Lecture 26

Optimization Problems (Not in Textbook)

Now that we know the method to find the absolute \max / min of a function, we can use this to solve real worth problems.
E.g. A farmer has 800 m of fencing and wants to fence a field. Assuming one side of the field is a river, find the dimensions of the rectangular field that gives the largest area.
sol.

The situation of the problem is as shown ie the figure.

The Area $=l \cdot \omega$
\because The farmer has 800 m of fencing and one side o river

$$
\begin{aligned}
& =\quad l+2 \omega=800 \\
& =D \quad l=800-2 \omega \\
\therefore \quad \text { Area } & =(800-2 \omega) \omega=800 \omega-2 \omega^{2}
\end{aligned}
$$

\therefore we want to maximize the area \Rightarrow we want to find ω sit. Area is maximum.

Clearly $\omega \geq 0$. Now $\because \quad l+2 \omega=800 \Rightarrow$ the maximum amount w could be is $400 \Rightarrow \omega \in[0,400]$.

We have (Area) $=800-4 w=0 \Rightarrow w=200$
$\therefore \omega=200$ is the critical point.
We now compute

$$
\begin{aligned}
A(0) & =0 \\
A(200) & =800 \times 200-2 \cdot(200)^{2} \\
& =160000-2 \cdot 40000=80000 \\
A(400) & =800 \times 400-2 \cdot(400)^{2}=0
\end{aligned}
$$

\therefore the maximum Area is $80,000 . \mathrm{m}^{2}$.

Ques Suppose we have $300 \mathrm{~cm}^{2}$ of tin to work with and we want to make the biggest, most awe some soup can ever. How much soup could our con hold?
Sol

The situatioic is shown ie the diagram.

We want to maximize the volume

$$
v=\pi r^{2} h
$$

The amount of tin available $=300 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \Rightarrow \sim_{\text {top }}^{\pi r^{2}}+\overbrace{\text { bottom }}^{\pi r^{2}}+\sim_{\text {side }}^{2 \pi r h}=300 \\
& \Rightarrow 2 \pi r^{2}+2 \pi r h=300=0 \quad h=\frac{300-2 \pi r^{2}}{2 \pi r} \\
& \Rightarrow \quad=\frac{150}{\pi r}-\gamma \\
& \Rightarrow \text { vol }=\pi r^{2}\left(\frac{150}{\pi r}-r\right)=150 r-\pi r^{3}
\end{aligned}
$$

We want to maximize vol. So we need bounds on γ.

Clearly $r \geq 0$.
Also \because we have $300 \mathrm{~cm}^{2}$ of tin, we must have

$$
\begin{aligned}
2 \pi r^{2} \leq 300 & \Rightarrow r^{2} \leq \frac{150}{\pi} \\
& \Rightarrow \quad r \leq \sqrt{\frac{150}{\pi}} \\
\Leftrightarrow \quad 0 & \leq r \leq \sqrt{\frac{150}{\pi}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore(v 01)^{\prime}=150-3 \pi r^{2}=0 \\
& \Rightarrow \quad \pi r^{2}=50 \Rightarrow r=\sqrt{\frac{50}{\pi}}
\end{aligned}
$$

So we compute $\operatorname{Vol}(0)=0$

$$
\begin{aligned}
& \text { Vol }\left(\sqrt{\frac{150}{\pi}}\right)=0 \\
& \text { vol }\left(\sqrt{\frac{50}{\pi}}\right)=\pi\left(\sqrt{\frac{50}{\pi}}\right)^{2}\left(\frac{150}{\pi \cdot \sqrt{\frac{50}{\pi}}}-\sqrt{\frac{50}{\pi}}\right) \\
& =\pi \cdot 500\left(\frac{150}{\sqrt{50 \pi}}-\sqrt{\frac{50}{\pi}}\right) \\
& \simeq 399 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore the maximum amount of soup which the con can hold io $399 \mathrm{~cm}^{3}$.

Strategy to solve optimization problems
(1) Understand the situation of the problem. Drawing a picture is often helpful.
(2) Identify the quantity to be maximized or
minimized. Find on expression for that quantity.
(3) Use other info in the problem to get the formula from (2) into a function with one variable.
(4) Find the domain or boursos of the variable.
(5) Find the global maximin of the function on the Domain.
\qquad
\qquad 0 \qquad -0

