Calculus
3 main topics

- Limits
- Continuity
- Derivatives

Limit o

Until this point, we were more interested lie finding the value of a function at a particular point, e.g. $f(x)=2 x+1$ at $x=1$ gives

$$
f(1)=2 \cdot 1+1=z
$$

for limit, we will be interested ire finding what happens to a function as x gets infinitely close to some point a.

To understand the concept of limits, let's see the behaviour of the following graphs:

Observations
Let's see what happens to the function as x approaches 1 .
$f_{1}(x)$: - as x approaches 1 from the left hand side $f_{1}(x)$ approaches the value 2

- as x approaches 1 from the right hond side $f_{1}(x)$ approaches the value 2
- and $f_{1}(1)=2$
$f_{2}(x)$:- - as x approaches 1 from the left hond side $f_{2}(x)$ approaches the value 2
- as x approaches 1 from the right hand side $f_{2}(x)$ approaches the value 2

$$
-f_{2}(1)=0
$$

$f_{3}(x)$:- -as x approaches 1 from the left hand side $f_{3}(x)$ approaches the value 2 .

- as x approaches 1 from the right hand side, $f_{3}(x)$ approaches the value -2

$$
-f_{3}(1)=2
$$

$f_{4}(x)$:- - as x approaches 1 either from the left hand side or the right hand side, $f_{4}(x)$ goes to $-\infty$.

These examples motivate the following definition.
If $f(x)$ approaches a finite value L as x approaches a or as x gets infinitely close to a but not equal to a, we say
"the limit of $f(x)$ as x approaches a is L"
and write

$$
\lim _{x \rightarrow a} f(x)=L
$$

Note :- 1) L must be finite, s.e., $L \neq \pm \infty$.
2) $f(x)$ must approach the some value L, irrespective of whether x approaches a from the left hand side or the right hand side.

When x approaches a from the left then we say

$$
\lim _{x \rightarrow a^{-}} f(x)=L \text { - Left hand Limit (LHL) }
$$

When x approaches a from the right then we say p
$\lim _{x \rightarrow a^{+}} f(x)=L$ - Right hand limit (RHL)

Thew for $\lim _{x \rightarrow a} f(x)=L$, we mess have

$$
L H L=R H L=L
$$

3) We do not care about the value of $f(x)$ at $x=a$.

If $f(x)$ does not approach a finite value, or if LHL \neq RHL, then we say that
"the limit of $f(x)$ as x approaches a does not exist (DNE)"

Thurs for the previous graphs, we see

- $\lim _{x \rightarrow 1} f_{1}(x)=2 \quad \lim _{x \rightarrow 1} f_{2}(x)=2$
- $\lim _{x \rightarrow 1} f_{3}(x)$ DNE as $L H L=2$ and $R H L=-2$
- $\lim _{x \rightarrow 1} f_{4}(x)$ DNE as seen though LHL=RHL, But $L H L=-\infty=R H L$, not a finite value.
e.g. Suppose

$$
f(x)=\left\{\begin{array}{lll}
-x & \text { if } x<0 \\
x^{2} & \text { y } 0 \leq x<1 \\
2 & \text { y } x \geq 1 & \text { graph }
\end{array}\right.
$$

We see that

$$
\begin{array}{ll}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x)=0 \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2}\right)=0 & \Rightarrow \lim _{x \rightarrow 0} f(x)=0 \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}=1 \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(2)=2 & \Rightarrow \lim _{x \rightarrow \text { RHL so }} f(x) \text { DUE. }
\end{array}
$$

Remember horizontal asymptotes? Now we can calcu-- Late them as well.

Horizontal asymptotes are calculated by calculating limit at $\pm \infty$, i.e., as $x \rightarrow+\infty$ or $x \rightarrow-\infty$.

The useful facts here are

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0 \text { and } \lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

Limit Ruler :-

Suppose $\lim _{x \rightarrow a} f(x)=F$ and $\lim _{x \rightarrow a} g(x)=G$

1. $\lim _{x \rightarrow a}(f(x) \pm g(x))=F \pm G$
2. $\lim _{x \rightarrow a}(f(x) \cdot g(x))=F \cdot G$
3. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G}$
(provided $G \neq 0$)
4. $\lim _{x \rightarrow a}(c \cdot f(x))=C \cdot F \quad$ where c is a constant
5. $\lim _{x \rightarrow a}(f(x))^{k}=F^{k}$
6. $\lim _{x \rightarrow a} b^{f(x)}=b^{F}$
7. $\lim _{x \rightarrow a} \log _{b} f(x)=\log _{b} F$
8. $\lim _{x \rightarrow a} \sin (f(x))=\sin (F)$
9. $\lim _{x \rightarrow a} \cos (f(x))=\cos (F)$

Note:- When $f(x)$ is a polynomial then to calculate $\lim _{x \rightarrow a} f(x)$, we simply plug g in a in place of x. In fact, this strategy might help many times.
E.g. Find the following limits.
a) $\lim _{x \rightarrow 1} x^{2}+3 x+4=1^{2}+3 \cdot 1+4=1+3+4=8$
b) $\lim _{x \rightarrow 2} \sqrt{x+2}=\sqrt{2+2}=2$
c) $\lim _{x \rightarrow \frac{\pi}{3}} \sin \left(\frac{x}{2}\right)=\sin \left(\frac{\pi}{\frac{3}{2}}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$

$$
\text { d) } \begin{aligned}
\lim _{x \rightarrow 0} e^{x+1}-\ln (\sin (x)+1) & =e^{0+1}-\ln (\sin (0)+1) \\
& =e-\ln (1)=e
\end{aligned}
$$

