Recognizing k-Clique Extendible Orderings

Mathew Francis, Rian Neogi, Venkatesh Raman

WG 2020, June 25

Definitions

$K_{k}^{-}:=k$-clique minus an edge (u, v).
Ordered $K_{k}^{-}:=$An ordering on K_{k}^{-}such that all other vertices come between u and v.

Definitions

$K_{k}^{-}:=k$-clique minus an edge (u, v).
Ordered K_{k}^{-}:= An ordering on K_{k}^{-}such that all other vertices come between u and v.

Definitions

$K_{k}^{-}:=k$-clique minus an edge (u, v).
Ordered $K_{k}^{-}:=$An ordering on K_{k}^{-}such that all other vertices come between u and v.

k-Clique Extendible Ordering

An ordering ϕ over the vertices of the graph G is said to be a k-clique extendible ($k-\mathrm{C}-\mathrm{E}$) ordering if there is no induced ordered K_{k+1}^{-}

Definitions

$K_{k}^{-}:=k$-clique minus an edge (u, v).
Ordered $K_{k}^{-}:=$An ordering on K_{k}^{-}such that all other vertices come between u and v.

k-Clique Extendible Ordering

An ordering ϕ over the vertices of the graph G is said to be a k-clique extendible ($k-\mathrm{C}-\mathrm{E}$) ordering if there is no induced ordered K_{k+1}^{-}

Observation

Comparability graphs are exactly the class of 2-C-E graphs.

Observation

Comparability graphs are exactly the class of 2-C-E graphs.
Introduced by Spinrad. Spinrad asked whether recognizability of 3-C-E graphs can be done in polynomial time.

Observation

Comparability graphs are exactly the class of 2-C-E graphs.
Introduced by Spinrad. Spinrad asked whether recognizability of 3-C-E graphs can be done in polynomial time.

It was observed that finding a maximum clique in a $k-C-E$ graph can be done in time $n^{O(k)}$ (when given the ordering).

Our Results

Our Results

- Recognizability Problem is NP-hard for each fixed $k \geq 3$.

Our Results

- Recognizability Problem is NP-hard for each fixed $k \geq 3$.
- $n^{O(k)}$ algorithm for finding maximum clique is optimal assuming ETH (even when the ordering is given)

Our Results

- Recognizability Problem is NP-hard for each fixed $k \geq 3$.
- $n^{O(k)}$ algorithm for finding maximum clique is optimal assuming ETH (even when the ordering is given)
- If k is given as input, the problem is also coNP-hard.

Our Results

- Recognizability Problem is NP-hard for each fixed $k \geq 3$.
- $n^{O(k)}$ algorithm for finding maximum clique is optimal assuming ETH (even when the ordering is given)
- If k is given as input, the problem is also coNP-hard.
- Verification problem is coNP-hard and W[1]-hard in general but FPT when treewidth is bounded.

NP-hardness Reduction

Different reduction for $k=3$ and $k \geq 4$.

NP-hardness Reduction

Different reduction for $k=3$ and $k \geq 4$.
For the rest of this talk, we present the ideas behind the reduction for $k \geq 4$.

NP-hardness Reduction

Different reduction for $k=3$ and $k \geq 4$.
For the rest of this talk, we present the ideas behind the reduction for $k \geq 4$.

The reduction is from the Betweenness problem.

Reduction for $k \geq 4$

Reduction is from the Betweenness problem.
Betweenness
Given: Universe U, family of triples $T=\left\{t_{1}, \ldots, t_{m}\right\}$ where each $t_{i}=$ $\left(a_{i}, b_{i}, c_{i}\right)$ is an ordered triple of elements of U
Output: Does there exist an ordering of U such that for each $t_{i} \in T$, b_{i} comes between a_{i} and c_{i} in the ordering?

Reduction for $k \geq 4$

Reduction is from the Betweenness problem.
Betweenness
Given: Universe U, family of triples $T=\left\{t_{1}, \ldots, t_{m}\right\}$ where each $t_{i}=$ $\left(a_{i}, b_{i}, c_{i}\right)$ is an ordered triple of elements of U
Output: Does there exist an ordering of U such that for each $t_{i} \in T$, b_{i} comes between a_{i} and c_{i} in the ordering?
"comes between":= either $a_{i}<b_{i}<c_{i}$ or $c_{i}<b_{i}<a_{i}$.
Known to be NP-hard.

