Lecture 16

Let's recall from the last lecture that for a function $f(x)$, the instantaneous rate of change at $x=a$ is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

This is also called the derivative of $f(x)$ at $x=a$.
We denote it by $f^{\prime}(a)$.
It is abo the slope of the tangent line at $x=a$.
The tangent line is the line that touches $f(x)$ at $x=a$ and at no other nearby points.

Given a function $f(x)$, we can think of ito derivatuie as a function itself:-

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Remark:- The derivative $f^{\prime}(x)$ is also clenoted as $\frac{d}{d x}(f(x))$. finding the derivatuie of a function using the definition

Let's see how to find the derivative of a function using the definition. If the question specifically says that then you must do it in this way. Later we will learn faster methods to find $f^{\prime}(x)$.

Find $f^{\prime}(x)$ for the following functions, using the definition.
1)

$$
\begin{aligned}
f(x) & =x \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)-x}{h}=1
\end{aligned}
$$

Thus, $f^{\prime}(x)$ o the constant function 1 .
2) $f(x)=x^{2}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{x^{2}+h^{2}+2 h x-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=2 x
$$

Thus, $f^{\prime}(x)$ is the function $2 x$.

$$
\begin{aligned}
& \text { 3) } \begin{aligned}
& f(x)=x^{3} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
&=\lim _{h \rightarrow 0} \frac{x^{3}+h^{3}+3 x^{2} h+3 x h^{2}-x^{3}}{h} \\
&=\lim _{h \rightarrow 0} \frac{h\left(h^{2}+3 x^{2}+3 x h\right)}{h}=3 x^{2}
\end{aligned}
\end{aligned}
$$

[What do you think $f^{\prime}(x)$ is for $f(x)=x^{4}$? Guess is $4 x^{3}$]

$$
\text { 5) } \begin{aligned}
f(x) & =\sqrt{x} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})}{h} \cdot \frac{(\sqrt{x+h}+\sqrt{x})}{(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h \cdot(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

E.g. find the equation of the tangent line to

$$
f(x)=x^{2}+2 x+3 \text { at } x=2
$$

Soln:- Recall that the equation of a line is

$$
y=m x+b
$$

where $m=$ slope which we saw is given by $f^{\prime}(2)$

$$
b=y \text {-intercept }
$$

We calculate

$$
\begin{aligned}
m=f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{\left[(2+h)^{2}+2(2+h)+3\right]-\left[2^{2}+2 \cdot 2+3\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left.\left(4 h+h^{2}+4 h\right)+(4 h+2 h)+3-4 h-4-3\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(h+6)}{h}=6
\end{aligned}
$$

Thus, $y=2 x+b$
Also, the line is tangent to $f(x)$ at $x=2=0$ $(2, f(2))$ is a point on the line and

$$
f(2)=11 \quad \Rightarrow \quad 11=2 \cdot 2+b \Rightarrow b=7 .
$$

Thus, the equation of the tangent line is

$$
y=6 x+7
$$

Let's calculate the derivative of $f(x)=|x|$ at $x=0$.

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

This limit DNE as done sir Lecture 13.

Thees $f^{\prime}(x)$ for $|x|$ DNE at $x=0$!
This con be seen easily if we look at the graph of $|x|$.

The derivatuies does not exist at sharp points as there are several possible tangent lines.
\qquad
\qquad
\qquad -0

