
Vol:.(1234567890)

Algorithmica (2021) 83:3338–3362
https://doi.org/10.1007/s00453-021-00857-0

1 3

Recognizing k‑Clique Extendible Orderings

Mathew Francis1 · Rian Neogi2 · Venkatesh Raman2

Received: 31 July 2020 / Accepted: 11 July 2021 / Published online: 26 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
We consider the complexity of recognizing k-clique-extendible graphs (k-C-E graphs)
introduced by Spinrad (Efficient Graph Representations, AMS 2003), which are gen-
eralizations of comparability graphs. A graph is k-clique-extendible if there is an
ordering of the vertices such that whenever two overlapping k-cliques A and B have
k − 1 common vertices, and these common vertices appear between the two vertices
a, b ∈ (A⧵B) ∪ (B⧵A) in the ordering, there is an edge between a and b, implying that
A ∪ B is a (k + 1)-clique. Such an ordering is said to be a k-C-E ordering. These graphs
arise in applications related to modelling preference relations. Recently, it has been
shown that a maximum clique in such a graph can be found in nO(k) time [Hamburger
et al. 2017] when the ordering is given. When k is 2, such graphs are precisely the well-
known class of comparability graphs and when k is 3 they are called triangle-extendible
graphs. It has been shown that triangle-extendible graphs appear as induced subgraphs
of visibility graphs of simple polygons, and the complexity of recognizing them has
been mentioned as an open problem in the literature. While comparability graphs (i.e.
2-C-E graphs) can be recognized in polynomial time, we show that recognizing k-
C-E graphs is NP-hard for any fixed k ≥ 3 and co-NP-hard when k is part of the input.
While our NP-hardness reduction for k ≥ 4 is from the betweenness problem, for k = 3 ,
our reduction is an intricate one from the 3-colouring problem. We also show that the
problems of determining whether a given ordering of the vertices of a graph is a k-C-E
ordering, and that of finding a maximum clique in a k-C-E graph, given a k-C-E order-
ing, are hard for the parameterized complexity classes co-W[1] and W[1] respectively,
when parameterized by k. However we show that the former is fixed-parameter trac-
table when parameterized by the treewidth of the graph. We also show that the dual
parameterizations of all the problems that we study are fixed parameter tractable.

Keywords k-clique extendible orderings · k-clique extendible graphs ·
Comparability graphs · Hardness of recognition · Parameterized complexity

An extended abstract of this work appeared in the proceedings of the conference WG 2020 [4].

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0498-7856
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00857-0&domain=pdf

3339

1 3

Algorithmica (2021) 83:3338–3362

1 Introduction and Motivation

An undirected graph is a comparability (or transitively orientable) graph if the
edges can be oriented in a way that for any three vertices u, v, w whenever there is
a (directed) edge from u to v and an edge from v to w, there is an edge from u to w.
They are a well-studied class of graphs [5, 11] and they can be recognized in poly-
nomial time [10]. Spinrad [14] generalized this class of graphs and introduced the
notion of k-clique-extendible orderings (abbr. k-C-E ordering) on the vertices of a
graph defined as follows. Here, and in the rest of the paper, we refer to a clique on k
vertices in a graph as a k-clique in the graph.

Definition 1 (k-C-E ordering, Spinrad [14]) An ordering � of the vertices of a graph
G = (V ,E) is a k-clique-extendible ordering (or k-C-E ordering) of G if, when-
ever X and Y are two overlapping k-cliques such that |X ∩ Y| = k − 1 , X⧵Y = {a} ,
Y⧵X = {b} , and all the vertices in X ∩ Y occur between a and b in � , we have
(a, b) ∈ E(G) and hence X ∪ Y is a (k + 1)-clique.

A graph G is said to be k-clique-extendible (k-C-E for short) if there exists a
k-clique-extendible ordering � of G. It can be observed that comparability graphs are
exactly the 2-clique-extendible graphs. Spinrad [14] observed that 3-clique-extend-
ible graphs, also called triangle-extendible graphs, arise in the visibility graphs of
simple polygons and that a maximum clique can be found in polynomial time in
such graphs if a 3-clique-extendible ordering is given. This result has been gener-
alized to obtain an nO(k) algorithm for finding a maximum clique in k-C-E graphs
(given with a k-C-E ordering) on n vertices [6]. Spinrad poses as an open problem
the question of whether there is a polynomial time algorithm to recognise 3-C-E
graphs (open problem 14.1 in [14]).

We believe that k-C-E graphs are natural generalizations of comparability graphs
and our main contribution in this paper is a serious study of this class of graphs. We
study two problems on k-C-E graphs: Recognition and verification. In the former,
the goal is to recognize whether a given graph is a k-C-E graph (and give a witness-
ing k-C-E ordering), and in the latter, the goal is to verify whether a given ordering
is a k-C-E ordering of the graph. We define these problems formally as follows.

FiNd k-c-E ordEriNg

Input: Graph G and an integer k
Question: Is G a k-C-E graph?

VEriFy k-c-E ordEriNg

Input: Graph G, an integer k and an ordering � of V(G)
Question: Is � a k-C-E ordering of G?

Our results show that recognizing k-C-E graphs (the problem FiNd k-c-E ordEr-
iNg) is NP-hard for any fixed k ≥ 3 and also co-NP-hard when k is part of the input.

3340 Algorithmica (2021) 83:3338–3362

1 3

This solves the open problem regarding the complexity of recognizing 3-C-E graphs
and we hope that our results will trigger further study of k-C-E graphs in general.

As for the problem VEriFy k-c-E ordEriNg, if a graph and an ordering of its ver-
tices is given, then it is easy to get an nO(k) algorithm to determine whether it is
a k-C-E ordering of the graph (see Sect. 4). We show that this problem is co-NP-
complete and also complete for the parameterized complexity class co-W[1]. The
reduction also implies that unless the Exponential Time Hypothesis fails, this prob-
lem does not have an f (k)no(k) algorithm for any function f of k. However, we show
that the problem is fixed-parameter tractable when parameterized by the treewidth
of the graph, that is, there is an f (tw)nO(1) algorithm for the problem, where tw is the
treewidth of the graph (see Sect. 2 for definitions).

