Lecture 25

In the last lecture, we learnt about local max/min. In this lecture well see global maximin.

Def n A point c in the domain of $f(x)$ is called a

- global max if $f(c) \geq f(x)$ for all x in the domain.
- global min in $f(c) \leq f(x)$ for all x in the domain.
egg.
 graph os given
global max is at $x=5$ w/ the value 4 global min i at $x=-3 w /$ the value -2

Global extrema (i.e., global max amd min) will always
be calculated on a closed interval $[a, b]$. To find them.
(1) find all critical points inside $[a, b]$.
(2) compute $f(a), f(b)$ and f (critical points)
(3) Global max $=$ biggest value in (2)

Global $\mathrm{min}=$ biggest value in (1)
Ques. find the global extrema for $f(x)=x^{2}-2 x$ in $[-2,2]$.
Sol We first find all the critical points.

$$
f^{\prime}(x)=2 x-2=0 \Rightarrow x=1
$$

next we compute $f(-2)=(-2)^{2}-2(-2)=4+4=8$

$$
\begin{aligned}
& f(2)=2^{2}-2 \cdot 2=0 \\
& f(1)=1^{2}-2 \cdot 1=-1
\end{aligned}
$$

\therefore global max $=8$ at $x=-2$
global $\min =-1$ at $x=1$.
Ques find the global extrema for the following.
(i) $f(x)=2 x^{3}-9 x^{2}+12 x+6$ in $[0,2]$
(2) $f(x)=6 x^{2 / 3}-4 x+2$ in $[-1,1 / 2]$
sog^{n}

$$
\text { (1) } \begin{aligned}
f^{\prime}(x) & =6 x^{2}-18 x+12=6\left(x^{2}-3 x+2\right)=0 \\
& \Rightarrow 6(x-2)(x-1)=0
\end{aligned}
$$

$\Rightarrow x=2$ and $x=1$ are the critical points inside $[0,2]$.

We compute $f(0)=6$

$$
\begin{aligned}
f(2) & =2 \cdot(2)^{3}-9 \cdot 2^{2}+12 \cdot 2+6 \\
& =16-36+24+6 \\
& =10 \\
f(1) & =2-9+12+6=10
\end{aligned}
$$

Thus global $\max =10$ at $x=1$ and 2
global $\min =6$ at $x=0$.
(2)

$$
\begin{aligned}
& f^{\prime}(x)=6 \cdot \frac{2}{3} x^{\frac{2}{3}-1}-4=0 \\
& \Rightarrow 4 x^{-\frac{1}{3}}-4=0 \Rightarrow 4 x^{-1 / 3}=4 \\
& \Rightarrow x=1
\end{aligned}
$$

Note that $f^{\prime}(x)$ DNE at $x=0$. However $x=1$ doesn't lie in $[-1,1 / 2]$ so we ignore this and hence the only critical point is $x=0$.

Wee compute $f(-1)=6 \cdot(-1)^{2 / 3}-4(-1)+2$

$$
\begin{aligned}
& =6+4+2=12 \\
f(0) & =2 \\
f(1 / 2) & =6 \cdot\left(\frac{1}{2}\right)^{\frac{2}{3}}-4 \cdot \frac{1}{2}+2 \\
& =6 \cdot\left(\frac{1}{4}\right)^{\frac{1}{3}}-2+2 \simeq 3.78
\end{aligned}
$$

Thess, global max $=12$ at $x=-1$
global min $=2$ at $x=0$.
\qquad

