Lecture 14

Sometimes, even the strategies mentioned ie the previ-- Onus lectures are not useful. In such cases, we will have to use other result.

The Squeeze Theorem/Sandwich Theorem

If $f(x), g(x)$ and $h(x)$ are functions such that

$$
f(x) \leq g(x) \leq h(x)
$$

around a and if

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

As the graph indicates, we just need $f(x) \leq g(x) \leq h(x)$ around a.

Remark This theorem ${ }^{\circ}$ very useful for calculating limits involving $\sin x$ and $\cos x$ as

$$
-1 \leq \sin x \leq 1 \quad \text { and } \quad-1 \leq \cos x \leq 1
$$

\&.g. Find $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{2}}$.
Sol: Since $\quad-1 \leq \sin x \leq 1 \Rightarrow \frac{-1}{x^{2}} \leq \frac{\sin x}{x} \leq \frac{1}{x^{2}}$
Thus in the statement of the squeeze theorem

$$
f(x)=-\frac{1}{x^{2}}, g(x)=\frac{\sin x}{x^{2}} \text { and } h(x)=\frac{1}{x^{2}}
$$

now $\lim _{x \rightarrow \infty} \frac{-1}{x^{2}}=0=\lim _{x \rightarrow \infty} \frac{1}{x^{2}}$

$$
\Rightarrow \quad \lim _{x \rightarrow \infty}\left(\frac{\sin x}{x^{2}}\right)=0 .
$$

Continuity
Intuitively, a function is continuous if we con draw its graph without removing the pen from the paper.

Formally A function $f(x)$ ib continuous at $x=a$ if

1. $f(a)$ exists
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

We just write

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

If I is an interval then we say that f is continuo--us on I if it is continuous at each point of I.

If $I=[a, b]$ then we mean $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and

$$
\lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

Egg.:- polynomials, logarithms, exponential, $\sin x$ and $\cos x$ are all continuous functions.

Ex. Consider the graph of $f(x)$ given below.

We observe:-
$f(x)$ is discontinuous at

1) $x=-3$ (limit $D N E$)
2) $x=1$
(limit DNE)
3) $x=3 \quad(f(3) D N E)$
4) $x=4\left(\lim _{x \rightarrow 4} f(x)\right.$ exists and $f(4)$ exists but

$$
\left.\lim _{x \rightarrow 4} f(x)=f(4)\right)
$$

$f(x)$ is continuous enengerhere else ie $[-5,5]$.

This example will help in understanding different types of discontinuity.

There are z types of discontinuity:-

1. If $\lim _{x \rightarrow a} f(x)$ exist but $\lim _{x \rightarrow a} f(x) \neq f(a)$, it is a removable discontinuity.
(Thus $f(a)$ DNE or $\lim _{x \rightarrow a} f(x) \neq f(a)$).

2. If both $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist and ane
finite, BUT are not equal, then it ib a jump discontinuity.

3. If $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, then it is an infinite discontinuity.

Thus in the previous example, we have the following type of discontinuities:-

1) $\lim _{x \rightarrow 3^{-}} f(x)=+\infty \Rightarrow$ infinite discontinuity at $x=-3$
2) $\lim _{x \rightarrow 1^{-}} f(x)=4$ and $\lim _{x \rightarrow 1^{+}} f(x)=1 \Rightarrow$ LHL \neq RHL
\Rightarrow jump discontinuity at $x=1$.
3) $f(3) D N E$ removable singularity at $x=3$.
4) $\lim _{x \rightarrow 4^{+}} f(x)=2=\lim _{x \rightarrow} f(x)$ But $f(4)=3$

$$
x \rightarrow 4^{-} \quad x \rightarrow 4^{+}
$$

Thus, removable singularity at $x=4$.
E.g. Sketch $f(x)=\left\{\begin{array}{ccc}-2 & \text { in } & x<-2 \\ 2 & \text { if } & x=-2 \\ x+1 & \text { if } & -2<x<0 \\ x^{2} & \text { in } & x \geq 0\end{array}\right.$

Where is $f(x)$ continuous? What typer of discontinuities does $f(x)$ has?
Solutiaie Graph of $f(x)$ is

$\because \lim _{x \rightarrow-2^{-}} f(x)=-2, \lim _{x \rightarrow-2^{+}} f(x)=-1=$ LHL and RHL
exist but are not equal.
\Rightarrow jump discontinuity at $x=-2$.
$-\lim _{x \rightarrow 0^{-}} f(x)=1$ but $\lim _{x \rightarrow 0^{+}} f(x)=0$
$=0$ jump discontinuity s at $x=0$.

- $f(x)$ is continuous aueugoshere else.