We also look at the problem of finding a maximum clique in a k-C-E graph
parameterized by k.

cliquE iN k-c-E graPh

Input: k-C-E graph G, a k-C-E ordering � of G and an integer p
Parameter: k
Question: Does there exist a clique on at least p vertices in G?

Hamburger et al. [6] show that, given a k-C-E ordering � of a k-C-E graph, one
can compute the maximum clique in time nO(k) . We show that this is most likely
optimal, that is, there is no f (k)no(k) algorithm for finding maximum clique in a k-
C-E graph, even if given the k-C-E ordering, unless ETH fails.

Finally, we study the algorithmic complexity of the dual parameterizations of
the recognition and verification problems. The problem of verifying whether a ver-
tex ordering of a graph on n vertices is an (n − k)-C-E ordering and the problem of
determining if an input graph on n vertices has an (n − k)-C-E ordering are both
shown to be fixed parameter tractable. These problems are defined formally below.

FiNd (n−k)-c-E ordEriNg

Input: Graph G on n vertices and an integer k
Parameter: k
Question: Is G an (n−k)-C-E graph?

VEriFy (n−k)-c-E ordEriNg

Input: Graph G on n vertices, an integer k and an ordering � of V(G)
Parameter: k
Question: Is � an (n−k)-C-E ordering of G?

Organization of the paper. In the next section, we give the necessary nota-
tion and definitions. In Sect. 3, we prove some results about k-C-E graphs which
are used in our reductions in later sections. In Sect. 4, we show that the problem
of checking whether a given ordering is a k-C-E ordering is co-NP-complete and

3341

1 3

Algorithmica (2021) 83:3338–3362

co-W[1]-complete. In this section, we also show that the problem is fixed-parameter
tractable when parameterized by the treewidth of the graph. In Sect. 5 we show that
the nO(k) algorithm for finding maximum clique in a k-C-E graph [6] is likely opti-
mal. Section 6 gives our main NP-hardness reductions for the problem of recogniz-
ing k-C-E graphs. We give two reductions, one for k = 3 and another for k ≥ 4 . In
Sect. 7, we show that the dual parameterizations of the recognition and verification
problems are both fixed parameter tractable. We list some open problems in Sect. 8.

2 Preliminaries

Definition 2 (Fixed-Parameter Tractability) A parameterized problem (or a lan-
guage) L ⊆ Σ∗ × ℕ is said to be fixed-parameter tractable (FPT) if there exists an
algorithm B , a constant c and a computable function f ∶ ℕ × ℕ such that given
any (I, k) ∈ Σ∗ × ℕ , B runs in at most f (k) ⋅ |I|c time and decides correctly whether
(I, k) ∈ L or not. Here f is a function only of k, and c is a constant independent of
k. We call algorithm B as fixed-parameter algorithm, and we also denote a runtime
like f (k)|I|c , a FPT runtime. FPT also denotes the class of fixed-parameter tractable
problems. Here |I| is the size of the input and k is the parameter.

There is also an intractability (hardness) theory in parameterized complexity cap-
tured by parameterized reductions defined below.

Definition 3 (Parameterized Reduction) There is a parameterized reduction from a
parameterized problem P1 to a parameterized problem P2 , if every instance (x, k) of
P1 can be transformed in FPT time to an equivalent instance (x�, k�) where k′ is just a
function of k.

There is a hierarchy of complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ ⋯ ⊆ XP . It
is believed that the containments are strict and there are canonical complete prob-
lems under parameterized reductions. The cliquE problem that asks whether a given
undirected graph has a clique on k vertices is a canonical W[1]-complete problem,
where k is the parameter. Parameterized problems that have a parameterized reduc-
tion to the cliquE problem form the class W[1]. We refer readers to the textbook [3]
for further discussions on parameterized complexity.

Definition 4 (Tree-decomposition and treewidth [13]) A tree decomposition of
a graph G is a pair T = (T , {Xt}t∈V(T)) , where T is a tree whose every node t is
assigned a vertex subset Xt ⊆ V(G) , called a bag, such that the following three con-
ditions hold : (i)

⋃
t∈V(T) Xt = V(G) . (ii) For every uv ∈ E(G) , there exists a node

t of T such that bag Xt contains both u and v. (iii) For every u ∈ V(G) , the set
Tu = {t ∈ V(T) ∣ u ∈ Xt} induces a subtree of T. The width of tree decomposition
T = (T , {Xt}t∈V(T)) equals maxt∈V(T){|Xt| − 1} . The treewidth of a graph G, denoted
by tw(G), is the minimum possible width of a tree decomposition of G.

3342 Algorithmica (2021) 83:3338–3362

1 3

The following conjecture, known as the Exponential Time Hypothesis, is used to
provide lower bounds for hard problems.

Exponential Time Hypothesis (ETH) [7]: There is a positive real s such that
3-CNF-SAT cannot be solved in time 2sn time where n is the number of variables.

In particular, ETh states that 3-CNF-SAT cannot be solved in time 2o(n) . See also
[8] for a survey of various lower bound results using ETH.

All graphs considered in this paper are undirected and simple. Given a graph G,
by V(G) we denote the set of vertices in the graph and by E(G) we denote the set of
edges in the graph. Let G be a graph. For a subset of vertices S ⊆ V(G) , we define
G[S] as the induced subgraph of G having vertex set S.

Given a linear order � of a set A, we write a <𝜙 b to mean that a and b are two
elements of A such that a occurs before b in � . Also, we write � = (a1, a2,… , an)
to mean that A = {a1, a2,… , an} and a1 <𝜙 a2 <𝜙 ⋯ <𝜙 an . We say that a vertex
b comes between vertices a and c in � if a <𝜙 b <𝜙 c or c <𝜙 b <𝜙 a . By �−1 we
denote the reverse of � , that is, a <𝜙−1 b if and only if b <𝜙 a.

