Math 124 - Calculus 4 Vector Algebra for Kinesiology
Lecture 1

Welcome to Math 124! We will start this lecture with polynomials.

Definition A polynomial is a finite sum of terms where all variables have whole number exponents.

Operations on polynomials

1. Addition/Substraction :- Add/Substract the coefficients of the same power (or like terms).

$$
\text { e.g. } \begin{aligned}
& \left(5 x^{3}+3 x^{2}+2 x+9\right)+\left(2 x^{2}+9 x+1\right) \\
= & 5 x^{3}+3 x^{2}+2 x^{2}+2 x+9 x+9+1=5 x^{3}+5 x^{2}+11 x+10 \\
& \left(5 x^{3}+3 x^{2}+2 x+9\right)-\left(2 x^{2}+9 x+1\right) \\
= & 5 x^{3}+\left(3 x^{2}-2 x^{2}\right)+(2 x-9 x)+9-1=5 x^{3}+x^{2}-7 x+8
\end{aligned}
$$

2. Multiplicatiaie :- Distribute and multiply each term and add the exponents.
e.g

$$
\text { 1) }(x+2)\left(x^{2}-x+3\right)=\left(x^{3}-x^{2}+3 x\right)+\left(2 x^{2}-2 x+6\right)
$$

2)

$$
\left.\begin{array}{l}
(x+1)^{3}=(x+1)(x+1)(x+1) \quad\left[\begin{array}{c}
\text { first multiply } 1^{\text {st }} \text { and } 2^{n d} \\
\text { term and then multiply } \\
=\left(x^{2}+x+x+1\right)(x+1) \\
=\left(x^{2}+2 x+1\right)(x+1) \\
=\left(x^{3}+x^{2}\right)+\left(2 x^{2}+2 x\right)+(x+1) \\
=x^{3}+3 x^{2}+3 x+1
\end{array} \quad \text { the result w/ the } 3^{\text {rd }}\right. \text { term }
\end{array}\right]
$$

Warning:- $\quad(x+y)^{n} \neq x^{n}+y^{n}$ as can be seen from the above example.

Factoring
Factoring a polynomial is the reverse operation of multipl--ication. It involves breaking-up a polynomial into product of smaller polynomials.

First, check for common factors and factor them out. e.g. $3 x^{2}+6 x=3 x(x+2)$

3 is common, x is common

Factoring Quadratics A quadratic polynomial is of the form $A x^{2}+B x+C$, ie., the highest exponent of x is 2 . for factoring quadratics, one can try to guess and check.
e.g. 1) $x^{2}+3 x+2$.
$A=1, B=Z, C=2$, so look for two numbers which add up to z and multiply to 2 . A clear choice is $2 \mathrm{ar} \partial 1$ and hence $x^{2}+3 x+2=(x+2)(x+1)$.
2) $x^{2}+2 x+1=(x+1)(x+1)$

But if might not be easy to guess the factors enerytime. In that case, we can use the
Quadratic Formula
The solution to the quadratic $A x^{2}+B x+C=0$ are

$$
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \text {, provided } B^{2}-4 A C \geq 0 \text {. }
$$

The two values of x, thus obtained are called roots.
Remark:- if $B^{2}-4 A C<0$ then the quadratic is called irreducible and it can't be factored.

So for factoring $A x^{2}+B x+C$, we find the note say r_{1} and
r_{2} and then $A x^{2}+B x+C=\left(x-r_{1}\right)\left(x-r_{2}\right)$.
e.g. 1) factor $x^{2}+14 x+24$.

$$
B^{2}-4 A C=(14)^{2}-4 \cdot 24=196-96=100>0 \Rightarrow \text { can be factored. }
$$

The roots are $x=\frac{-14 \pm \sqrt{100}}{2}=-\frac{14 \pm 10}{2}$

$$
\Rightarrow x=-2 \text { or } x=-12
$$

$\therefore x^{2}+14 x+24=(x+2)(x+12)$.
2) $x^{2}+x+5$
$B^{2}-4 A C=1-4.5=-19<0 \Rightarrow$ the polynomial is irreducible.

Helpful Factorizations

1) Difference of squares: $x^{2}-y^{2}=(x+y)(x-y)$
2) perfect square: $x^{2}+2 x y+y^{2}=(x+y)^{2}$
3) Difference of cubes: $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
4) Sum of cuber: $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{3}\right)$

How to use the above?
Ques:- Factorize $8 x^{3}-1$.

Ans:- $8 x^{3}-1=(2 x)^{3}-1^{3} \Rightarrow$ difference of cubes
$\therefore \quad 8 x^{3}-1=(2 x-1)\left(4 x^{2}+2 x+1\right)$
Con use factorize this more?
Here $B^{2}-4 A C=4-4.4 .1=-12<0 \Rightarrow$ irreducible.
Thus,

$$
8 x^{3}-1=(2 x-1)\left(4 x^{2}+2 x+1\right)
$$

