Lecture 20

We now want to find the derivatuie of $f(x)=\log x$.
We observe that $\quad e^{\ln x}=x$
so differentiating both sider give

$$
\begin{array}{ll}
& \frac{d}{d x}\left(e^{\ln x}\right)=\frac{d}{d x}(x) \\
= & e^{\ln x} \cdot \frac{d}{d x}(\ln x)=1 \quad \quad \text { (chain } r \\
= & x \cdot \frac{d}{d x}(\ln x)=1 \\
=0 & \frac{d}{d x}(\ln x)=\frac{1}{x} \quad, x>0 .
\end{array}
$$

Ques find the derivative of the following functions.
(1) $f(x)=\ln \left(3 x^{2}+2\right)$.

Sol We use chain rule as $\ln \left(3 x^{2}+2\right)=g(h(x))$ with

$$
g(x)=\ln (x) \text { and } h(x)=3 x^{2}+2
$$

and $\because \quad g^{\prime}(x)=\frac{1}{x}$ and $h^{\prime}(x)=6 x$

$$
\begin{aligned}
\therefore \frac{d}{d x}\left(\ln \left(3 x^{2}+2\right)\right) & =g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& =\frac{1}{3 x^{2}+2} \cdot(6 x)=\frac{6 x}{3 x^{2}+2}
\end{aligned}
$$

(2) $f(x)=\frac{x^{2}+2 x}{\ln x}$
sol We use the quotient rule to get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{d}{d x}\left(x^{2}+2 x\right) \cdot \ln x-\frac{d}{d x}(\ln x) \cdot x^{2}+2 x}{(\ln x)^{2}} \\
& =\frac{(2 x+2) \ln x-\frac{1}{x} \cdot\left(x^{2}+2 x\right)}{(\ln x)^{2}} \\
& =\frac{(2 x+2) \ln x-(x+2) \quad \text { Ans }}{(\ln (x))^{2}}
\end{aligned}
$$

What about logs with different base?
Recall from the change of base formula, we get

$$
\log _{a} x=\frac{\ln x}{\ln a} \text { and since } \ln a \text { is a constant }
$$

$$
\begin{array}{r}
\Rightarrow \quad \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{\ln a} \cdot \frac{d}{d x}(\ln x) \\
\Rightarrow \quad \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \cdot \ln a}
\end{array}
$$

Ques find the derivatuie of $f(x)=2^{x} \cdot \log _{2}\left(x^{2}-2\right)$.
Loll We first use the product rule to get

$$
\begin{array}{r}
\frac{d}{d x}\left(2^{x} \cdot \log _{2}\left(x^{2}-2\right)\right)=\frac{d}{d x}\left(2^{x}\right) \cdot \log _{2}\left(x^{2}-2\right)+2^{x} \cdot \frac{d}{d x}\left(\log _{2}\left(x^{2}-2\right)\right) \\
=2^{x} \cdot \ln 2 \cdot \log _{2}\left(x^{2}-2\right)+\frac{2^{x} \cdot \frac{1}{\left(x^{2}-2\right) \cdot \ln 2} \cdot \frac{d}{d x}\left(x^{2}-2\right)}{\text { Chain rule here }} \\
=2^{x} \cdot \ln 2 \cdot \log _{2}\left(x^{2}-2\right)+\frac{2^{x} \cdot(2 x)}{\left(x^{2}-2\right) \ln 2} \text { Ans }
\end{array}
$$

Logarithmic Differentiation
We know how to differentiate $f(x)^{n}$ (use chain rule and power rule) and $a^{f(x)}$ (use chain rule and derivative of exponential functions).
In the first case, the base is a function and the exponent is a constant and iv e the second case, the exponent is a function and the base constant.

But what about functions of the form $f(x)^{g(x)}$? e.g. $f(x)=3 x^{2 x^{2}+1}$ or $f(x)=\ln x^{\ln x}$

We use what is called logarithmic differentiation.
Here is how to do this with an illustratiaic.

Steps for logarithmic Differentiation

e.g. Suppose $f(x)=\left(x^{2}+1\right)^{e^{x}}$. Find $f^{\prime}(x)$.
(1) $\quad \ln f(x)=\ln \left(\left(x^{2}+1\right)^{e^{x}}\right)=e^{x} \ln \left(x^{2}+1\right)$

$$
\begin{aligned}
\Rightarrow \quad \frac{f^{\prime}(x)}{f(x)} & =\frac{d}{d x}\left(e^{x}\right) \cdot \ln \left(x^{2}+1\right)+e^{x} \cdot \frac{d}{d x}\left(\ln \left(x^{2}+1\right)\right) \\
& =e^{x} \cdot \ln \left(x^{2}+1\right)+e^{x} \cdot \frac{1}{x^{2}+1} \cdot(2 x) \\
& =e^{x}\left(\ln \left(x^{2}+1\right)+\frac{2 x}{x^{2}+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =f(x) \cdot\left(e^{x}\left(\ln \left(x^{2}+1\right)+\frac{2 x}{x^{2}+1}\right)\right) \\
& =\left(x^{2}+1\right)^{e^{x}} \cdot\left(e^{x}\left(\ln \left(x^{2}+1\right)+\frac{2 x}{x^{2}+1}\right)\right)
\end{aligned}
$$

Ans
Que. Find $f^{\prime}(x)$ where $f(x)=2^{2^{x}}$.
sol Note that this is just $a g(x)$ where $a=2$ and

$$
\begin{aligned}
& g(x)=2^{x} \\
& \Rightarrow \quad f^{\prime}(x)=2^{2^{x}} \cdot \ln 2 \cdot \frac{d}{d x}\left(2^{x}\right) \\
&=2^{2^{x}} \cdot \ln 2 \cdot 2^{x} \cdot \ln 2=2^{\left(2^{x}+x\right)} \cdot(\ln 2)^{2}
\end{aligned}
$$

