Lecture 2
Rational Expression p:-
A rational expression is a quotient of two polynomials $\frac{p(x)}{q(x)}$ with $q(x) \neq 0$.
e.g. $\frac{11}{x-3}$ is a rational expression as long as $x-3 \neq 0$ or $x \neq z$.

$$
\frac{2 x^{2}+5 x+1}{x^{3}+5 x^{2}+7 x+4} \text { is rational if denominator } \neq 0 \text {. }
$$

Operations an rational expressions

1. Addition / Aubstraction Recall how to add fractions

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

We add/substract rational expressions in the some way. egg.

$$
\begin{aligned}
\frac{x+1}{x+2}+\frac{5}{x+3} & =\frac{(x+1)(x+3)+5(x+2)}{(x+2)(x+3)} \\
& =\frac{x^{2}+4 x+3+5 x+10}{x^{2}+5 x+6} \\
& =\frac{x^{2}+9 x+13}{x^{2}+5 x+6}
\end{aligned}
$$

2. multiplicateoic same as fractions; $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b c}$
e.g. $\frac{x+1}{x+2} \cdot \frac{5}{x+3}=\frac{5 x+1}{x^{2}+5 x+6}$
3. Division again, same as fractions. $\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a d}{b c}$

So $\quad \frac{\frac{x+1}{x+2}}{\frac{5}{x+3}}=\frac{(x+1)(x+3)}{5(x+2)}=\frac{x^{2}+4 x+3}{5 x+10}$

Can we factor and simplify rational expressions just like we did the polynomials?
Yes! Just factor the numerator and the denominator? Separately ard then cancel out common terms, if any.
e.g. $\frac{x^{2}+7 x+12}{x^{2}+2 x-3}=\frac{(x+3)(x+4)}{(x+3)(x-1)}=\frac{x+4}{x-1}$

Equations [Solving for x]

Observe that the quadratic formula is a way to solve quadratic equations, i.e., expressions of the form $A x^{2}+B x+C=0$. Similarly, we can solve for other type equations as well. egg.

1. Linear equations:- equations of the form $A x+B=0$, ie., the highest exponent of x is 1 .

Solve: $3 x+5=7$

$$
\Rightarrow \quad 3 x=7-5=2 \quad \Rightarrow \quad x=\frac{2}{3}
$$

2. Quadratic Equations We aheady know how to solve them either by guessing the roots or by using the quadratic formula.
3. Rational equations Equations of the form $\frac{p(x)}{q^{(x)}}=\frac{a(x)}{b(x)}$ with $q(x) \neq 0$ and $b(x) \neq 0$. Here, we will move all the terms towards the right hand side then getting a single rational expression and then equate the numerator to 0 .
e.g. Solve $\frac{x}{5}=\frac{2 x}{x+2}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{x}{5}-\frac{2 x}{x+2}=0 \\
& \Rightarrow \quad \frac{x(x+2)-10 x}{5(x+2)}=0 \\
& \Rightarrow \quad \frac{x^{2}-8 x}{5(x+2)}=0
\end{aligned}
$$

[moving eventhing to the RHS]
[getting a single rational expression]
$\Rightarrow \quad x^{2}-8 x=0 \Rightarrow \quad x(x-8)=0 \quad$ [numerator $\left.=0\right]$
$\Rightarrow \quad x=0$ or $x=8$.

Inequalities $(<,>, \leq, \geqslant)$

Note:- When solving an inequality remember that: Adding and substracting do not change the direction of the inequality. However, the sign is reversed when multiplying or dividing by a negative number.
e.g. Solve for $x: 4-3 x \leq 7+2 x$

$$
\begin{array}{ll}
\Rightarrow & 4-3 x-2 x \leq 7 \quad[\text { no change ie } \leq \text { sign }] \\
\Rightarrow & 4-5 x \leq 7 \\
\Rightarrow & -5 x \leq 3 \\
\Rightarrow & x \geq-\frac{3}{5}
\end{array}
$$

Thus $\quad x \geq-\frac{3}{5}$ which we can also write as

- $x \in\left[-\frac{3}{5}, \infty\right) \rightarrow$ round means the point is exclucled. [always round for $\pm \infty$]
"belongs to" square means the point is included
- plot on a number line.

e.g. Solve for $x: \quad-1 \leq 3 x+4<7$

Let's solve both the inequalities at once!

$$
\begin{array}{ll}
& -1 \leq 3 x+4<7 \\
=0 & -1-4 \leq 3 x<7- \\
\Rightarrow & -5 \leq 3 x<3 \\
\Rightarrow & -\frac{5}{3} \leq x<1
\end{array}
$$

$$
\begin{gathered}
=0 \quad-1-4 \leq 3 x<7-4 \quad \text { (substracting } 4 \text { from both } \\
\text { sides) }
\end{gathered}
$$ sides)

(no seign change as dividing by a positive number)

Then $-\frac{5}{3} \leq x<1$ or $x \in\left[-\frac{5}{3}, 1\right]$ or

e.g. Solve $x^{2}-x-2 \geq 0$.

Well first factor the quadratic. So

$$
(x-2)(x+1) \geq 0
$$

Thus the expression above can be zero at $x=2,-1$. So the test points are between the zeroes.

Both $x+1$ and $x-2$ are either both positive or both negative
and hence their product is positive, wherever it shows + . Then the solution is $x \in(-\infty,-1] \underset{L}{\cup}[2, \infty)$