Reduction idea using Gadget

Suppose we have a gadget with the following properties:

Reduction idea using Gadget

Suppose we have a gadget with the following properties:
Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget

Reduction idea using Gadget

Suppose we have a gadget with the following properties:
Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget
Gadget will output a modified graph G^{\prime} such that:

Reduction idea using Gadget

Suppose we have a gadget with the following properties:
Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget
Gadget will output a modified graph G^{\prime} such that:
(1) All orderings of G^{\prime} satisfy either $a<b<c$ or $c<b<a$

Reduction idea using Gadget

Suppose we have a gadget with the following properties:
Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget
Gadget will output a modified graph G^{\prime} such that:
(1) All orderings of G^{\prime} satisfy either $a<b<c$ or $c<b<a$
(2) If there is an ordering of G such that $a<b<c$ or $c<b<a$, then that is an ordering for G^{\prime} also

Reduction idea using Gadget

Suppose we have a gadget with the following properties:
Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget
Gadget will output a modified graph G^{\prime} such that:
(1) All orderings of G^{\prime} satisfy either $a<b<c$ or $c<b<a$
(2) If there is an ordering of G such that $a<b<c$ or $c<b<a$, then that is an ordering for G^{\prime} also
l.e. gadget will 'prune' out all the 'bad' orderings, keeping all the other orderings intact.

Given such a gadget, we will be done:

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple $\left(a_{i}, b_{i}, c_{i}\right)$ in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple $\left(a_{i}, b_{i}, c_{i}\right)$ in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.
- Gadget outputs modified graph G^{\prime}, recurse with $G \leftarrow G^{\prime}$.

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple $\left(a_{i}, b_{i}, c_{i}\right)$ in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.
- Gadget outputs modified graph G^{\prime}, recurse with $G \leftarrow G^{\prime}$.
- Let G^{*} denote the final graph after applying gadgets for each $i \in[m]$.

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple $\left(a_{i}, b_{i}, c_{i}\right)$ in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.
- Gadget outputs modified graph G^{\prime}, recurse with $G \leftarrow G^{\prime}$.
- Let G^{*} denote the final graph after applying gadgets for each $i \in[m]$.
- Ask if G^{*} has a $k-C-E$ ordering.

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple $\left(a_{i}, b_{i}, c_{i}\right)$ in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.
- Gadget outputs modified graph G^{\prime}, recurse with $G \leftarrow G^{\prime}$.
- Let G^{*} denote the final graph after applying gadgets for each $i \in[m]$.
- Ask if G^{*} has a $k-C-E$ ordering.

Proof

- Initially all n ! orderings are valid $k-\mathrm{C}-\mathrm{E}$ orderings

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple $\left(a_{i}, b_{i}, c_{i}\right)$ in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.
- Gadget outputs modified graph G^{\prime}, recurse with $G \leftarrow G^{\prime}$.
- Let G^{*} denote the final graph after applying gadgets for each $i \in[m]$.
- Ask if G^{*} has a $k-C-E$ ordering.

Proof

- Initially all n ! orderings are valid $k-C-E$ orderings
- Each application of the gadget will prune out exactly the orderings where b_{i} does not come between a_{i}, c_{i}

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_{i}, b_{i}, c_{i}) in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.
- Gadget outputs modified graph G^{\prime}, recurse with $G \leftarrow G^{\prime}$.
- Let G^{*} denote the final graph after applying gadgets for each $i \in[m]$.
- Ask if G^{*} has a $k-C-E$ ordering.

Proof

- Initially all n ! orderings are valid $k-C-E$ orderings
- Each application of the gadget will prune out exactly the orderings where b_{i} does not come between a_{i}, c_{i}
- At the end, if there exists a $k-\mathrm{C}-\mathrm{E}$ ordering for G^{*}, then it must satisfy $a_{i}<b_{i}<c_{i}$ or $c_{i}<b_{i}<a_{i}$ for each $i \in[m]$.

