Lecture 15

To understand the notion of derivativer, we have to understand rates of change.

Rates of Change
Suppose the distance travelled is recorded after every 30 minutes of the start of the travel :-

Time	0 hr	0.5 hr	1 hr	1.5 hrs	2 hes	2.5 hrs	3 hr
Distance	0 km	52 km	100 km	120 km	175 km	210 km	250 km

So average speed in 3 hrs is

$$
\frac{\text { distance }}{\text { time }}=\frac{250}{3} \frac{\mathrm{~km}}{\mathrm{hr}}=83.33 \mathrm{~km} / \mathrm{hr}
$$

What is the average speed ie the first 1.5 hrs?

$$
\frac{\text { distance ie } 1^{\text {st }} 1.5 \mathrm{hrs}}{\text { time }}=\frac{120}{1.5} \mathrm{~km} / \mathrm{hr}=80 \mathrm{~km} / \mathrm{hr}
$$

What is the average speed ie the last 1.5 hrs ?

$$
\begin{aligned}
\frac{\text { Distance ie last } 1.5 \mathrm{hrs}}{\text { Time }}=\frac{250-120}{1.5} \frac{\mathrm{~km}}{\mathrm{~h} \gamma} & =\frac{130}{1.5} \mathrm{~km} / \mathrm{h} \mathrm{\nu} \\
& =86.66 \mathrm{~km} / \mathrm{h}>
\end{aligned}
$$

We con apply the some idea to functions.
Given a function $f(x)$, the average rate of change of $f(x)$ between $x=a$ and $x=b$ is

$$
\frac{f(b)-f(a)}{b-a}
$$

E.g. A runner's distance in metres over 60 seconds is given by

$$
f(t)=t+0.1 t^{2}
$$

1) What is the average speed of the runners in 60 seconds?
Sol Avg. speed $=\frac{f(60)-f(0)}{60-0}=\frac{60+0.1(60)^{2}}{60}$

$$
=7 \mathrm{~m} / \mathrm{s}
$$

2) What is the runner's average speed over the last 10 seconds?

$$
\begin{aligned}
\text { Sol Avg. speed } & =\frac{f(60)-f(50)}{60-50} \\
& =\frac{\left[60+(0.1)(60)^{2}\right]-\left[50+0.1(50)^{2}\right]}{10} \\
& =[6+36]-[5+25]=12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(3) Avg. speed ie the last 1 second?

Sol.

$$
\begin{aligned}
\frac{f(60)-f(59)}{60-59} & =\frac{\left[60+0.1(60)^{2}\right]-\left[59+0.1(59)^{2}\right]}{1} \\
& =[420]-[307.1] \mathrm{m} / \mathrm{s} \\
& =12.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(4) The last millisecond? ($0.001^{\text {th }}$ of a second)

Sol $\frac{f(60)-f(59.999)}{60-59.999}=12.99901 \mathrm{~m} / \mathrm{s}$
(5) What was the runner's instantaneocio speed at $t=60$ s ?

We guess if to be $13 \mathrm{~m} / \mathrm{s}$. To be sure, we need to calculate Limits!

The instantaneous rate of change of $f(x)$ at $x=a$ i

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{(a+h)-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

So to calculate the runner's instantaneous speed at $t=60 \mathrm{~s}$ we calculate

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(60+h)-f(60)}{h} & =\lim _{h \rightarrow 0} \frac{\left.\left[(60+h)+(0.1)(60+h)^{2}\right]-\left[60+0.1(60)^{2}\right]\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[60+h+0.1\left(3600+h^{2}+120 h\right)\right]-[420]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[13 h+0.1 h^{2}\right]}{h}=13 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

which is what we guessed.
\&.g. find the instantaneous rate of change for

$$
f(x)=x^{2}+2 x a t
$$

(1) $x=1$

Sol

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0} \frac{\left[(1+h)^{2}+2(1+h)\right]-\left[1^{2}+2 \cdot 1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[1^{2}+h^{2}+2 h+2+2 h\right]-[3]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4 h+h^{2}\right]}{h}=4
\end{aligned}
$$

(2) $x=2$

So1 $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{\left[(2+h)^{2}+2(2+h)\right]-\left[2^{2}+2 \cdot 2\right]}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\left[4+h^{2}+4 h+4+2 h\right]-[4+4]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[h^{2}+6 h\right]}{h}=6
\end{aligned}
$$

(3) at $x=a$.

So1 $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{\left[(a+h)^{2}+2(a+h)\right]-\left[a^{2}+2 a\right]}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\left[a^{2}+2 a h+h^{2}+2 a+2 h-a^{2}-2 a\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{[2 a h+2 h]}{h}=2 a+2
\end{aligned}
$$

Well see that we have actually calculated the derivative of $f(x)$ at $x=a$!

