Recognizing k-Clique Extendible Orderings

Mathew Francis, Rian Neogi, Venkatesh Raman

WG 2020, June 25

Francis, Neogi, Raman

Recognizing k-Clique Extendible Orderings

WG 2020, June 25 1 / 16

э

4 E b

< /□ > < ∃

 $K_k^- := k$ -clique minus an edge (u, v). Ordered $K_k^- :=$ An ordering on K_k^- such that all other vertices come between u and v.

< □ > < 同 > < 回 > < 回 > < 回 >

 $K_k^- := k$ -clique minus an edge (u, v). Ordered $K_k^- :=$ An ordering on K_k^- such that all other vertices come between u and v.

э

 $K_k^-:=k$ -clique minus an edge (u, v). Ordered $K_k^-:=$ An ordering on K_k^- such that all other vertices come between u and v.

k-Clique Extendible Ordering

An ordering ϕ over the vertices of the graph *G* is said to be a *k*-clique extendible (*k*-C-E) ordering if there is no induced ordered K_{k+1}^-

・ 同 ト ・ ヨ ト ・ ヨ

 $K_k^-:=k$ -clique minus an edge (u, v). Ordered $K_k^-:=$ An ordering on K_k^- such that all other vertices come between u and v.

k-Clique Extendible Ordering

An ordering ϕ over the vertices of the graph *G* is said to be a *k*-clique extendible (*k*-C-E) ordering if there is no induced ordered K_{k+1}^-

・ 同 ト ・ ヨ ト ・ ヨ

Observation

Comparability graphs are exactly the class of 2-C-E graphs.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Observation

Comparability graphs are exactly the class of 2-C-E graphs.

Introduced by Spinrad. Spinrad asked whether recognizability of 3-C-E graphs can be done in polynomial time.

3

▲ 同 ▶ → 三 ▶

Observation

Comparability graphs are exactly the class of 2-C-E graphs.

Introduced by Spinrad. Spinrad asked whether recognizability of 3-C-E graphs can be done in polynomial time.

It was observed that finding a maximum clique in a k-C-E graph can be done in time $n^{O(k)}$ (when given the ordering).

Francis, Neogi, Raman

3

<ロト <問ト < 目と < 目と

• Recognizability Problem is NP-hard for each fixed $k \ge 3$.

3

A D N A B N A B N A B N

- Recognizability Problem is NP-hard for each fixed $k \ge 3$.
- n^{O(k)} algorithm for finding maximum clique is optimal assuming ETH (even when the ordering is given)

3

・ 何 ト ・ ヨ ト ・ ヨ ト

- Recognizability Problem is NP-hard for each fixed $k \ge 3$.
- n^{O(k)} algorithm for finding maximum clique is optimal assuming ETH (even when the ordering is given)
- If k is given as input, the problem is also coNP-hard.

- Recognizability Problem is NP-hard for each fixed $k \ge 3$.
- n^{O(k)} algorithm for finding maximum clique is optimal assuming ETH (even when the ordering is given)
- If k is given as input, the problem is also coNP-hard.
- Verification problem is coNP-hard and W[1]-hard in general but FPT when treewidth is bounded.

NP-hardness Reduction

Different reduction for k = 3 and $k \ge 4$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

NP-hardness Reduction

Different reduction for k = 3 and $k \ge 4$.

For the rest of this talk, we present the ideas behind the reduction for $k \ge 4$.

3

NP-hardness Reduction

Different reduction for k = 3 and $k \ge 4$.

For the rest of this talk, we present the ideas behind the reduction for $k \ge 4$.

The reduction is from the BETWEENNESS problem.

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduction for $k \ge 4$

Reduction is from the BETWEENNESS problem.

BETWEENNESS **Given:** Universe *U*, family of triples $T = \{t_1, \ldots, t_m\}$ where each $t_i = (a_i, b_i, c_i)$ is an ordered triple of elements of *U* **Output:** Does there exist an ordering of *U* such that for each $t_i \in T$, b_i comes between a_i and c_i in the ordering?

Reduction for $k \ge 4$

Reduction is from the BETWEENNESS problem.

BETWEENNESS **Given:** Universe *U*, family of triples $T = \{t_1, \ldots, t_m\}$ where each $t_i = (a_i, b_i, c_i)$ is an ordered triple of elements of *U* **Output:** Does there exist an ordering of *U* such that for each $t_i \in T$, b_i comes between a_i and c_i in the ordering?

"comes between" := either $a_i < b_i < c_i$ or $c_i < b_i < a_i$.