Given such a gadget, we will be done:

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_{i}, b_{i}, c_{i}) in the betweenness instance, plug in the gadget with input G, a_{i}, b_{i}, c_{i}.
- Gadget outputs modified graph G^{\prime}, recurse with $G \leftarrow G^{\prime}$.
- Let G^{*} denote the final graph after applying gadgets for each $i \in[m]$.
- Ask if G^{*} has a $k-C-E$ ordering.

Proof

- Initially all n ! orderings are valid $k-C-E$ orderings
- Each application of the gadget will prune out exactly the orderings where b_{i} does not come between a_{i}, c_{i}
- At the end, if there exists a $k-C-E$ ordering for G^{*}, then it must satisfy $a_{i}<b_{i}<c_{i}$ or $c_{i}<b_{i}<a_{i}$ for each $i \in[m]$.
- On the other hand, if there exists a valid betweenness ordering on U, then that ordering will carry over to the final graph G^{*}.

Idea for the Gadget

It suffices to find the required gadget.

Idea for the Gadget

It suffices to find the required gadget.
Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\left.\phi\right|_{S}$ denotes the ordering of ϕ induced on S.

Idea for the Gadget

It suffices to find the required gadget.
Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\left.\phi\right|_{S}$ denotes the ordering of ϕ induced on S. Example: $\phi=(1,3,2,4,5), S=\{2,3,5\}$, then $\left.\phi\right|_{S}=(3,2,5)$

Idea for the Gadget

It suffices to find the required gadget.
Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\left.\phi\right|_{S}$ denotes the ordering of ϕ induced on S. Example: $\phi=(1,3,2,4,5), S=\{2,3,5\}$, then $\left.\phi\right|_{S}=(3,2,5)$

Observation: $k-C-E$ orderings are hereditary
If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G),\left.\phi\right|_{S}$ is a $k-\mathrm{C}-\mathrm{E}$ ordering of $G[S]$.

Idea for the Gadget

It suffices to find the required gadget.
Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\left.\phi\right|_{S}$ denotes the ordering of ϕ induced on S. Example: $\phi=(1,3,2,4,5), S=\{2,3,5\}$, then $\left.\phi\right|_{S}=(3,2,5)$

Observation: $k-C-E$ orderings are hereditary
If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G),\left.\phi\right|_{S}$ is a $k-\mathrm{C}-\mathrm{E}$ ordering of $G[S]$.

Find a graph F such that there exist three vertices $x, y, z \in V(F)$ such that y comes between x and z in every $k-C-E$ ordering of F.

Idea for the Gadget

It suffices to find the required gadget.
Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\left.\phi\right|_{S}$ denotes the ordering of ϕ induced on S. Example: $\phi=(1,3,2,4,5), S=\{2,3,5\}$, then $\left.\phi\right|_{S}=(3,2,5)$

Observation: $k-C-E$ orderings are hereditary If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G),\left.\phi\right|_{S}$ is a $k-\mathrm{C}-\mathrm{E}$ ordering of $G[S]$.

Find a graph F such that there exist three vertices $x, y, z \in V(F)$ such that y comes between x and z in every $k-C-E$ ordering of F.

Take disjoint union of G and F and then identify (contract) the vertices a with x, b with y, and c with z.

Idea for the Gadget

It suffices to find the required gadget.
Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\left.\phi\right|_{S}$ denotes the ordering of ϕ induced on S.
Example: $\phi=(1,3,2,4,5), S=\{2,3,5\}$, then $\left.\phi\right|_{S}=(3,2,5)$
Observation: $k-C-E$ orderings are hereditary
If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G),\left.\phi\right|_{S}$ is a $k-\mathrm{C}-\mathrm{E}$ ordering of $G[S]$.

Find a graph F such that there exist three vertices $x, y, z \in V(F)$ such that y comes between x and z in every $k-C-E$ ordering of F.

Take disjoint union of G and F and then identify (contract) the vertices a with x, b with y, and c with z.