Given an ordering � of a set V and a set S ⊆ V , we define �|S to be the order-
ing of the elements of S in the order in which they occur in � . Further, we say that
a, b ∈ S are the endpoints of S if a is the first element of �|S and b is the last ele-
ment of �|S . Given two disjoint sets A and B, and orderings �1 = (a1, a2,… , an) of
the set A and �2 = (b1, b2,… , bm) of the set B, we define �1 ++ �2 to be the order-
ing (a1, a2,… , an, b1, b2,… , bm) of the set A ∪ B , that is, ++ is the concatenation
operator on orderings. We will abuse notation to allow sets of orderings to be used
with the concatenation operator: if A and B are disjoint sets, � a set of orderings
of A, and � a set of orderings of B, then we denote by � ++ � the set of orderings
{� ++ � ∶ � ∈ �,� ∈ �} of A ∪ B . Further, for a set A, we shall abuse notation so
that A also denotes the set of all orderings of A. We do not distinguish between a set
that contains just one ordering and the ordering itself; i.e. we denote {�} by just � .
Thus, if � is an ordering of a set A, and B is a set disjoint from A, then � ++ B denotes
the set of all orderings of A ∪ B in which elements of A appear in the order given by
� as the first |A| elements, followed by the elements of B in any order.

A clique in a graph is a set of vertices that are pairwise adjacent in the graph. An
independent set is a set of vertices that are pairwise non-adjacent. Given subsets
S,A,B ⊆ V(G) , we say that S separates A and B if there is no path from A to B in
G[V(G)⧵S] . For a pair u, v of nonadjacent vertices of a graph, by identifying u with
v, we mean adding the edges (u, w) for all w ∈ N(v)⧵N(u) and then deleting v.

We denote by K−
n
 the graph obtained by removing an edge from the complete

graph Kn on n vertices. Given an ordering � of the vertices of a graph G, we say that
an induced subgraph H of G is an ordered K−

t
 in � if �|V(H) = (h1, h2,… , ht) and

E(H) = {(hi, hj) ∣ 1 ≤ i < j ≤ t}⧵{(h1, ht)} . It follows that an ordering of the vertices
of a graph is a k-C-E ordering if and only if it contains no ordered K−

k+1
.

3 Basic Results

We start with the following observations which are used throughout the paper.

3343

1 3

Algorithmica (2021) 83:3338–3362

Observation 1 An ordering � = {v1, v2,… , vn} is a k-C-E ordering, if and only if its
reverse ordering, �−1 = {vn, vn−1,… , v1} is also a k-C-E ordering.

Observation 2 Given a graph G and an induced subgraph H of G, if an ordering �
is a k-C-E ordering of G, then �|V(H) is a k-C-E ordering of H. Thus every induced
subgraph of a k-clique-extendible graph is also k-clique-extendible.

Observation 3 If G is a k-colourable graph with colour classes V1,… ,Vk , then any
ordering � ∈ V1 ++ V2 ++⋯ ++ Vk is a k-C-E ordering of G. Thus, every k-colourable
graph is k-clique-extendible.

It is not difficult to see that any k-clique-extendible ordering of a graph is also
a (k + 1)-clique-extendible ordering. Thus, every k-clique-extendible graph is also
a (k + 1)-clique-extendible graph. Note that every graph on n vertices is trivially
n-clique-extendible. So the notion of k-clique-extendibility gives rise to a hierarchy
of graph classes starting with comparability graphs and ending with the entire set of
graphs. This motivates the use of k as a graph parameter.

We prove a lemma that will help us construct a k-C-E ordering of a graph from
k-C-E orderings of its subgraphs.

Lemma 1 For a graph G, let V1,V2 ⊆ V(G) and let �1, �2 be k-C-E orderings of
G[V1] and G[V2] respectively for any k ≥ 2 , such that the following hold

1. V1 ∪ V2 = V(G)

2. V1 ∩ V2 separates G into components V1⧵V2 and V2⧵V1

3. �1|V1∩V2
= �2|V1∩V2

4. if C is a (k − 1)-clique in V1 ∩ V2 and u, v are the endpoints of C in �1 , then every
vertex a ∈ V1⧵V2 that is adjacent to all of C satisfies u <𝜎1

a <𝜎1
v

Then G has a k-C-E ordering � such that �|V1
= �1 and �|V2

= �2.
Proof Let �1|V1∩V2

= �2|V1∩V2
= (s1, s2,… , sp) . Let �i be the induced ordering

between si and si+1 in �1 , so we can rewrite �1 as

Similarly, let �i be the induced ordering between si and si+1 in �2 so that

Consider the following ordering � of V1 ∪ V2.

That is, we ‘interleave’ each �i and �i between the corresponding si and si+1 . The
ordering � is constructed such that it preserves the internal ordering of �1 in V1 and
�2 in V2 , that is, �|V1

= �1 and �|V2
= �2 and thus also �|V1∩V2

= �1|V1∩V2
= �2|V1∩V2

 .