Known to be NP-hard.

Suppose we have a gadget with the following properties:

3

< 17 ▶

Suppose we have a gadget with the following properties:

Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget

< /⊒ > < ∋

Suppose we have a gadget with the following properties:

Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget

Gadget will output a modified graph G' such that:

Suppose we have a gadget with the following properties:

Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget

Gadget will output a modified graph G' such that:

() All orderings of G' satisfy either a < b < c or c < b < a

Suppose we have a gadget with the following properties:

Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget

Gadget will output a modified graph G' such that:

- **(**) All orderings of G' satisfy either a < b < c or c < b < a
- **②** If there is an ordering of G such that a < b < c or c < b < a, then that is an ordering for G' also

Suppose we have a gadget with the following properties:

Give a graph G and three vertices $a, b, c \in V(G)$ to the gadget

Gadget will output a modified graph G' such that:

- **(**) All orderings of G' satisfy either a < b < c or c < b < a
- **②** If there is an ordering of G such that a < b < c or c < b < a, then that is an ordering for G' also

I.e. gadget will 'prune' out all the 'bad' orderings, keeping all the other orderings intact.

・ 何 ト ・ ヨ ト ・ ヨ ト

э

A D N A B N A B N A B N

• Start with the graph containing a vertex for each element in the betweenness instance.

э

▲ 同 ▶ → 三 ▶

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .
- Gadget outputs modified graph G', recurse with $G \leftarrow G'$.

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .
- Gadget outputs modified graph G', recurse with $G \leftarrow G'$.
- Let G^* denote the final graph after applying gadgets for each $i \in [m]$.

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .
- Gadget outputs modified graph G', recurse with $G \leftarrow G'$.
- Let G^* denote the final graph after applying gadgets for each $i \in [m]$.
- Ask if G* has a k-C-E ordering.

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .
- Gadget outputs modified graph G', recurse with $G \leftarrow G'$.
- Let G^* denote the final graph after applying gadgets for each $i \in [m]$.
- Ask if G* has a k-C-E ordering.

Proof

• Initially all n! orderings are valid k-C-E orderings

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .
- Gadget outputs modified graph G', recurse with $G \leftarrow G'$.
- Let G^* denote the final graph after applying gadgets for each $i \in [m]$.
- Ask if G* has a k-C-E ordering.

Proof

- Initially all n! orderings are valid k-C-E orderings
- Each application of the gadget will prune out exactly the orderings where *b_i* does not come between *a_i*, *c_i*

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .
- Gadget outputs modified graph G', recurse with $G \leftarrow G'$.
- Let G^* denote the final graph after applying gadgets for each $i \in [m]$.
- Ask if G* has a k-C-E ordering.

Proof

- Initially all n! orderings are valid k-C-E orderings
- Each application of the gadget will prune out exactly the orderings where *b_i* does not come between *a_i*, *c_i*
- At the end, if there exists a k-C-E ordering for G^{*}, then it must satisfy a_i < b_i < c_i or c_i < b_i < a_i for each i ∈ [m].

- Start with the graph containing a vertex for each element in the betweenness instance.
- For each triple (a_i, b_i, c_i) in the betweenness instance, plug in the gadget with input G, a_i, b_i, c_i .
- Gadget outputs modified graph G', recurse with $G \leftarrow G'$.
- Let G^* denote the final graph after applying gadgets for each $i \in [m]$.
- Ask if G* has a k-C-E ordering.

Proof

- Initially all n! orderings are valid k-C-E orderings
- Each application of the gadget will prune out exactly the orderings where *b_i* does not come between *a_i*, *c_i*
- At the end, if there exists a k-C-E ordering for G^{*}, then it must satisfy a_i < b_i < c_i or c_i < b_i < a_i for each i ∈ [m].
- On the other hand, if there exists a valid betweenness ordering on *U*, then that ordering will carry over to the final graph *G*^{*}.

It suffices to find the required gadget.

э

It suffices to find the required gadget.

Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\phi|_S$ denotes the ordering of ϕ induced on S.

3

< 冊 > < Ξ

It suffices to find the required gadget.

Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\phi|_S$ denotes the ordering of ϕ induced on S. Example: $\phi = (1, 3, 2, 4, 5)$, $S = \{2, 3, 5\}$, then $\phi|_S = (3, 2, 5)$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

It suffices to find the required gadget.

Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\phi|_S$ denotes the ordering of ϕ induced on S. Example: $\phi = (1, 3, 2, 4, 5)$, $S = \{2, 3, 5\}$, then $\phi|_S = (3, 2, 5)$

Observation: *k*-C-E orderings are hereditary

If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G)$, $\phi|_S$ is a k-C-E ordering of G[S].

くぼう くほう くほう しゅ

It suffices to find the required gadget.

Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\phi|_S$ denotes the ordering of ϕ induced on S. Example: $\phi = (1, 3, 2, 4, 5)$, $S = \{2, 3, 5\}$, then $\phi|_S = (3, 2, 5)$

Observation: *k*-C-E orderings are hereditary

If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G)$, $\phi|_S$ is a k-C-E ordering of G[S].

Find a graph F such that there exist three vertices $x, y, z \in V(F)$ such that y comes between x and z in every k-C-E ordering of F.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

It suffices to find the required gadget.

Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\phi|_S$ denotes the ordering of ϕ induced on S. Example: $\phi = (1, 3, 2, 4, 5)$, $S = \{2, 3, 5\}$, then $\phi|_S = (3, 2, 5)$

Observation: *k*-C-E orderings are hereditary

If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G)$, $\phi|_S$ is a k-C-E ordering of G[S].

Find a graph F such that there exist three vertices $x, y, z \in V(F)$ such that y comes between x and z in every k-C-E ordering of F.

Take disjoint union of G and F and then identify (contract) the vertices a with x, b with y, and c with z.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

It suffices to find the required gadget.

Notation. Let ϕ be an ordering and $S \subseteq V(G)$, then $\phi|_S$ denotes the ordering of ϕ induced on S. Example: $\phi = (1, 3, 2, 4, 5)$, $S = \{2, 3, 5\}$, then $\phi|_S = (3, 2, 5)$

Observation: *k*-C-E orderings are hereditary

If ϕ is a k-C-E ordering of G, then for any $S \subseteq V(G)$, $\phi|_S$ is a k-C-E ordering of G[S].

Find a graph F such that there exist three vertices $x, y, z \in V(F)$ such that y comes between x and z in every k-C-E ordering of F.

Take disjoint union of G and F and then identify (contract) the vertices a with x, b with y, and c with z.

Since the new graph G' contains F as a subgraph, it must be the case that b comes between a and c in G' also.

Francis, Neogi, Raman

Recognizing *k*-Clique Extendible Ordering:

WG 2020, June 25 10 / 16

(日) (四) (日) (日) (日)

э

Separator Lemma

Let V_1 , V_2 be a covering of V(G) such that $S = V_1 \cap V_2$ is a separator. Given orderings σ_1 and σ_2 of V_1 and V_2 respectively, one can construct an ordering ϕ of $V_1 \cup V_2 = V(G)$, if the following conditions hold:

Separator Lemma

Let V_1 , V_2 be a covering of V(G) such that $S = V_1 \cap V_2$ is a separator. Given orderings σ_1 and σ_2 of V_1 and V_2 respectively, one can construct an ordering ϕ of $V_1 \cup V_2 = V(G)$, if the following conditions hold:

•
$$\sigma_1|_S = \sigma_2|_S$$

Separator Lemma

Let V_1 , V_2 be a covering of V(G) such that $S = V_1 \cap V_2$ is a separator. Given orderings σ_1 and σ_2 of V_1 and V_2 respectively, one can construct an ordering ϕ of $V_1 \cup V_2 = V(G)$, if the following conditions hold:

•
$$\sigma_1|_S = \sigma_2|_S$$

•
$$|S| \le k - 1$$

Separator Lemma

Let V_1 , V_2 be a covering of V(G) such that $S = V_1 \cap V_2$ is a separator. Given orderings σ_1 and σ_2 of V_1 and V_2 respectively, one can construct an ordering ϕ of $V_1 \cup V_2 = V(G)$, if the following conditions hold:

- $\sigma_1|_S = \sigma_2|_S$
- $|S| \le k 1$

Moreover, it holds that $\phi|_{V_1} = \sigma_1|_{V_1}$ and $\phi|_{V_2} = \sigma_2|_{V_2}$.

くぼう くほう くほう しゅ

Separator Lemma

Let V_1 , V_2 be a covering of V(G) such that $S = V_1 \cap V_2$ is a separator. Given orderings σ_1 and σ_2 of V_1 and V_2 respectively, one can construct an ordering ϕ of $V_1 \cup V_2 = V(G)$, if the following conditions hold:

- $\sigma_1|_S = \sigma_2|_S$
- $|S| \le k 1$

Moreover, it holds that $\phi|_{V_1} = \sigma_1|_{V_1}$ and $\phi|_{V_2} = \sigma_2|_{V_2}$.