Since the new graph G^{\prime} contains F as a subgraph, it must be the case that b comes between a and c in G^{\prime} also.

Additional care must be taken to ensure the second property:

Additional care must be taken to ensure the second property:

Separator Lemma

Let V_{1}, V_{2} be a covering of $V(G)$ such that $S=V_{1} \cap V_{2}$ is a separator. Given orderings σ_{1} and σ_{2} of V_{1} and V_{2} respectively, one can construct an ordering ϕ of $V_{1} \cup V_{2}=V(G)$, if the following conditions hold:

Additional care must be taken to ensure the second property:

Separator Lemma

Let V_{1}, V_{2} be a covering of $V(G)$ such that $S=V_{1} \cap V_{2}$ is a separator. Given orderings σ_{1} and σ_{2} of V_{1} and V_{2} respectively, one can construct an ordering ϕ of $V_{1} \cup V_{2}=V(G)$, if the following conditions hold:

- $\left.\sigma_{1}\right|_{s}=\left.\sigma_{2}\right|_{s}$

Additional care must be taken to ensure the second property:

Separator Lemma

Let V_{1}, V_{2} be a covering of $V(G)$ such that $S=V_{1} \cap V_{2}$ is a separator. Given orderings σ_{1} and σ_{2} of V_{1} and V_{2} respectively, one can construct an ordering ϕ of $V_{1} \cup V_{2}=V(G)$, if the following conditions hold:

- $\sigma_{1}\left|s=\sigma_{2}\right| s$
- $|S| \leq k-1$

Additional care must be taken to ensure the second property:

Separator Lemma

Let V_{1}, V_{2} be a covering of $V(G)$ such that $S=V_{1} \cap V_{2}$ is a separator. Given orderings σ_{1} and σ_{2} of V_{1} and V_{2} respectively, one can construct an ordering ϕ of $V_{1} \cup V_{2}=V(G)$, if the following conditions hold:

- $\sigma_{1}\left|s=\sigma_{2}\right| s$
- $|S| \leq k-1$

Moreover, it holds that $\phi\left|v_{1}=\sigma_{1}\right| v_{1}$ and $\phi\left|v_{2}=\sigma_{2}\right| v_{2}$.

Additional care must be taken to ensure the second property:

Separator Lemma

Let V_{1}, V_{2} be a covering of $V(G)$ such that $S=V_{1} \cap V_{2}$ is a separator. Given orderings σ_{1} and σ_{2} of V_{1} and V_{2} respectively, one can construct an ordering ϕ of $V_{1} \cup V_{2}=V(G)$, if the following conditions hold:

- $\sigma_{1}\left|s=\sigma_{2}\right| s$
- $|S| \leq k-1$

Moreover, it holds that $\phi\left|v_{1}=\sigma_{1}\right| v_{1}$ and $\phi\left|v_{2}=\sigma_{2}\right| v_{2}$.
Some additional properties are required: Not mentioned for the sake of clarity.

Additional care must be taken to ensure the second property:

Separator Lemma

Let V_{1}, V_{2} be a covering of $V(G)$ such that $S=V_{1} \cap V_{2}$ is a separator. Given orderings σ_{1} and σ_{2} of V_{1} and V_{2} respectively, one can construct an ordering ϕ of $V_{1} \cup V_{2}=V(G)$, if the following conditions hold:

- $\left.\sigma_{1}\right|_{s}=\sigma_{2} \mid s$
- $|S| \leq k-1$

Moreover, it holds that $\phi\left|v_{1}=\sigma_{1}\right| v_{1}$ and $\phi\left|v_{2}=\sigma_{2}\right| v_{2}$.
Some additional properties are required: Not mentioned for the sake of clarity.

This lemma allows us to create an ordering of G^{\prime} when given orderings of G and F.