�1 = �0 ++ (s1) ++ �1 ++ (s2) ++ �2 ++⋯ ++ �p−1 ++ (sp) ++ �p

�2 = �0 ++ (s1) ++ �1 ++ (s2) ++ �2 ++⋯ ++ �p−1 ++ (sp) ++ �p

� = �0 ++ �0 ++ (s1) ++ �1 ++ �1 ++ (s2) ++ �2 ++ �2 ++⋯ ++ �p−1 ++ �p−1 ++ (sp) ++ �p ++ �p

3344 Algorithmica (2021) 83:3338–3362

1 3

We will prove that � is a k-C-E ordering of G. Suppose not. Then there exists a set
Q ⊆ V(G) that forms an ordered K−

k+1
 in � . Let a, b be the endpoints of Q in � . It

can’t be the case that Q ⊆ V1 , otherwise since �|V1
= �1 , Q would be an ordered

K−
k+1

 in �1 , contradicting the fact that �1 is a k-C-E ordering of G[V1] . Similarly, it
can’t be the case that Q ⊆ V2 . So, Q ∩ (V1⧵V2) ≠ � and Q ∩ (V2⧵V1) ≠ � . As V1 ∩ V2
separates V1 and V2 , no vertex in V1⧵V2 is adjacent to any vertex V2⧵V1 . Since the
only two vertices in Q that do not have an edge between them are a and b, we can
assume without loss of generality that a ∈ V1⧵V2 and b ∈ V2⧵V1 , and we further get
that Q⧵{a, b} ⊆ V1 ∩ V2 . Since Q⧵{a, b} is a (k − 1)-clique and a is adjacent to all
the vertices of Q⧵{a, b} , by the last condition in the lemma, it must be the case that
a lies between the two endpoints of Q⧵{a, b} in � , contradicting the fact that a is an
endpoint of Q in � . ◻

Forbidden subgraph. We construct a forbidden subgraph for the class of
k-clique-extendible graphs which is used to build gadgets in our NP-hardness
reductions.

For a positive integer k, let K = {v1, v2,… , v2k−1} be a (2k − 1)-clique. For every
pair of vertices vi and vj in K, add a vertex ui,j such that ui,j is adjacent to every ver-
tex in K except vi and vj . Let I = {ui,j ∣ i, j ∈ [2k − 1], i < j} be the set of all such ui,j
for every pair of vertices in K. Let Fk be the graph thus obtained having vertex set
K ∪ I . See Fig. 1 for an example that demonstrates the adjacencies between I and K
when k = 3.

Lemma 2 Fk is not k-clique-extendible.

Proof Suppose not. Let � be a k-C-E ordering of Fk . By the symmetry in
Fk between the vertices of K, we can assume without loss of generality that
�|K = (v1, v2,… , v2k−1) . If the vertex u1,2k−1 comes after vk in � , then the vertices
in {v1, v2,… , vk, u1,2k−1} form an ordered K−

k+1
 . On the other hand, if u1,2k−1 comes

before vk in � , then the vertices in {u1,2k−1, vk, vk+1,… , v2k−2, v2k−1} form an ordered
K−
k+1

 . In both cases, we get an ordered K−
k+1

 , so � cannot be a k-C-E ordering, which
contradicts our assumption. ◻

Fig. 1 Diagram depicting F3 .
Edges in the clique are not
shown, and only 3 of the ui,j
vertices are shown to avoid
visual clutter.

v1 v2 v3 v4 v5

u2,5 u1,5 u1,2

K

I

3345

1 3

Algorithmica (2021) 83:3338–3362

4 Verifying a k‑C‑E Ordering

In this section, we prove that even verifying whether an ordering is a k-clique-
extendible ordering is hard (assuming k is considered as part of the input, rather than
a constant).

VEriFy k-c-E ordEriNg

Input: Graph G, integer k and an ordering � of V(G)
Question: Is � a k-C-E ordering of G?

VEriFy k-c-E ordEriNg has a simple nO(k) algorithm as one can enumerate all (
n

k+1

)
 subgraphs isomorphic to K−

k+1
 , and check if any of them are ordered with

respect to the ordering. We prove that the problem is co-W[1]-complete and co-NP-
complete by a reduction from and to the cliquE problem, and that the problem also
cannot have a f (k)no(k) algorithm assuming ETH (see Sect. 2 for a definition). The
reduction maps the yEs instances of VEriFy k-c-E ordEriNg to the No instances of
cliquE and vice-versa, hence showing that VEriFy k-c-E ordEriNg is
co-NP-complete.

Theorem 1 Verify k-C-e Ordering is CO-W[1]-complete, CO-nP-complete and there
is no f (k)no(k) algorithm for it unless eTH fails.

Proof We will prove hardness first by giving a reduction from cliquE. In the cliquE
Problem, we are given a graph G and a positive integer k and asked to check whether
there exists a k-clique in G.

Given G, let � = (v1, v2,… , vn) be an arbitrary ordering of its vertices. We con-
struct G� = (V �,E�) , where V � = V ∪ {a, b} and E� = E ∪ {(a, v), (b, v) ∣ v ∈ V} . We
then ask whether the ordering � = (a, v1, v2,… , vn, b) is a (k + 1)-C-E ordering of
G′ . We claim that G has a k-clique if and only if � is not a (k + 1)-C-E ordering of G′.

Suppose G contains a k-clique C. Then the vertices in {a, b} ∪ C form an ordered
K−
k+2

 in � . Thus we conclude that � is not a (k + 1)-C-E ordering. Conversely, if G
does not have a k-clique, then G′ cannot have a (k + 1)-clique, so any ordering is
trivially a (k + 1)-C-E ordering of G′.

The above reduction proves that the problem is co-W[1]-hard and co-NP-hard.
Since cliquE cannot be solved in time f (k)no(k) unless ETH fails [3, 8], the above
reduction implies that VEriFy k-c-E ordEriNg cannot be solved in time f (k)no(k)
unless ETH fails. It remains to show that the problem is in co-W[1] and in co-NP.
For this, we give a reduction to the cliquE problem.

Given an ordering � of vertices of G, we do the following. For every pair of
non-adjacent vertices (u, v), let Vu,v be the set of common neighbours of both u
and v, that appear between u and v in the ordering. That is, w ∈ Vu,v if and only if
(w, u), (w, v) ∈ E(G) and u <𝜎 w <𝜎 v or v <𝜎 w <𝜎 u . Let Gu,v be the induced sub-
graph G[Vu,v] . Let E(G) denote the pairs of vertices in G which are non-adjacent. We
define G� =

⋃̇
(u,v)∈E(G)

Gu,v . That is, G′ is the disjoint union of G[Vu,v] for all pairs

3346 Algorithmica (2021) 83:3338–3362

1 3

(u, v) that are non-adjacent. We claim that G′ has a (k − 1)-clique if and ony if � is
not a k-C-E ordering.