Some additional properties are required: Not mentioned for the sake of clarity.

くぼう くほう くほう しゅ

Separator Lemma

Let V_1 , V_2 be a covering of V(G) such that $S = V_1 \cap V_2$ is a separator. Given orderings σ_1 and σ_2 of V_1 and V_2 respectively, one can construct an ordering ϕ of $V_1 \cup V_2 = V(G)$, if the following conditions hold:

- $\sigma_1|_S = \sigma_2|_S$
- $|S| \le k 1$

Moreover, it holds that $\phi|_{V_1} = \sigma_1|_{V_1}$ and $\phi|_{V_2} = \sigma_2|_{V_2}$.

Some additional properties are required: Not mentioned for the sake of clarity.

This lemma allows us to create an ordering of G' when given orderings of G and F.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Separator Lemma

Let V_1 , V_2 be a covering of V(G) such that $S = V_1 \cap V_2$ is a separator. Given orderings σ_1 and σ_2 of V_1 and V_2 respectively, one can construct an ordering ϕ of $V_1 \cup V_2 = V(G)$, if the following conditions hold:

- $\sigma_1|_S = \sigma_2|_S$
- $|S| \le k 1$

Moreover, it holds that $\phi|_{V_1} = \sigma_1|_{V_1}$ and $\phi|_{V_2} = \sigma_2|_{V_2}$.

Some additional properties are required: Not mentioned for the sake of clarity.

This lemma allows us to create an ordering of G' when given orderings of G and F.

Since $|S| = |V(G) \cap V(F)| = |\{a, b, c\}| = 3$, the lemma can be used only when $k \ge 4$. This is why we need a different reduction for k = 3.

Francis, Neogi, Raman

(日) (四) (日) (日) (日)

э

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.

Property of *F*: *F* has a *k*-C-E ordering and there exists $x, y, z \in V(F)$ such that in *k*-C-E ordering of *F*, *y* comes between *x* and *z*.

< 同 ト < 三 ト < 三 ト

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.

Property of *F*: *F* has a *k*-C-E ordering and there exists $x, y, z \in V(F)$ such that in *k*-C-E ordering of *F*, *y* comes between *x* and *z*.

The gadget must satisfy two properties for the reduction to work.

A (1) < A (1) < A (1) </p>

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.

Property of *F*: *F* has a *k*-C-E ordering and there exists $x, y, z \in V(F)$ such that in *k*-C-E ordering of *F*, *y* comes between *x* and *z*.

The gadget must satisfy two properties for the reduction to work.

Property 1

Every ordering of G' must satisfy either a < b < c or c < b < a.

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.

Property of *F*: *F* has a *k*-C-E ordering and there exists $x, y, z \in V(F)$ such that in *k*-C-E ordering of *F*, *y* comes between *x* and *z*.

The gadget must satisfy two properties for the reduction to work.

Property 1

Every ordering of G' must satisfy either a < b < c or c < b < a.

Proof

Since F is a subgraph of G', and since either x < y < z or z < y < x must hold in F, this follows that either a < b < c or c < b < a holds in G'.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.

Property of *F*: *F* has a *k*-C-E ordering and there exists $x, y, z \in V(F)$ such that in *k*-C-E ordering of *F*, *y* comes between *x* and *z*.

Property 2

If G has an k-C-E ordering such that a < b < c or c < b < a then the same ordering is a k-C-E ordering for G' also.

<日

<</p>

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.

Property of *F*: *F* has a *k*-C-E ordering and there exists $x, y, z \in V(F)$ such that in *k*-C-E ordering of *F*, *y* comes between *x* and *z*.

Property 2

If G has an k-C-E ordering such that a < b < c or c < b < a then the same ordering is a k-C-E ordering for G' also.

Proof.

Recall that we are working with $k \ge 4$. Let σ_1 be an ordering of G such that a < b < c and let σ_2 be an ordering F such that x < y < z. Since $S = |V(G) \cap V(F)| = |\{a, b, c\}| = 3$. By the separator lemma, there exists an ϕ ordering of G' such that $\phi|_S = \sigma_1|_S = \sigma_2|_S = (a, b, c)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

The Gadget: Takes in G and $a, b, c \in V(G)$. Takes the disjoint union of G and F and the identifies (contracts) the vertices a with x, b with y, and c with z.