Additional care must be taken to ensure the second property:

Separator Lemma

Let V_{1}, V_{2} be a covering of $V(G)$ such that $S=V_{1} \cap V_{2}$ is a separator. Given orderings σ_{1} and σ_{2} of V_{1} and V_{2} respectively, one can construct an ordering ϕ of $V_{1} \cup V_{2}=V(G)$, if the following conditions hold:

- $\left.\sigma_{1}\right|_{s}=\sigma_{2} \mid s$
- $|S| \leq k-1$

Moreover, it holds that $\phi\left|v_{1}=\sigma_{1}\right| v_{1}$ and $\phi\left|v_{2}=\sigma_{2}\right| v_{2}$.
Some additional properties are required: Not mentioned for the sake of clarity.

This lemma allows us to create an ordering of G^{\prime} when given orderings of G and F.

Since $|S|=|V(G) \cap V(F)|=|\{a, b, c\}|=3$, the lemma can be used only when $k \geq 4$. This is why we need a different reduction for $k=3$.

Proof of correctness of gadget

Proof of correctness of gadget

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.
Property of F : F has a k-C-E ordering and there exists $x, y, z \in V(F)$ such that in k-C-E ordering of F, y comes between x and z.

Proof of correctness of gadget

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.
Property of F : F has a k-C-E ordering and there exists $x, y, z \in V(F)$ such that in k-C-E ordering of F, y comes between x and z. The gadget must satisfy two properties for the reduction to work.

Proof of correctness of gadget

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.
Property of F : F has a k-C-E ordering and there exists $x, y, z \in V(F)$ such that in k-C-E ordering of F, y comes between x and z. The gadget must satisfy two properties for the reduction to work.

Property 1

Every ordering of G^{\prime} must satisfy either $a<b<c$ or $c<b<a$.

Proof of correctness of gadget

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.
Property of F : F has a k-C-E ordering and there exists $x, y, z \in V(F)$ such that in $k-C-E$ ordering of F, y comes between x and z. The gadget must satisfy two properties for the reduction to work.

Property 1

Every ordering of G^{\prime} must satisfy either $a<b<c$ or $c<b<a$.

Proof

Since F is a subgraph of G^{\prime}, and since either $x<y<z$ or $z<y<x$ must hold in F, this follows that either $a<b<c$ or $c<b<a$ holds in G^{\prime}.

Proof of correctness of gadget

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.
Property of F : F has a $k-C-E$ ordering and there exists $x, y, z \in V(F)$ such that in k-C-E ordering of F, y comes between x and z.

Property 2

If G has an k-C-E ordering such that $a<b<c$ or $c<b<a$ then the same ordering is a $k-C-E$ ordering for G^{\prime} also.

Proof of correctness of gadget

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.
Property of F : F has a $k-C-E$ ordering and there exists $x, y, z \in V(F)$ such that in $k-C-E$ ordering of F, y comes between x and z.

Property 2

If G has an k-C-E ordering such that $a<b<c$ or $c<b<a$ then the same ordering is a $k-C-E$ ordering for G^{\prime} also.

Proof.

Recall that we are working with $k \geq 4$. Let σ_{1} be an ordering of G such that $a<b<c$ and let σ_{2} be an ordering F such that $x<y<z$. Since $S=|V(G) \cap V(F)|=|\{a, b, c\}|=3$. By the separator lemma, there exists an ϕ ordering of G^{\prime} such that $\left.\phi\right|_{s}=\left.\sigma_{1}\right|_{s}=\left.\sigma_{2}\right|_{s}=(a, b, c)$.

Proof of correctness of gadget

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.
Property of $F: F$ has a k-C-E ordering and there exists $x, y, z \in V(F)$ such that in $k-C-E$ ordering of F, y comes between x and z.

Property 2

If G has an k-C-E ordering such that $a<b<c$ or $c<b<a$ then the same ordering is a $k-C-E$ ordering for G^{\prime} also.

Proof.

Recall that we are working with $k \geq 4$. Let σ_{1} be an ordering of G such that $a<b<c$ and let σ_{2} be an ordering F such that $x<y<z$. Since $S=|V(G) \cap V(F)|=|\{a, b, c\}|=3$. By the separator lemma, there exists an ϕ ordering of G^{\prime} such that $\left.\phi\right|_{s}=\left.\sigma_{1}\right|_{s}=\left.\sigma_{2}\right|_{s}=(a, b, c)$.