Suppose G′ has a (k − 1)-clique C. The clique must be in a connected component
of G′ , say Gu,v . Then the vertices u and v are non-adjacent in G, and by construction
of Gu,v , every vertex w ∈ C is such that w lies between u and v in � and w is a neigh-
bour to both u and v. Thus {u, v} ∪ C forms an ordered K−

k+1
 in � and hence � is not

a k-C-E ordering. Conversely, suppose there is an ordered K−
k+1

 in � . Let Q be the
vertices of the ordered K−

k+1
 and let u and v be its endpoints in � . Then C = Q⧵{u, v}

forms a (k − 1)-clique such that every vertex w ∈ C is a neighbour to both u and v
and lies between u and v in � . Therefore C forms a (k − 1)-clique in Gu,v . ◻

If all the k-cliques in a graph can be enumerated in time f (k)nO(1) , for some
function f, then we can verify if an ordering is a k-C-E ordering in g(k)nO(1) time,
for some function g, by checking every pair of such cliques to see if they form an
ordered K−

k+1
 . We show that a similar situation happens if G has bounded treewidth

and so the verification problem becomes easy.

Lemma 3 (see for example [3]) For any clique K in G, there exists a vertex v ∈ V(T)
such that all the vertices of K appear in the bag Bv corresponding to the vertex v in
the tree decomposition.

Lemma 4 ([1]) There exists an algorithm, that given an n-vertex graph G and an
integer t, runs in time 2O(t) ⋅ n and either constructs a tree decomposition of G of
width at most 5t + 4 and nO(1) bags, or concludes that the treewidth of G is greater
than t.

Theorem 2 Given an ordering of the vertices of a graph G on n vertices, we can
verify whether it is a k-C-E ordering of G in time twO(tw)nO(1) , where tw is the tree-
width of G.

Proof Due to Lemma 3, if tw < k − 1 , G will be a trivial k-C-E graph as it can-
not contain any k-cliques. So, for the problem to remain non-trivial, we assume that
k − 1 ≤ tw.

We use Lemma 4 to obtain a tree decomposition T = (T , {Xt}t∈V(T)) of G of width
w ≤ 5tw + 4 that has nO(1) bags. We can verify whether an ordering is a k-clique-
extendible ordering in O(wknO(1)) time as follows. From Lemma 3, every (k − 1)

-clique must appear in one bag. As the bag sizes are bounded by w + 1 , and the
number of bags is nO(1) , we can enumerate all (k − 1)-cliques within a bag in wknO(1)
time. Now, for every such clique K and for every pair of vertices (u, v) in G that are
non-adjacent, we check whether K ⊆ N(u) ∩ N(v) and the set of vertices of K appear
between u and v in the ordering. If they do for at least one such clique K and vertex
pair (u, v), we output “no”, otherwise we output “yes”.

The algorithm takes O(wknO(1)) time. Since k is upper bounded by tw + 1 and
w = O(tw) , this runtime is twO(tw)nO(1) . ◻

3347

1 3

Algorithmica (2021) 83:3338–3362

5 Hardness of Finding Clique

In this section, we look at the following problem of finding a maximum clique in a
k-C-E graph, parameterized by k.

cliquE iN k-c-E graPh

Input: k-C-E graph G, a k-C-E ordering � of G and an integer p
Parameter: k
Question: Does there exist a clique on at least p vertices in G?

There exists an nO(k) algorithm for finding a maximum clique in a k-C-E graph
[6] when a k-C-E ordering is given. We will prove that this is most likely optimal,
that is, we prove that unless ETH fails, there is no f (k)no(k) algorithm for finding a
maximum clique in a k-C-E graph even if the ordering is given. We do this by giving
a parameter preserving reduction from the MulTicolorEd cliquE problem, defined
below.

MulTicolourEd cliquE

Input: Graph G, a partition V1,… ,V
k
 of V(G)

Question: Does there exist a k-clique C in G such that |C ∩ V
i
| = 1 for each i ∈ [k]?

MulTicolourEd cliquE is W[1]-hard and cannot be solved in time f (k)no(k)
unless ETH fails [3]. Given an instance G,V1,… ,Vk of MulTicolourEd cliquE,
we will first remove all edges that lie within each partition Vi . Hence the graph G
is now k-colourable with colour classes V1,… ,Vk . Any k-colourable graph is also
a k-C-E graph by Observation 3. Thus we can give the graph G and an ordering
� ∈ V1 ++ V2 ++⋯ ++ Vk as input to any algorithm for the problem cliquE iN k -c-E
graPh, setting p = k , to find if there is a clique on at least k vertices in G. If the
the algorithm returns “yes”, then we output “yes”, otherwise we output “no”. Since
there is also an obvious reduction from cliquE iN k-c-E graPh to cliquE, we have
the following theorem.

Theorem 3 The problem Clique in k-C-e graPH is nP-complete, W[1]-complete, and
cannot be solved in time f (k)no(k) unless eTH fails.

More specifically, our reduction actually shows that even the more restricted
problem of deciding if there is a clique on at least k vertices in a k-C-E graph (even
if given a k-C-E is ordering of it) is NP-complete, W[1]-complete and cannot be
done in time f (k)no(k) unless ETh fails.

6 Finding a k‑C‑E Ordering

In this section, we consider the following problem and prove the main result of the
paper.

3348 Algorithmica (2021) 83:3338–3362

1 3

FiNd k-c-E ordEriNg

Input: Graph G, integer k
Question: Is G a k-C-E graph?

Note that this is possibly a harder problem than VEriFy k-c-E ordEriNg, but still
Theorem 1 doesn’t immediately imply even co-W[1]-hardness for this problem, as
one may be able to determine whether G has a k-C-E ordering without even verify-
ing an ordering. Our main result in this section is to show that FiNd k-c-E ordEr-
iNg is NP-hard for each k ≥ 3 . First we will show that FiNd k-c-E ordEriNg is co-
W[1]-hard and co-NP-hard. This result rules out algorithms running in time f (k)no(k)
assuming ETH (where as the NP-hardness for fixed k rules out even nf (k) algorithms
assuming P ≠NP).

