Lecture 19
In this lecture we are going to find the derivatuie of $f(x)=e^{x}$ and $f(x)=a^{x}$, i.e., exponential functions.

Recall that we defined $e$ as the unique number such that the graph of $f(x)=e^{x}$ has the tangent line with slope 1 at $x=0$.

Now since slope of the tangent line at $x=0$ is precisely $f^{\prime}(0)$
$\Rightarrow$ for $f(x)=e^{x}$, we have $f^{\prime}(0)=1$. So

$$
L=f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

Thus we get the important fact

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \tag{1}
\end{equation*}
$$

Let us use (1) to find the derivative of $f(x)=e^{x}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} e_{=1 \text { from (1) }}^{\left.\frac{e^{h}-1}{h}\right)} \\
& =e^{x}
\end{aligned}
$$

So $\quad \frac{d}{d x} e^{x}=e^{x}$
i.e., the derivative of $e^{x}$ is $e^{x}$ itself.

Ques. find the derivative of the following functions.
(1) $f(x)=2 e^{x}$

Sol $f^{\prime}(x)=\frac{d}{d x}\left(2 e^{x}\right)=2 e^{x}$
(2) $f(x)=x e^{x}$

Sol We use the product rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(x) \cdot e^{x}+x \cdot \frac{d}{d x}\left(e^{x}\right) \\
& =1 \cdot e^{x}+x \cdot e^{x}=e^{x}(1+x) .
\end{aligned}
$$

(3) $f(x)=e^{\sqrt{x}}$

Sol Here well have to use the chain rule.
If $g(x)=e^{x}$ and $h(x)=\sqrt{x}$, then

$$
\begin{aligned}
f(x) & =e^{\sqrt{x}}=g(h(x)) \\
\Rightarrow \quad f^{\prime}(x) & =g^{\prime}(h(x)) \cdot h^{\prime}(x)=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}
\end{aligned}
$$

(4) $f(x)=e^{3 x^{2}+5}$

Again, using the chain rule, we get

$$
f^{\prime}(x)=e^{3 x^{2}+5} \cdot(6 x) .
$$

What is the derivative of $f(x)=a^{x}$ ?
We note that $a=e^{\ln a} \Rightarrow a^{x}=e^{x \ln a}$
Thus, we can use the chain rule to get

$$
\frac{d}{d x}\left(a^{x}\right)=e^{x \ln a} \cdot \ln a=a^{x} \ln a
$$

So, $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$

Remark:- You cannot apply the "Power Rule" here as in $a^{x}$, the variable $x$ is in the exponent
so

$$
\frac{d}{d x}\left(a^{x}\right)=\angle x a^{x-1}
$$

Ques find the derivative of the following functions.
(1)

$$
\begin{aligned}
& f(x)=3.2^{x} \\
& f^{\prime}(x)=3.2^{x} \ln 2
\end{aligned}
$$

(2)

$$
\begin{aligned}
f(x) & =x+5^{x} \\
f^{\prime}(x) & =\frac{d}{d x}(x)+\frac{d}{d x}\left(5^{x}\right)=1+5^{x} \ln 5
\end{aligned}
$$

(3) $\quad f(x)=2^{x} \cdot e^{x}$
we use the product rule to get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(2^{x}\right) \cdot e^{x}+2^{x} \cdot \frac{d}{d x}\left(e^{x}\right) \\
& =2^{x} \ln 2 e^{x}+2^{x} e^{x}=2^{x} e^{x}(1+\ln 2)
\end{aligned}
$$

(4) $f(x)=\frac{x^{2}}{3^{x}+1}$

Weill use the quotient rube.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{d}{d x}\left(x^{2}\right) \cdot\left(3^{x}+1\right)-\frac{d}{d x}\left(3^{x}+1\right) \cdot x^{2}}{\left(3^{x}+1\right)^{2}} \\
& =\frac{2 x \cdot\left(3^{x}+1\right)-3^{x} \ln 3 \cdot x^{2}}{\left(3^{x}+1\right)^{2}}
\end{aligned}
$$

(5) $f(x)=2^{5 x^{2}+3}$

Weill use the chain rule os $f(x)=g(h(x))$ with $g(x)=2^{x}$ and $h(x)=5 x^{2}+3$

$$
\Rightarrow \quad f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

$$
=2^{5 x^{2}+3} \cdot \ln 2 \cdot(10 x)
$$

Ques find the equatioie of the tangent line to $f(x)=x 2^{x}$ at $x=0$.

Sol If the equation of the tangent line is

$$
y=m x+b
$$

then $m=f^{\prime}(0)$

$$
\begin{aligned}
& f^{\prime}(x)=2^{x}+x \cdot 2^{x} \ln 2 \\
\Rightarrow & f^{\prime}(0)=2^{0}+0 \cdot 2^{0} \cdot \ln 2=1 \\
\Rightarrow & y=x+b
\end{aligned}
$$

To find b, note that $f(0)=0.2^{\circ}=0$ and $(0,0)$ lie on the line.
$\Rightarrow \quad 0=0+b \Rightarrow b=0$. This the equation of the tangent line ${ }^{6}$

$$
y=x .
$$

$\qquad$