Both properties of the gadget are satsified and we have our reduction.

Finding the graph F

Property. There exists three vertices $x, y, z \in V(F)$ such that either $x<y<z$ or $z<y<x$ in every k-C-E ordering of F.

Finding the graph F

Property. There exists three vertices $x, y, z \in V(F)$ such that either $x<y<z$ or $z<y<x$ in every k-C-E ordering of F.

Construction of F.

- Start with a clique $K=\left\{v_{1}, \ldots, v_{2 k-1}\right\}$ of size $2 k-1$.

Finding the graph F

Property. There exists three vertices $x, y, z \in V(F)$ such that either $x<y<z$ or $z<y<x$ in every k-C-E ordering of F.

Construction of F.

- Start with a clique $K=\left\{v_{1}, \ldots, v_{2 k-1}\right\}$ of size $2 k-1$.
- For every distinct pair $(i, j) \in[2 k-1]$, add a vertex $u_{i, j}$ such that $u_{i, j}$ is adjacent to all vertices of K except the i-th and j-th vertex.

Finding the graph F

Property. There exists three vertices $x, y, z \in V(F)$ such that either $x<y<z$ or $z<y<x$ in every k-C-E ordering of F.

Construction of F.

- Start with a clique $K=\left\{v_{1}, \ldots, v_{2 k-1}\right\}$ of size $2 k-1$.
- For every distinct pair $(i, j) \in[2 k-1]$, add a vertex $u_{i, j}$ such that $u_{i, j}$ is adjacent to all vertices of K except the i-th and j-th vertex.
- Remove vertex $u_{1,2}$.

Finding the graph F

Property. There exists three vertices $x, y, z \in V(F)$ such that either $x<y<z$ or $z<y<x$ in every k-C-E ordering of F.

Construction of F.

- Start with a clique $K=\left\{v_{1}, \ldots, v_{2 k-1}\right\}$ of size $2 k-1$.
- For every distinct pair $(i, j) \in[2 k-1]$, add a vertex $u_{i, j}$ such that $u_{i, j}$ is adjacent to all vertices of K except the i-th and j-th vertex.
- Remove vertex $u_{1,2}$.

Claim

For every k-C-E ordering ϕ of F, all other vertices of K come between v_{1} and v_{2} in ϕ.

Proof

Suppose not, let v_{i} and v_{j} be the first and last vertices of K in ϕ.

Claim

For every k-C-E ordering ϕ of F, all other vertices of K come between v_{1} and v_{2} in ϕ.

Proof

Suppose not, let v_{i} and v_{j} be the first and last vertices of K in ϕ. By assumption $\{i, j\} \neq\{1,2\}$. Lets look at where $u_{i, j}$ can appear in the ordering.

Claim

For every k-C-E ordering ϕ of F, all other vertices of K come between v_{1} and v_{2} in ϕ.

Proof

Suppose not, let v_{i} and v_{j} be the first and last vertices of K in ϕ.
By assumption $\{i, j\} \neq\{1,2\}$. Lets look at where $u_{i, j}$ can appear in the ordering.
Let m be the middle vertex of K in ϕ.

Claim

For every k-C-E ordering ϕ of F, all other vertices of K come between v_{1} and v_{2} in ϕ.

Proof

Suppose not, let v_{i} and v_{j} be the first and last vertices of K in ϕ.
By assumption $\{i, j\} \neq\{1,2\}$. Lets look at where $u_{i, j}$ can appear in the ordering.
Let m be the middle vertex of K in ϕ.
If $u_{i, j}<m$ then there exists an induced ordered K_{k+1}^{-}(See Figure). Symmetrically, for $u_{i, j}>m$.

Open Problems

Open Problems

- Can we find a $n^{O(k)}$ algorithm for maximum clique when the $k-\mathrm{C}-\mathrm{E}$ ordering is not given?

Open Problems

- Can we find a $n^{O(k)}$ algorithm for maximum clique when the $k-\mathrm{C}-\mathrm{E}$ ordering is not given?
- Is the recognition problem FPT when paramaterized by treewidth?

Thank You