Theorem 4 find k-C-e Ordering is CO-W[1]-hard and CO-nP-hard.

Proof We will reduce from the cliquE problem. Given an integer k and a graph G
in which we wish to find a k-clique, we construct another graph G′ such that G′ con-
tains the forbidden subgraph Fk (defined in Sect. 2) if and only if it has a clique on k
vertices.

Let V(G) = {v1, v2,… , vn} . Let K = {vn+1, vn+2,… , vn+k−1} be a (k − 1)

-clique such that each vertex in K is connected to every vertex in V(G) and
let I = {ui,j ∣ i, j ∈ [n + k − 1], i < j} such that ui,j is adjacent to all verti-
ces in {v1, v2,… , vn+k−1} except for vi and vj . Let G′ be the graph where
V(G�) = V(G) ∪ I ∪ K.

Claim G has a k-clique if and only if G′ does not have a k-C-E ordering.

Proof See Fig. 2 for a figure depicting the constructed graph G′ . Suppose S is a
k-clique in G. Then S ∪ K ∪ I will have an induced subgraph isomorphic to Fk such

Fig. 2 Diagram depicting the
reduction for Theorem 4. The
shaded region shows Fk as an
induced subgraph.

3349

1 3

Algorithmica (2021) 83:3338–3362

that the (2k − 1)-clique of Fk is K ∪ S and the independent set of Fk is a subset of I.
By Lemma 2, Fk does not have a k-C-E ordering and hence, by Observation 2, G′
does not have a k-C-E ordering.

Conversely if G does not have a k-clique then any arbitrary ordering of V(G) will
be a k-C-E ordering of G. We will argue that any ordering � ∈ V(G) ++ I ++ K is a k-
C-E ordering of G′.

It is enough to prove that there does not exist an ordered K−
k+1

 in � . For contradic-
tion, suppose Q ⊆ V(G�) forms an ordered K−

k+1
 in � . Let a, b be the endpoints of Q

in � so that (a, b) ∉ E(G�) and a <𝜋 b . Let A = Q⧵{b} and B = Q⧵{a} . Note that A
and B are two k-cliques and A ∪ B = Q . Since I is an independent set (and k ≥ 2),
Q contains at most one vertex from I. Therefore, if a ∈ I ∪ K , then B ⊆ K , which
is a contradiction as |B| > |K| . Similarly, if b ∈ V(G) ∪ I , then A ⊆ V(G) , which is
a contradiction as A is then a k-clique in G. We thus have a ∈ V(G) and b ∈ K . But
then (a, b) ∈ E(G�) , which is a contradiction. Therefore, we conclude that there can-
not be an ordered K−

k+1
 in � . ◻

The reduction maps the yEs instances of cliquE to the No instances of FiNd k
-c-E ordEriNg and vice-versa. Hence FiNd k-c-E ordEriNg is co-W[1]-hard and
co-NP-hard. ◻

6.1 NP‑hardness for k ≥ 4

We now prove the NP-hardness of FiNd k-c-E ordEriNg by a reduction from
BETWEENNEss defined below. The reduction strategy works for all k ≥ 4 but not for
k = 3 and so we give a different reduction for k = 3 in the next section.

BETWEENNEss

Input: Universe U of size n, and a set of triples T = {t1,… , t
m
} where each t

i
= (a

i
, b

i
, c

i
) is an ordered

triple of elements in U
Question: Does there exist an ordering � of U such that either a

i
<𝜙 b

i
<𝜙 c

i
 or c

i
<𝜙 b

i
<𝜙 a

i
 for each

triple (a
i
, b

i
, c

i
) ∈ T ?

BETWEENNEss is NP-hard [12]. To prove our reduction, we will require a gadget
that takes as input a graph G and 3 vertices x, y, z ∈ V(G) and converts them to a
modified graph G′ in such a way that either x <𝜙 y <𝜙 z or z <𝜙 y <𝜙 x for any k-
C-E ordering � of G′ . Moreover, if � is a k-C-E ordering of G such that x <𝜙 y <𝜙 z
or z <𝜙 y <𝜙 x then � is also a k-C-E ordering of G′ (more formally, our construc-
tion will have V(G) ⊆ V(G�) , and we will prove that G′ has a k-C-E ordering � such
that �|V(G) = �). Thus the gadget ‘prunes’ out the orderings of the graph where y
does not lie between x and z in the ordering. The k-C-E orderings of G′ are exactly
the k-C-E orderings � of G where either x <𝜙 y <𝜙 z or z <𝜙 y <𝜙 x . Thus to con-
struct the reduction, we will start with a graph where all n! orderings are valid k-C-E
orderings, and apply the gadget for each (ai, bi, ci) ∈ T . After applying the gadgets,
we will have pruned out all the ‘bad’ orderings and we will remain with exactly the

3350 Algorithmica (2021) 83:3338–3362

1 3

set of orderings in which bi lies between ai and ci for each i ∈ [m] . To describe the
construction of the gadget, first we need to define an auxiliary graph Γk.

Definition of the auxiliary graph. Recall the graph Fk , defined in Sect. 2 on the
vertex set K ∪ I where K = {v1, v2,… , v2k−1} induces a clique on 2k − 1 vertices,
and every vertex in I is indexed by a pair of vertices of K to which the vertex is not
adjacent. Pick arbitrary vertices v1 and v2 of K and let u1,2 be the vertex of I that is
adjacent to every vertex of K except v1 and v2 . Define Γk = Fk⧵{u1,2} . Note that Γk
has O(k2) many vertices.

Lemma 5 In any k-C-E ordering � of Γk , v1 and v2 are the endpoints of K. Further-
more, there exists a k-C-E ordering � of Γk such that v1 is the first element in � and
v2 is the last.