Property of *F*: *F* has a *k*-C-E ordering and there exists $x, y, z \in V(F)$ such that in *k*-C-E ordering of *F*, *y* comes between *x* and *z*.

Property 2

If G has an k-C-E ordering such that a < b < c or c < b < a then the same ordering is a k-C-E ordering for G' also.

Proof.

Recall that we are working with $k \ge 4$. Let σ_1 be an ordering of G such that a < b < c and let σ_2 be an ordering F such that x < y < z. Since $S = |V(G) \cap V(F)| = |\{a, b, c\}| = 3$. By the separator lemma, there exists an ϕ ordering of G' such that $\phi|_S = \sigma_1|_S = \sigma_2|_S = (a, b, c)$.

Both properties of the gadget are satsified and we have our reduction

Property. There exists three vertices $x, y, z \in V(F)$ such that either x < y < z or z < y < x in every k-C-E ordering of F.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- 2

Property. There exists three vertices $x, y, z \in V(F)$ such that either x < y < z or z < y < x in every k-C-E ordering of F.

Construction of F.

• Start with a clique $K = \{v_1, \dots, v_{2k-1}\}$ of size 2k - 1.

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Property. There exists three vertices $x, y, z \in V(F)$ such that either x < y < z or z < y < x in every k-C-E ordering of F.

Construction of F.

- Start with a clique $K = \{v_1, \dots, v_{2k-1}\}$ of size 2k 1.
- For every distinct pair (i, j) ∈ [2k 1], add a vertex u_{i,j} such that u_{i,j} is adjacent to all vertices of K except the i-th and j-th vertex.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Property. There exists three vertices $x, y, z \in V(F)$ such that either x < y < z or z < y < x in every k-C-E ordering of F.

Construction of F.

- Start with a clique $K = \{v_1, \dots, v_{2k-1}\}$ of size 2k 1.
- For every distinct pair (i, j) ∈ [2k 1], add a vertex u_{i,j} such that u_{i,j} is adjacent to all vertices of K except the i-th and j-th vertex.
- Remove vertex $u_{1,2}$.

- 本間 と く ヨ と く ヨ と 二 ヨ

Property. There exists three vertices $x, y, z \in V(F)$ such that either x < y < z or z < y < x in every k-C-E ordering of F.

Construction of F.

- Start with a clique $K = \{v_1, \dots, v_{2k-1}\}$ of size 2k 1.
- For every distinct pair (i, j) ∈ [2k 1], add a vertex u_{i,j} such that u_{i,j} is adjacent to all vertices of K except the i-th and j-th vertex.
- Remove vertex $u_{1,2}$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

For every k-C-E ordering ϕ of F, all other vertices of K come between v_1 and v_2 in ϕ .

Proof

Suppose not, let v_i and v_j be the first and last vertices of K in ϕ .

3

For every k-C-E ordering ϕ of F, all other vertices of K come between v_1 and v_2 in ϕ .

Proof

Suppose not, let v_i and v_j be the first and last vertices of K in ϕ . By assumption $\{i, j\} \neq \{1, 2\}$. Lets look at where $u_{i,j}$ can appear in the ordering.

For every k-C-E ordering ϕ of F, all other vertices of K come between v_1 and v_2 in ϕ .

Proof

Suppose not, let v_i and v_j be the first and last vertices of K in ϕ . By assumption $\{i, j\} \neq \{1, 2\}$. Lets look at where $u_{i,j}$ can appear in the ordering.

Let *m* be the middle vertex of *K* in ϕ .

For every k-C-E ordering ϕ of F, all other vertices of K come between v_1 and v_2 in ϕ .

Proof

Suppose not, let v_i and v_j be the first and last vertices of K in ϕ . By assumption $\{i, j\} \neq \{1, 2\}$. Lets look at where $u_{i,j}$ can appear in the ordering.

Let *m* be the middle vertex of *K* in ϕ .

If $u_{i,j} < m$ then there exists an induced ordered K_{k+1}^- (See Figure). Symmetrically, for $u_{i,j} > m$.

Open Problems

Francis, Neogi, Raman

3

<ロト <問ト < 目と < 目と

Open Problems

• Can we find a $n^{O(k)}$ algorithm for maximum clique when the k-C-E ordering is *not* given?

э

E 6 4 E 6

< f³ ► <

Open Problems

- Can we find a $n^{O(k)}$ algorithm for maximum clique when the k-C-E ordering is *not* given?
- Is the recognition problem FPT when paramaterized by treewidth?

Thank You

3

< ロ > < 回 > < 回 > < 回 > < 回 >