Lecture 27
Related Rates

The idea for solving related rates problems is the foll--wing:- suppose x and y are related to each other. If both of them are changing according to time t and we know $\frac{d x}{d t}$, then using the nelatioic between x and y, we can find $\frac{d y}{d t}$.

The strategy for solving problems here is same as that in optimizatioie.
(1) Draw a figene of the situation in question and use variables to represent any relevant quantities.
(2) find an equatioic or relatioic which related the variables in (1). List any other information from the question.
(3) Differentiate the relations is (2) with respect to
time t. You'll have to use implicit differentiation.
(4) Solve for the unknown quantity.

Ques:- A $5 m$ long ladder sits against a vertical wall. If the bottom of the ladder is slipping away at the rate of $\mid \mathrm{m} / \mathrm{s}$, how fast is the top of the ladder slipping down the wall. when the bottom is 4 m away?

Sol" We draw a figure.

Wall

Let us denote by $x=$ distance of the bottom of the ladder from the wall
$y=$ distance of the top of the ladder from the bottom
of the wall.
Then we have a right-angled triangle

$$
\begin{equation*}
\Rightarrow \quad x^{2}+y^{2}=5^{2} \Rightarrow x^{2}+y^{2}=25 \tag{1}
\end{equation*}
$$

${ }^{4}$ This is the relations b/w x and y from the question.
given:- $\frac{d x}{d t}=1 \mathrm{~m} / \mathrm{s}$
Ques:- $\frac{d y}{d t}=$? when $x=4 \mathrm{~m}$
when $x=4 \Rightarrow 4^{2}+y^{2}=25$

$$
\Rightarrow \quad y^{2}=9 \Rightarrow \quad y=+3
$$

To find $\frac{d y}{d t}$, we differentiate (implicity) (1) to
get

$$
\begin{aligned}
& 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
\Rightarrow \quad & \frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t} \Rightarrow \frac{d y}{d t}=-\frac{4}{3} \cdot 1
\end{aligned}
$$

$$
=-\frac{4}{3} \mathrm{~m} / \mathrm{s}
$$

\therefore The top of the ladder is slipping down at $\frac{4}{3} \mathrm{~m} / \mathrm{s}$

Ques Acylindric vessel of radius 10 m is being filled by bubble tea. If the height of the bubble tea is increasing at $2 \mathrm{~m} / \mathrm{s}$, how fast is the volume of the bubble tea increasing?
sol

The situation is shown in figure above. Let
$h=$ height of the bubble tea
Then volume of the bubble tea, $V=\pi r^{2} h$

$$
=\frac{100 \pi h}{}(a s r=10)
$$

so we got the relatiair.
$\frac{d h}{d t}=2 \mathrm{~m} / \mathrm{s}$ is given.
Want $\frac{d V}{d t}$. So let's differentiate (i) w.r.t.t. to get

$$
\begin{aligned}
\frac{d v}{d t}=100 \pi \frac{d h}{d t} & =100 \pi \cdot 2 \\
& =200 \pi \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

:. the volume of the bubble tea is increasing at $200 \pi \mathrm{~m}^{3} / \mathrm{s}$.

Ques. Air is leaking from a hot air balloon. If the radius of the balloon is changing at $0.5 \mathrm{~m} / \mathrm{s}$, then how fast is the volume of the balloon clecreasing when the radius is 1 m ?
soln The figure is as follows.

If $r=$ volume of the balloon then
$V=\frac{4}{3} \pi r^{3}$ (volume of a sphere as the balloon is spherical).

This is the relation
$\frac{d r}{d t}=-0.5 \mathrm{~m} / \mathrm{s} . \quad(-$ as the radius in decreasing
want $\frac{d v}{d t}$ when $r=1 \mathrm{~m}$.
We differentiate (1) to get

$$
\begin{aligned}
\frac{d v}{d t}=3 \cdot \frac{4}{3} \pi r^{2} \cdot \frac{d r}{d t} & =4 \pi r^{2} \frac{d r}{d t} \\
& =4 \pi(1)^{2} \cdot(-0.5) \\
& =-2 \pi \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

\therefore : the volume of the balloon is deoneasing at the rate of $2 \pi \mathrm{~m}^{3} / \mathrm{s}$.

Ques. Iron man leaves the Avengers $H Q$ at 12 noon, travelling east at $100 \mathrm{~km} / \mathrm{h}$.

Thor, the god of thunder, leaves the Avengers $H Q$ at 3 PM , travelling north at the speed of $150 \mathrm{~km} / \mathrm{h}$.

How fast is the distance b/w them changing at 5 PM?

Sol' The situation is as follows.

Let $\quad t=$ time in hours
$x=$ distance in Km , covered by Iron man at time t.
$y=$ distance in km , covered by Thor at time t.
$z=$ distance in fum b/w them at time note that $\quad z^{2}=x^{2}+y^{2}$
velatiair

$$
\frac{d x}{d t}=100 \mathrm{~km} / \mathrm{h}, \frac{d y}{d t}=150 \mathrm{~km} / \mathrm{h}
$$

Want: $\frac{d z}{d t}$ at 5 PM.
At $5 \mathrm{PM}, x=100.5=500 \mathrm{~km}$ as Iron man has been travelling for 5 hrs .
Thor has only been travelling for 2 hrs (he started at 3 PM) $\Rightarrow y=150.2=300 \mathrm{~km}$

$$
\begin{aligned}
& \Rightarrow \quad z^{2}=x^{2}+y^{2}=500^{2}+300^{2}=3400 \\
& \Rightarrow \quad z=100 \sqrt{34} \mathrm{~km} .
\end{aligned}
$$

now we differentiate (1) to get

$$
\begin{aligned}
2 z \frac{d z}{d t} & =2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
\Rightarrow \frac{d z}{d t} & =\frac{1}{z}\left(x \frac{d x}{d t}+y \frac{d y}{d t}\right) \\
& =\frac{1}{100 \sqrt{34}}(500 \cdot 100+300 \cdot 150)
\end{aligned}
$$

$\Rightarrow \quad \frac{d z}{d t}=\frac{950}{\sqrt{34}} \mathrm{~km} / \mathrm{h}$
\therefore The distance b/w Iron man and thor is changing at $\frac{950}{\sqrt{34}} \mathrm{~km} / \mathrm{h}$.
\qquad
\qquad