Proof Suppose that � is a k-C-E ordering of Γk and suppose for contradiction that
vi and vj are the endpoints of K where {i, j} ≠ {1, 2} . Then there exists ui,j ∈ I that
is adjacent to every vertex in K except vi and vj . Let �|K = (v�(1), v�(2),… , v�(2k−1))
where � is a permutation of {1, 2,… , 2k − 1} such that �(1) = i and �(2k − 1) = j.

If the vertex ui,j comes after v�(k) in � , then the vertices in {v�(1), v�(2),… , v�(k), ui,j}
form an ordered K−

k+1
 in � . On the other hand, if the vertex ui,j comes before v�(k) in

� , then the vertices in {ui,j, v�(k), v�(k+1),… , v�(2k−2), v�(2k−1)} form an ordered K−
k+1

 in
� . In both cases, we get a contradiction to � being a k-C-E ordering. Therefore every
k-C-E ordering � of Γk is such that v1 and v2 are the endpoints of K.

Now we will prove the existence of an ordering � of Γk such that v1 is the first ele-
ment of � and v2 is the last. Let I1 be the set of all vertices in I that are not adjacent
to v1 and let I2 = I⧵I1 . Note that, since we have removed the vertex u1,2 from Fk to
get Γk , all vertices in I1 are adjacent to v2 and all vertices in I2 are adjacent to v1.

Consider an ordering
� ∈ (v1, v3, v4, v5,… , vk) ++ I1 ++ (vk+1) ++ I2 ++ (vk+2, vk+3,… , v2k−2, v2k−1, v2) . We
claim that � is a k-C-E ordering of Γk . Observe that v1 is the first element of � and v2
is the last, thus we will be done once we prove the claim.

Suppose that � is not a k-C-E ordering of Γk , then there exists Q ⊆ V(Γk)
that induces an ordered K−

k+1
 in � . Let a, b be the endpoints of Q in � so that

(a, b) ∉ E(Γk) and a <𝜙 b . Let A = Q⧵{b} and B = Q⧵{a} . Note that A and B are
k-cliques and A ∪ B = Q.

Note that at most one vertex from I can be contained in Q because other-
wise a, b ∈ I , which implies that there is at most one vertex (which is vk+1)
between a and b in Q, contradicting the fact that k ≥ 3 . If a ∈ I , then by the
above observation, we have B ⊆ {vk+1, vk+2,… , v2k−1, v2} . Since |B| = k , we have
B = {vk+1, vk+2,… , v2k−1, v2} , which implies that a ∈ I1 and b = v2 . By our ear-
lier observation, all vertices in I1 are adjacent to v2 , which contradicts the fact that
ab ∉ E(Γk) . We thus have that a ∉ I . By a symmetric argument, we get that b ∉ I .
Then a, b ∈ K , which again contradicts the fact that ab ∉ E(Γk) . ◻

The Gadget. We will use Γk as a gadget to constrict the set of orderings a graph
can have. Pick an arbitrary vertex v3 ∈ K such that v3 ≠ v1, v2 . Given a graph G,

3351

1 3

Algorithmica (2021) 83:3338–3362

applying the gadget on a triplet of vertices x, y, z ∈ V(G) involves taking the dis-
joint union of G and Γk and identifying the vertices x with v1 , y with v3 and z with v2
(See Fig. 3). For technical reasons, we will only be applying the gadget on vertices
x, y, z that induce a clique in G. Since Γk has O(k2) many vertices, the gadget will
add O(k2) vertices to G, keeping it well within a polynomial factor. We use notation
G� = Ck(G, x, y, z) to denote “ G′ is obtained by applying the gadget on G on vertices
x, y, z”. The valid k-C-E orderings of G′ should exactly be the k-C-E orderings of G
where y comes between x and z. The following lemmas give us exactly that.

Lemma 6 Let G be a graph and let x, y, z ∈ V(G) be vertices of G. In any k-C-E
ordering � of G� = Ck(G, x, y, z) , y comes between x and z.

Proof Γk is a subgraph of G′ . By Observation 2, any k-C-E ordering of G′ must
induce a k-C-E ordering of Γk within it. Furthermore, v3 comes between v1 and v2 in
any k-C-E ordering of Γk by Lemma 5 and since x, y, z are identified with v1, v3, v2
respectively, it follows that y is between x and z in any k-C-E ordering of G′ . ◻

Lemma 7 Let k ≥ 4 and let G be a graph that has a k-C-E ordering � such that y
comes between x and z for some three vertices x, y, z ∈ V(G) that form a 3-clique in
G, then G� = Ck(G, x, y, z) has a k-C-E ordering � such that �|V(G) = �.

Proof By Lemma 5, Γk has a k-C-E ordering � where v1 and v2 are the first and
last elements in � respectively. Since v1 is identified with x and v2 with z, we
have that x <𝜎 a <𝜎 z for each a ∈ V(Γk)⧵{x, z} . We wish to use Lemma 1 on �
and � to obtain a k-C-E ordering of G′ . Observe that V(G) ∪ V(Γk) = V(G�) and
V(G) ∩ V(Γk) = {x, y, z} separates V(G) and V(Γk) , thus the first and second condi-
tions in Lemma 1 hold. Since x, y, z form a clique in both G and in Γk , we have that
G�[V(G)] is isomorphic to G and G�[V(Γk)] is isomorphic to Γk . Thus � is a k-C-E
ordering of G�[V(G)] and � is a k-C-E ordering of G�[V(Γk)] . Without loss of gen-
erality, we can assume by Observation 1, that x <𝜓 y <𝜓 z in G. It also holds that,
x <𝜎 y <𝜎 z since y is identified with v3 ∈ V(Γk)⧵{x, z} . Therefore �|{x,y,z} = �|{x,y,z} ,
and the third condition also holds. Let a be a vertex in V(Γk)⧵{x, y, z} . Suppose there
exists a clique C ⊆ V(G) ∩ V(Γk) = {x, y, z} on k − 1 vertices that are all adjacent to
a. Since k ≥ 4 , it follows that |C| ≥ 3 , and thus x, z ∈ C are the endpoints of C in � .

