Lecture 10

Growth end Decay problems
Many real life situations are modelled by the so called growth/decay problems. We com use exponentials and logarithms to solve them.

Let's look at the exponential growth/decay function.
Let $A(t)$ be the amount of a substance at time t
Then

$$
A(t)=A_{0} e^{k t}
$$

Here $A_{0}=$ initial amount of the substance or amount at time 0

$$
t=\text { time }, k=\text { constant }
$$

if $k>0 \Rightarrow$ growth $k<0 \Rightarrow$ decay
Typically, these problems will have some initial amount given (A_{0}) and some other data to find K and you will have to find the amount at some later time t.
E.g. Suppose a bacteria culture starts w/ 100 bacteria s After z hours it has 900 bacteria.. How much will it have after 6 hours?
Sol Here initial amount, ie., $A_{0}=100$
At $t=3$, we have $A(3)=900$
So, $900=100 e^{3 k}$. We want to find $A(6)$.
$\Rightarrow \quad q=e^{3 k} \Rightarrow$ taking \ln both sides

$$
\ln 9=3 k \ln e \Rightarrow \ln q=3 k \Rightarrow k=\frac{\ln 9}{3}
$$

So our equation is $\quad A(t)=100 e^{\left(\frac{\ln 9}{3}\right) t}$

Thus, $A(6)=100 e^{\frac{\ln 9}{3} \cdot 6}=100 e^{2 \ln 9}$

$$
\begin{aligned}
& =100 e^{\ln \left(9^{2}\right)}=100 e^{\ln 81} \\
& =8100\left(00 e^{\ln x}=x\right) .
\end{aligned}
$$

Radioactive Decay [used for carbon Sating]
Suppose a radioactive isotope has a half-life of 10 years. How much of this substance will be left after 30 years?
301n Here we don't have A_{0} explicitly, but initially
the isotope would be 100%. Half-life means it will become half of its original value, i.e. 50%.

Thew in $A(t)=100 e^{k t}, A(10)=50$

$$
\Rightarrow \quad 50=100 e^{10 k} \Rightarrow \quad \frac{1}{2}=e^{10 R}
$$

taking \ln both sides gives $\ln (1 / 2)=\ln \left(e^{10 R}\right)$

$$
=10 \mathrm{k}
$$

$$
\Rightarrow \quad k=\frac{\ln (1 / 2)}{10}
$$

So, $\quad A(t)=100 e^{\frac{\ln (1 / 2)}{10} t}$. Need to find $A(30)$.
So,

$$
\begin{aligned}
& A(30)=100 e^{\frac{\ln (1 / 2)}{10} \cdot 30} \\
&= 100 e^{3 \ln (1 / 2)}
\end{aligned}=100 e^{\ln \left(\frac{1}{8}\right)}=\frac{100}{8}=\frac{25}{2}=12.5 \% .
$$

Chemical Dissolution
The amount of chemical that will dissolve in a solution can be modelled with the exponential growth function. The amount increases exponentially as temperature increases.

Say at $0^{\circ} \mathrm{C}, 10 \mathrm{~g}$ dissolver and at $10^{\circ} \mathrm{C}, 1 \mathrm{lg}$ dissolves.
Let $A(t)=$ amount that dissolves at temp. t

$$
\text { So } \begin{aligned}
& A(0)=10=A_{0} \\
& A(10)=11 \\
\Rightarrow \quad & 11=10 e^{10 k} \Rightarrow \ln \left(\frac{11}{10}\right)=\ln \left(e^{10 k}\right)=10 k \\
\Rightarrow & k=\frac{\ln (11 / 10)}{10} \\
\therefore \quad & A(t)=10 e^{\frac{\ln (11 / 10)}{10} \cdot t}
\end{aligned}
$$

To find at what temperature 15 g dissolves, we need to find t.

$$
\begin{aligned}
& \text { So, } \quad 15 \\
&=10 e^{\frac{1}{10}} \\
& \Rightarrow \quad \frac{3}{2}=e^{\frac{1}{10} \ln (11 / 10) t} \\
& \Rightarrow \quad \ln (3 / 2)=\frac{1}{10} \ln (11 / 10) t \Rightarrow t
\end{aligned}
$$

