)\right)^{\prime} \text {, i.e., now differ }
$$ -entiate the $2^{\text {nd }}$ derivatuie of $f(x)$.

$f^{\prime \prime \prime \prime}(x)=f^{(4)}(x)=\left(f^{\prime \prime \prime}(x)\right)^{\prime}$ is the $4^{\text {th }}$ derivative of $f(x)$ and so on.
e.g. If $f(x)=x^{5}+4 x^{4}+2 x^{3}+5 x+3$

Then $f^{\prime}(x)=5 x^{4}+16 x^{3}+6 x^{2}+5$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(5 x^{4}+16 x^{3}+6 x^{2}+5\right)^{\prime} \\
& =20 x^{3}+48 x^{2}+12 x \\
f^{\prime \prime \prime}(x) & =\left(20 x^{3}+48 x^{2}+12 x\right)^{\prime} \\
& =60 x^{2}+96 x+12 \\
f^{\prime \prime \prime}(x) & =\left(60 x^{2}+96 x+12\right)^{\prime} \\
& =120 x+96
\end{aligned}
$$

(2)

$$
\begin{aligned}
f(x) & =\cos x+\ln x \\
f^{\prime}(x) & =-\sin x+\frac{1}{x} \\
f^{\prime \prime}(x) & =\left(-\sin x+\frac{1}{x}\right)^{\prime} \\
& =-\cos x-\frac{1}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime \prime \prime}(x) & =\left(-\cos x-\frac{1}{x^{2}}\right)^{\prime} \\
& =\sin x+\frac{2}{x^{3}}
\end{aligned}
$$

An application If the distance is given by $f(t)$ then velocity $=f^{\prime}(t)$

$$
\text { acceleration }=f^{\prime \prime}(t) \text {. }
$$

(Recall the last problem on the midterm).
Ques. If the distance covered by a rumen is given by $f(t)=t^{3}+3 t$, what is the acceleration at $t=28$.

Sol.

$$
\begin{aligned}
& \text { acceleration }=f^{\prime \prime}(t) \\
& f^{\prime}(t)=3 t^{2}+3 \\
& f^{\prime \prime}(t)=6 t
\end{aligned}
$$

$\Rightarrow \quad f^{\prime \prime}(2)=12 \mathrm{~m} / \mathrm{s}^{2} \Rightarrow$ the acceleration at 2 sec io $12 \mathrm{~m} / \mathrm{s}^{2}$.

Concavity
Recall that $f^{\prime}(x)$ is the rate of change of f. similarly, $f^{\prime \prime}(x)$ is the rate of change of f^{\prime}.

Now when $f^{\prime}(x)>0 \Rightarrow f(x)$ is increasing $f^{\prime}(x)<0 \Rightarrow f(x)$ is deceasing

So $\quad f^{\prime \prime}(x)>0 \Rightarrow f^{\prime}(x)$ is increasing

$$
f^{\prime \prime}(x)<0 \Rightarrow f^{\prime}(x) \text { io decreasing. }
$$

Thus when $f^{\prime \prime}(x)>0$ then $f^{\prime}(x)$ is increasing $=0$ the slope of the tangent line to $f(x)$ is increasing $=0 f(x)$ looks like

$$
\begin{array}{r}
\text { - concave up } \\
\text {-slope increasing }
\end{array}
$$

Similarly when $f^{\prime \prime}(x)<0 \Rightarrow f^{\prime}(x)$ is decreasing $\Rightarrow \quad f(x)$ looks like concave down.

Thus
$f(x)$ is concave up on an interval I if $f^{\prime \prime}(x)>0$ on I.
$f(x)$ is concave down on I if $f^{\prime \prime}(x)<0$ on I.

Defn A point c ir the domain of $f(x)$ is called on inflection point if the concavity changes at c, i.e, $f(x)$ becomes concave down from concave up or vice-versa.

If c is an inflection point $\Rightarrow f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ D NE. (compare this with critical point and $f^{\prime}(x)$.).
egg.

Ques find the intervals of concavity for

$$
f(x)=3 x^{5}+5 x^{4}-20 x^{3}+4
$$

sol ${ }^{n}:-f^{\prime}(x)=15 x^{4}+20 x^{3}-60 x^{2}$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(f^{\prime}(x)\right)^{\prime} \\
& =60 x^{3}+60 x^{2}-120 x \\
& =60 x\left(x^{2}+x-2\right) \\
& =60 x(x+2)(x-1)
\end{aligned}
$$

$f^{\prime \prime}(x)$ exists everywhere and $f^{\prime \prime}(x)=0$ at $x=0, x=-2$ and $x=1$
\therefore These are the inflection points.

If $x \in(-\infty,-2) \Rightarrow f^{\prime \prime}(x)<0 \Rightarrow$ concave down
If $x \in(-2,0) \Rightarrow f^{\prime \prime}(x)>0 \Rightarrow$ concave up
If $x \in(0,1) \Rightarrow f^{\prime \prime}(x)<0 \Rightarrow$ concave down
If $x \in(1, \infty) \Rightarrow f^{\prime \prime}(x)>0 \Rightarrow$ concave up

Ques find the intervals of concavity of $f(x)=\frac{1}{x}$
Lon $f^{\prime}(x)=-\frac{1}{x^{2}}$
and $f^{\prime \prime}(x)=\frac{2}{x^{3}}$
$\therefore f^{\prime \prime}(x)$ is never zero and $f^{\prime \prime}(x)$ DNE at $x=0$.
However $x=0$ is NOR in the domain $\Rightarrow x=0$ is not an inflection point.

If $x \in(-\infty, 0) \Rightarrow f^{\prime \prime}(x)<0 \Rightarrow$ concave down $x \in(0, \infty) \Rightarrow f^{\prime \prime}(x)>0 \Rightarrow$ concave up.

We'll use the concavity for curve sketching in the next lecture.

Before that, let's see how to use $f^{\prime \prime}(x)$ for finding local max/mei.

Second Derivatuie Test for local Max/min
Let c be a critical point of $f(x)\left(f^{\prime}(c)=0\right.$ or $f^{\prime}(x)$ DNE at C)

Then if $f^{\prime \prime}(c)>0 \Rightarrow c$ is a local min
$f^{\prime \prime}(c)<0 \Rightarrow c$ is a local max.

Ques find the critical points and local maximin

$$
\text { of } f(x)=x^{3}-3 x^{2}-9 x+1 \text {. }
$$

doll For critical points

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-6 x-9=3\left(x^{2}-2 x-3\right)=0 \\
& =3(x-3)(x+1)=0 \\
& \Rightarrow x=3 \text { and } x=-1 \text { are the }
\end{aligned}
$$ critical points as $f^{\prime}(x)$ exists eneycohere.

To check local \max / min, we use the $2^{\text {no }}$ derivative test.

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-6=6(x-1) \\
& f^{\prime \prime}(3)=6(3-1)=12>0 \Rightarrow x=3 \text { io a local } \\
& \text { min. } \\
& f^{\prime \prime}(-1)=6(-1-1)=-12<0 \Rightarrow x=-1 \text { is a local } \\
& \text { max. }
\end{aligned}
$$

Remark:
(1) You can loo we the first derivatuie test for local max/min. You will get the some answer.
(2) Be careful with the $2^{\text {no }}$ Derivative Test $f^{\prime \prime}(c)>0 \Rightarrow$ local min. (and Nor local max.)
$f^{\prime \prime}(c)<0 \Rightarrow$ local max.
\qquad

