Lecture 27 Related Ratio

The idea for solving related rates problems is the follo-
-wing: - suppose
$$x$$
 and y are related to each other.
If both of them are changing according to time
t and we know $\frac{dx}{dt}$, then using the relation
between x and y , we can find $\frac{dy}{dt}$.

- 1) Draw a figure of the situation in question and use variables to represent any relevant quantities.
- (2) find on equation or relation which related the Variables in (1). List any other information from the question.
- 3 Differentiate the relation in 2 with respect to

time t. Jou'll have to use implicit differentiation. (F) Solve for the unknown quantity.

Queo: - A 5m long ladder sits against a vertical
wall. If the bottom of the ladder is slipping
away at the vate of Im/s, how fast is the top
of the ladder slipping down the wall when the
bottom 20 4 m away?

both We draw a figure.

Wall y

het us denote by
$$z =$$
 distance of the bottom of
the ladder from the wall

 $y =$ distance of the top of
the ladder from the bottom

Then we have a suight-angled triangle
=D
$$z^2 + y^2 = 5^2 = D$$
 $z^2 + y^2 = 25$. (1)
5 This is the relation
10/15 x and y from the
Question.

green:
$$\frac{dx}{dt} = \frac{1m}{s}$$

Que :- $\frac{dy}{dt} = ?$ when $x = 4m$
when $x = 4 = p$ $4^{2}+y^{2} = 25$
 $=^{p} y^{2} = 9 \Rightarrow y = +3$.
To find $\frac{dy}{dt}$, we differentiate (implicity) (1) to
get
 $\frac{dx}{dt} + \frac{2y}{dt} = 0$
 $=^{p} \frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt} = p \frac{dy}{dt} = -\frac{4}{3} \cdot 1$

$$= -\frac{4}{3} m/s$$

: The top of the ladder is slipping down at
$$\frac{4}{3}$$
 m/s

h [] h bubble tea

The situation is shown in figure above. Let h = height of the bubble tea Then volume of the bubble tea, $V = \pi \sigma^2 h$

So we got the relation -0 = 100 TT h (as r=10) -0

$$\frac{dh}{dt} = \frac{2m/s}{s} \quad s \quad geven.$$
Want $\frac{dV}{dt}$. So let's differentiate (D) w.r.t.t.
to get

$$\frac{dV}{dt} = \frac{100\pi}{dt} \frac{dh}{dt} = \frac{100\pi}{s} \frac{2}{s}$$
so the volume of the bubble fea is increasing at
 $\frac{200\pi}{s} \frac{m^3/s}{s}$.

If
$$V = volume$$
 of the balloon then
 $V = \frac{4}{3}\pi r^3$ (volume of a sphere as the balloon
 s spherical).
This is the relation

 $\frac{dr}{dt} = -0.5 \text{ m/s.} (-as the radius in decreasing with t).$

Want $\frac{dV}{dt}$ when r = 1m.

$$\frac{dV}{dt} = \frac{3 \cdot \frac{4}{3} \pi r^2}{\frac{dr}{dt}} = \frac{4 \pi r^2 dr}{\frac{dt}{dt}}$$
$$= 4\pi (1)^{\frac{1}{2}} (-0.5)$$
$$= -2\pi m^3/s$$

So the volume of the balloon is decreasing at the vate of $2\pi m^3/s$.

$$\frac{dx}{dt} = 100 \text{ Km/h}, \quad \frac{dy}{dt} = 150 \text{ Km/h}$$
Wort: $\frac{dz}{dt}$ at 5 PM.
At 5 PM, $x = 100.5 = 500 \text{ km}$ as from
man has been travelling for 5 hrs.
Thor has only been travelling for 2 has (he
started at 3 PM) = $y = 150.2 = 300 \text{ km}$
= $P = Z^2 = x^2 + y^2 = 500^2 + 300^2 = 3400$
= $D = Z = 100 \int 34 \text{ km}.$
mous we differentiate (1) to get
 $\frac{dz}{dt} = \frac{dz}{dt} + \frac{dy}{dt} \frac{dy}{dt}$
= $\frac{1}{Z} \left(x \frac{dx}{dt} + y \frac{dy}{dt} \right)$
 $= \frac{1}{100 \int 34} \left(500.100 + 300.150 \right)$

$$= D \quad \frac{dz}{dt} = \frac{950}{\sqrt{34}} \quad Km/h$$

The distance b/ω (from man and that is changing at $\frac{950}{\sqrt{34}}$ Km/h.