Lecture 12

In the examples seen in Lee. 12 for calculating limits, we simply plugged i ie the value. However, that strategy doesn't always works.
Ques Calculate the following limits.

1) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x-2} \quad$ 2) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{3 x^{2}+9 x+8}$
2) $\lim _{x \rightarrow-\infty} \frac{2 x+1}{3 x^{2}+9 x+2}$
3) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos x}$
4) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
5) $\lim _{x \rightarrow 0} \frac{|x|}{x}$

We can't simply plug ie the valuer here as we will get what are known as "indeterminate forms". We need more strategies:-

Strategies for finding Limito

1) First try to plug $x=a$ and see if you get a finite value.

If you get, $\frac{c}{ \pm \infty}=0, \frac{c}{0}= \pm \infty$ and $c \cdot(\pm \infty)= \pm \infty$
where C is a finite constant number.
2) If 1) doesn't work then do we have an"indeterminate form"?

$$
\frac{0}{0}, \frac{ \pm \infty}{ \pm \infty}, \infty^{0}, 0^{0}, 1^{\infty}, 0 . \infty, \infty-\infty \text { etc. }
$$

If yes then try - factoring and cancelling

- rationalizing the numerator or the denominator
- Using Trigonometric identifier
- Calculating LHL and RHL and see if they are equal
- factoring the highest power of x in the numerator and denominator.

3) After applying any of the strategies in 2) we evaluate the limit again.

Let's try to solve the previon question.

1) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x-2}$

When we plug $x=2$, we get $\frac{0}{0}$, indeterminate form

We try to factorize and cancel

$$
\lim _{x \rightarrow 2} \frac{(x-2)(x-1)}{(x+i)}=\lim _{x \rightarrow 2} x-1=2-1=1
$$

2) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{3 x^{2}+9 x+8}=\frac{\infty}{\infty}$ form

We factor x^{2} from the numerator and the denom-- inator to get

$$
\lim _{x \rightarrow \infty} \frac{x^{2-}\left(2+\frac{1}{x^{2}}\right)}{x^{2}\left(3+\frac{9}{x}+\frac{8}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{2+\frac{\frac{1}{x}^{2}}{x^{2}}}{\frac{3+\frac{9}{x}+\frac{8}{x^{2}}}{=0}}=\frac{2}{3}
$$

3) $\lim _{x \rightarrow-\infty} \frac{2 x+1}{3 x^{2}+9 x+2}=\lim _{x \rightarrow-\infty} \frac{x\left(2+\frac{1}{x}\right)}{\frac{x^{2}}{x}\left(3+\frac{9}{x}+\frac{2}{x^{2}}\right)}$

$$
=\lim _{x \rightarrow-\infty} \frac{2}{3 x+9}=\frac{2}{-\infty}=0
$$

4) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos x}=\frac{\sin \pi}{\cos \pi / 2}=\frac{0}{0}$ form
so we use trigonometric identity, $\sin 2 \theta=2 \sin \theta \cos \theta$
to get

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{2 \sin x \cos ^{\prime} x}{\cos ^{\prime} x}=\lim _{x \rightarrow \frac{\pi}{2}} 2 \sin x=2 \sin \frac{\pi}{2}=2
$$

5) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\frac{0}{0}$ form

We rationalize the numerator to get

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} & =\lim _{x \rightarrow 4} \frac{(\sqrt{x})^{2}-2^{2}}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{x}{(x>4)(\sqrt{x}+2)} \\
& =\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

6) $\lim _{x \rightarrow 0} \frac{|x|}{x}$. Here weill calculate LHL and RHL.

Recall, $|x|=\left\{\begin{array}{cc}-x, & x<0 \\ x, & x \geq 0\end{array}\right.$
Then $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\frac{-x}{x}=-1=$ LHL

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\frac{x}{x}=1=\text { RHL }
$$

Thas LHL \neq RHL so $\lim _{x \rightarrow 0} \frac{|x|}{x}$ DNE.

