Calculus

3 main topics

Limit
Continuity
Derivatives

Limito

Uptill this point, we were more interested in finding
the value of a function
$$\underline{at}$$
 a particular point,
e.g. $f(x) = 2x + 1$ at $x = 1$ gives
 $f(1) = \partial \cdot 1 + 1 = 3$

for limit, we will be interested in finding what happens to a function as a gets infinitely close to some point a.

$$f_1(x)$$
: - as x approaches 1 from the left hand side
 $f_1(x)$ approaches the value 2
- as x approaches 1 from the right hand side
 $f_1(x)$ approaches the value 2
- and $f_1(1) = 2$

$$f_2(x) := -a_0 \times approaches \perp from the left hand side
 $f_2(x)$ approaches the value 2
- as \times approaches \perp from the right hand side
 $f_2(x)$ approaches the value 2
 $-f_2(1) = 0$$$

$$f_3(x) := -a_0 \propto approaches 1$$
 from the left hand side
 $f_3(x)$ approaches the value 2.
- as \propto approaches 1 from the right hand side,
 $f_3(x)$ approaches the value - 2
= $f_3(1) = 2$

$$f_q(x)$$
 :- - as x approaches I either from the
left hand side or the right hand side, $f_q(x)$
goes to - or.

These examples motivate the following definition.

If for approaches a finite value L as x approaches a or as x gets infinitely close to a but not equal to a, we say

" the limit of fire) as re approaches a is L"

and write

 $\lim_{x \to a} f(x) = L$

3) We do not care about the value of $f(x) \xrightarrow{at} x = a$.

Thus for the previous graphs, we see
•
$$\lim_{x \to 1} f_1(x) = 2$$

• $\lim_{x \to 1} f_2(x) = 2$
• $\lim_{x \to 1} f_3(x)$ DNE as $LHL = 2$ and $RHL = -2$
 $x \to 1$

•
$$\lim_{x \to 1} f_4(x)$$
 DNE as even though LHL= RHL, But
 $x \to 1$ LHL= $-\infty = RHL$, mot a finite value.

e.g. Suppose

$$f(x) = \begin{cases} -x & ij \ z < 0 \\ x^2 & ij \ 0 \le x < 1 \\ 2 & ij \ x \ge 1 \end{cases} \xrightarrow{\text{graph}} 2^2 \frac{1}{1 + \frac{1$$

Remember honizontal augmpto tes? Nous we can calcu-- Late them as well.

Horizontal asymptotes are calculated by calculating limit at $\pm \infty$, i.e., as $\times - + \infty$ or $2 - -\infty$.

The use ful facts here are

$$\lim_{x \to \infty} \frac{1}{x} = 0 \quad \text{ond} \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

$$\frac{1}{x \to -\infty} = 0$$

Suppose
$$\lim_{x \to a} f(x) = F$$
 and $\lim_{x \to a} g(x) = G$
1. $\lim_{x \to a} (f(x) \pm g(x)) = F \pm G$
2. $\lim_{x \to a} (f(x) \cdot g(x)) = F \cdot G$
3. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{F}{G}$ (provided $G \neq 0$)
4. $\lim_{x \to a} (c \cdot f(x)) = C \cdot F$ where c is a constant

S.
$$\lim_{x \to a} (f\alpha)^{k} = F^{k}$$

 $x \to a$
6. $\lim_{x \to a} b^{f\alpha} = b^{F}$
 $x \to a$
7. $\lim_{x \to a} \log_{b} f(\alpha) = \log_{b} F$
 $x \to a$
8. $\lim_{x \to a} \sin(f\alpha) = \sin(F)$
 $x \to a$
9. $\lim_{x \to a} \cos(f\alpha) = \cos(F)$

E.g. Find the following limit.
a)
$$\lim_{X \to 1} x^2 + 3x + 4 = 1^2 + 3 \cdot 1 + 4 = 1 + 3 + 4 = 8$$

b) $\lim_{X \to 1} \sqrt{x + 2} = \sqrt{2 + 2} = 2$
c) $\lim_{X \to \frac{\pi}{3}} \sin\left(\frac{x}{2}\right) = \sin\left(\frac{\pi}{3}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$

