Lecture 19

In this lecture we are going to find the derivative of $f(x) = e^{2}$ and $f(x) = a^{2}$, i.e., exponential functions.

Recall that we defined e as the unique number such that the graph of $f(x) = e^{\chi}$ has the tongent line with slope 1 at $\chi = 0$.

New since slope of the tongent line at z=0 is precisely f'(0)=P for $f(x)=e^{\chi}$, we have f'(0)=1. So $L = f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{e^{h} - 1}{h}$

Thus we get the important fact $\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1 \qquad \qquad \square$

Let us use ① to find the derivature of
$$f(x) = e^{x}$$

 $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = \lim_{h \to 0} \frac{e^{x} \cdot e^{h} - e^{x}}{h}$
 $= \lim_{h \to 0} e^{x} \left(\frac{e^{h} - 1}{h}\right)$
 $= 1 \text{ from}(1)$

$$= e^{\chi}$$

So
$$\frac{d}{dx}e^{x} = e^{x}$$

i.e., the derivature of e^x is e^x itself.

Que find the derivative of the following functions.
(1)
$$f(x) = de^{\chi}$$

Sol $f'(x) = \frac{d}{d\chi}(2e^{\chi}) = 2e^{\chi}$
(2) $f(x) = \chi e^{\chi}$
Sol We use the product rule.

$$f'(x) = \frac{d}{dx}(x) \cdot e^{\chi} + \chi \cdot \frac{d}{dx}(e^{\chi})$$
$$= 1 \cdot e^{\chi} + \chi \cdot e^{\chi} = e^{\chi}(1+\chi).$$

(a)
$$f(x) = e^{\int z}$$

(b) $f(x) = e^{\int z}$
 $\frac{20!}{4}$ Here we'll have to use the chain sule.
 $if g(x) = e^{x}$ and $h(x) = \int z$, then
 $f(x) = e^{\int z} = g(h(x))$
 $= \int f'(x) = g'(h(x)) \cdot h'(x) = \frac{e^{\int z}}{2\sqrt{z}}$

(a)
$$f(x) = e^{3x^2 + 5}$$

Again, using the chain sule, we get
 $f'(x) = e^{3x^2 + 5} \cdot (6x)$.

What is the derivative of $f(x) = a^{\chi}$? We note that $a = e^{\ln a} = b$ $a^{\chi} = e^{\chi \ln a}$ Thus, we can use the chain surle to get

$$\frac{d}{dx}(a^{\chi}) = e^{\chi \ln a} \cdot \ln a = a^{\chi} \ln a$$

$$\frac{d}{dx}(a^{\chi}) = a^{\chi} \ln a$$

Remark :- you cannot apply the "Power Rule" here as in q^{2} , the variable \approx is in the exponent

$$\frac{d}{dx}(a^{x}) \neq xa^{2-1}$$

Ouer find the derivative of the following functions.
()
$$f(x) = 3 \cdot 2^{\chi}$$

 $f'(\chi) = 3 \cdot 2^{\chi} \ln 2$

(a)
$$f(x) = x + 5^{x}$$

 $f'(x) = \frac{d}{dx}(x) + \frac{d}{dx}(5^{x}) = 1 + 5^{x} \ln 5^{x}$
(b) $e^{x} + \frac{x}{dx}$

(3) $f(x) = a^{\chi} e^{\chi}$

We use the product sule to get

$$f'(x) = \frac{d}{dx} (2^{\chi}) \cdot e^{\chi} + 2^{\chi} \cdot \frac{d}{dx} (e^{\chi})$$

$$= 2^{\chi} \ln 2 e^{\chi} + 2^{\chi} e^{\chi} = 2^{\chi} e^{\chi} (1 + \ln 2)$$

(4)
$$f(x) = \frac{x^2}{3^{2}+1}$$

We'll use the quotient sube.

(c)
$$f(x) = 2^{5x^2+3}$$

We'll use the chain sule on $f(x) = g(h(x))$
with $g(x) = 2^{\infty}$ and $h(x) = 5x^2+3$
=p $f'(x) = g'(h(x)) \cdot f'(x)$

=
$$2^{5\chi^2+3}$$
. $2n2.(10\chi)$.

Que find the equation of the tangent line to

$$f(x) = x2^{2}$$
 at $x=0$.
Sold if the equation of the tangent line is
 $y = mxtb$
then $m = f'(0)$
 $f'(x) = 2^{2} + x \cdot 2^{2} \ln 2$
 $= 0 \quad f'(0) = 2^{0} + 0 \cdot 2^{0} \cdot \ln 2 = 1$
 $\Rightarrow \quad y = x+b$
To find b, note that $f(0) = 0 \cdot 2^{0} = 0$ and
 $(0,0)$ lie on the line.
 $= P \quad 0 = 0+b = 0$ b=0. Thus the equation of
the tangent line is
 $y = x$.