Lecture 11
Recall: SOHCAHTOA

$$
\begin{aligned}
& \sin \theta=\frac{O}{H} \quad \cos \theta=\frac{A}{H} \\
& \tan \theta=\frac{O}{A}
\end{aligned}
$$

$$
\operatorname{cosec} \theta=\frac{1}{\sin \theta}, \sec \theta=\frac{1}{\cos \theta}, \cot \theta=\frac{1}{\tan \theta}
$$

In calculus, angles are always measured ie radians.
1 radian $=$ angle that cuts off arc length equal to the radius of a circle

To convert degree \longleftrightarrow radians

$$
\text { degrees }=\frac{(\text { radians }) 180}{\pi} \quad \text { radians }=\frac{(\text { degrees }) \pi}{180}
$$

E.g. 1) $0^{\circ}=0 \mathrm{rad}$
2) $30^{\circ}=\frac{30 \cdot \pi}{180}=\frac{\pi}{6} \mathrm{rad}$
3) $45^{\circ}=\frac{45 \cdot \pi}{180}=\frac{\pi}{4} \mathrm{rad}$
4) $60^{\circ}=\frac{60 . \pi}{180}=\frac{\pi}{3} \mathrm{rad}$
5) $90^{\circ}=\frac{90 \cdot \pi}{180}=\frac{\pi}{2} \mathrm{rad}$ and so on.

Most values of $\sin \theta$ and $\cos \theta$ are found using a calcula--tor; but we should certain values by heart, which can be found on the unit circle.

For finding $\tan \theta$, note that $\tan \theta=\frac{O}{A}=\frac{\frac{O}{H}}{\frac{A}{H}}=\frac{\sin \theta}{\cos \theta}$
Thew,

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

egg.

$$
\begin{aligned}
& \tan \left(\frac{\pi}{6}\right)=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}} \\
& \tan \left(\frac{\pi}{4}\right)=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1 \\
& \tan (0)=\frac{0}{1}=0 \\
& \tan \left(\frac{\pi}{2}\right)=\frac{1}{0} \leadsto \text { not defined }
\end{aligned}
$$

As you com see from the unit circle that $\sin \theta, \cos \theta$, $\tan \theta$ etc takes both itive and i-ive values. To remember where they take what Rind of values, we can woe the CAST rule:-

$$
\begin{array}{c|c}
\sin \theta \geq 0 & A \& A l l \geq 0 \\
\sim T & A \sim \cos \theta \geq 0
\end{array}
$$

Trigonometric Identifier

There are lots of trig. identities. The most important one is

$$
\begin{equation*}
\sin ^{2} \theta+\cos ^{2} \theta=1 \tag{i}
\end{equation*}
$$

Divide (1) by $\sin ^{2} \theta$ to get

$$
1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta
$$

Divide (1) by $\cos ^{2} \theta$ to get

$$
\tan ^{2} \theta+1=\sec ^{2} \theta \quad \text { and so on. }
$$

Sum/Difference of Angles

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

Double Angle

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta
\end{aligned}
$$

$\therefore \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}, \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$
Graphs of Trig Functions

$$
y=\sin x
$$

$$
y=\cos x
$$

$$
y=\tan x
$$

As you cense that the graphs of $\sin \theta, \cos \theta$ and $\tan \theta$ starts repeating.

Def" A periodic function is a function $f(x)$ such that

$$
f(x)=f(x+a)
$$

for some positive number a.
' a ' is called the period of f.
From the graphs we see that
$[-\sin \theta, \cos \theta$ are periodic with period 2π

- $\tan \theta$ ib periodic with period J. Lo $\cot \theta$ has period π.

Thus $\sec \theta$ and case θ have period 2ा

Also note from the graph that $\sin \theta$ and $\cos \theta$ reach the maximum height of 1 unit.

This is called the amplitude.

In general, if $y=A \sin (B(x-C))+D$ or
$y=A \cos (B(x-c))+D$ then

$$
\begin{array}{ll}
A=\text { amplitude } & \text { Period }=\frac{2 \pi}{B} \\
C=\text { horizontal shift } & D=\text { vertical shift }
\end{array}
$$

e.g. $y=2 \sin (2 x) \quad$ has amplitude 2 , period $=\frac{2 \pi}{2}=\pi$ and the graph looks like - graph of $\sin x$

Solving Trig Equations
e.g. Solve for θ :

1) $\sin 2 \theta=\cos \theta$
2) $4 \cos \theta=4+\sin ^{2} \theta$

Sol:- 1) note, $\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
& \Rightarrow \quad 2 \sin \theta \cos \theta=\cos \theta \Rightarrow \cos \theta(2 \sin \theta-1)=0 \\
& \Rightarrow \quad \cos \theta=0 \text { or } 2 \sin \theta-1=0 \text {, i.e.. } \sin \theta=\frac{1}{2}
\end{aligned}
$$

So, $\cos \theta=0=0 \quad \theta=-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \cdots$

$$
\sin \theta=\frac{1}{2}=0 \quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}, \cdots
$$

Thess the soluteoie is

$$
\theta= \begin{cases}\frac{\pi}{2}+2 k \pi & (k=0, \pm 1, \pm 2, \ldots) \\ \frac{3 \pi}{2}+2 k \pi & (k=0, \pm 1, \pm 2, \ldots) \\ \frac{\pi}{6}+2 k \pi & (k=0, \pm 1, \pm 2, \ldots) \\ \frac{5 \pi}{6}+2 k \pi & (k=0, \pm 1, \pm 2, \ldots)\end{cases}
$$

So, the point to remember is that find all solutions θ in $[0,2 \pi]$ and then take care of the repeats from periodicity.
2) $4 \cos \theta=4+\sin ^{2} \theta$

$$
\begin{aligned}
& =4+\left(1-\cos ^{2} \theta\right) \quad\left(\text { using } \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& =5-\cos ^{2} \theta \\
=\quad \cos ^{2} \theta & +4 \cos \theta-5=0 \\
=\quad(\cos \theta+5)(\cos \theta-1)=0 \quad & \left.=0 \cos \theta=-5^{[\text {not possible as }}-1 \leq \cos \theta \leq 1\right] \\
& \text { or } \cos \theta=1
\end{aligned}
$$

There $\cos \theta=1$

$$
\begin{aligned}
& =0 \quad \theta=0,2 \pi, 4 \pi, 6 \pi, \ldots \\
& \theta=2 k \pi \quad k=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

Line and Cosine Laws

If we have any triangle
then

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

- Sine Law

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$

- cosine Law
e.g. solve for the unknowns:-

1)

Use cosine law to get

$$
\begin{aligned}
x^{2} & =3^{2}+8^{2}-2(3)(8) \cos \frac{\pi}{3} \\
& =9+64-48 \cdot \frac{1}{2} \\
& =73-24=49
\end{aligned}
$$

$\Rightarrow x= \pm 7$ But a length comnot be negature

$$
\Rightarrow \quad x=7
$$

2)

Sine law \Rightarrow

$$
\begin{aligned}
& \frac{\sin (\pi / 6)}{4}=\frac{\sin x}{6} \\
=0 & \frac{1}{2} \cdot 6=4 \sin x \\
= & 0 \quad \sin x=\frac{3}{4}
\end{aligned}
$$

$$
\begin{array}{r}
=0 \quad x=\sin ^{-1}\left(\frac{3}{4}\right) \quad(\text { confind using } a \\
\text { calculator) }
\end{array}
$$