Fig. 3 The construction of the
gadget. Dotted lines indicate
vertices identified to each other.

3352 Algorithmica (2021) 83:3338–3362

1 3

By the property of � , we have x <𝜎 a <𝜎 z . Thus all four conditions for Lemma 1
are satisfied and the lemma follows. ◻

The Reduction. We are now ready to prove that the problem of checking whether
a graph has a k-C-E ordering is NP-hard for each k ≥ 4.

Theorem 5 find k-C-e Ordering is nP-hard for each k ≥ 4.

Proof We will reduce from BETWEENNEss. Let I = (U, T) be the input BETWEENNEss
instance. We want to construct a graph G′ such that G′ has a k-C-E ordering if and
only if the BETWEENNEss instance is satisfiable. We will construct a graph with vertex
set equal to the universe U and apply the gadget for every triple (ai, bi, ci) in T . We
do this iteratively, that is, we first define G0 to be the complete graph on vertex set U
and then construct Gi = Ck(Gi−1, ai, bi, ci) for each i ∈ [m] (where m is the number of
triples in T). The final graph G′ is equal to Gm . There are m many calls to the gadget
and each gadget adds O(k2) vertices to G′ . So the final size of G′ is O(n + mk2)
(where n is the size of U), which is polynomial in n and m.

Claim G′ has a k-C-E ordering if and only if I is a yes instance.

Proof (⇒) Recall that the graph G′ is constructed iteratively as follows.
We first define G0 to be the complete graph on the vertex set U and then
Gi = Ck(Gi−1, ai, bi, ci) for i ∈ [m] . The final graph G′ is Gm . Suppose G′ has a k-
C-E ordering � . Let � = �|U . We claim that � is a valid betweenness ordering for
the instance I . Let (ai, bi, ci) ∈ T be a triple. Consider the subgraph Gi of G′ . By
Lemma 6, bi comes between ai and ci in any k-C-E ordering of Gi . Since Gi is a sub-
graph of G, by Observation 2, bi must come between ai and ci in any k-C-E ordering
of G′ as well. This holds for every triple (ai, bi, ci) ∈ T , thus � is a valid between-
ness ordering for the instance I .

(⇐) Let � be a valid betweenness ordering of U. We will prove that there exists
a k-C-E ordering � of G′ such that �|U = � . Clearly, G0 has such an ordering. We
proceed by induction on i = 1,… ,m . Suppose, by the induction hypothesis, that Gi
has a k-C-E ordering �i such that �i|U = � . Note that bi comes between ai and ci in
� (and thus also in �i) as it is a valid betweenness ordering. By Lemma 7, Gi+1 has a
k-C-E ordering �i+1 such that �i+1|V(Gi)

= �i and thus also �i+1|U = �i|U = � . Thus
the induction step follows. ◻

The theorem follows from the above claim. ◻

The above reduction shows that FiNd k-c-E ordEriNg is NP-hard. From Theo-
rem 4, FiNd k-c-E ordEriNg is also co-NP-hard. Thus it is unlikely that the prob-
lem is in NP or in co-NP. Moreover, it is easy to verify that the problem lies in ΣP

2
 ,

as one can simply guess the ordering � and use a co-NP machine (Theorem 1) to
check whether � is a k-C-E ordering. Thus it is an open question whether FiNd k-c-E
ordEriNg is ΣP

2
-complete.

3353

1 3

Algorithmica (2021) 83:3338–3362

Remark 1 It is important to note that the problem is not co-NP-hard when k is a fixed
constant as opposed to it being given as a input. When k is fixed, the k-C-E ordering
itself is an NP certificate for the problem, as given an ordering it is easy to check
whether it is a k-C-E ordering for constant k. Thus, when k is constant, the problem
is NP-complete. Indeed, the proof of co-NP-hardness in Theorem 1 assumes that k is
given as an input.

Remark 2 The reduction in Theorem 5 does not work for k = 3 due to techni-
calities that arise in order to satisfy the fourth condition of Lemma 1, due to
which we require that |V(G) ∩ V(Γk)| ≤ k − 1 (see Proof of Lemma 7). Since
|V(G) ∩ V(Γk)| = |{x, y, z}| = 3 in the gadgets we construct, this forces k to be at
least 4. We give a separate proof for NP-hardness of k = 3 in the following section
that uses some different ideas.

6.2 NP‑hardness for k = 3

In this section, we prove that the problem of finding a 3-C-E ordering is NP-hard.
We will reduce from the 3-colouriNg problem. Given a graph G and an ordering �
of V(G), we say that three edges (u, v), (w, x), (y, z) ∈ E(G) form a disjoint triple in �
if u <𝜙 v ≤𝜙 w <𝜙 x ≤𝜙 y <𝜙 z . Here x ≤� y means that either x = y or x <𝜙 y.

Observation 4 Let G be a 3-colourable graph and let C1,C2,C3 be a partition of
V(G) into three independent sets. Then any ordering � ∈ C1 ++ C2 ++ C3 contains no
disjoint triple.

Proof Suppose that (u, v), (w, x), (y, z) ∈ E(G) form a disjoint triple in � ,
where u <𝜙 v ≤𝜙 w <𝜙 x ≤𝜙 y <𝜙 z . For a vertex a ∈ V(G) , let c(a) denote
the integer i ∈ {1, 2, 3} such that a ∈ Ci . Since u <𝜙 v , (u, v) ∈ E(G) , and
� ∈ C1 ++ C2 ++ C3 , it must be the case that c(v) ≥ c(u) + 1 . Since v ≤� w , we then
get c(w) ≥ c(v) ≥ c(u) + 1 . Similarly, as (w, x) ∈ E(G) , c(x) ≥ c(w) + 1 ≥ c(u) + 2 ,
and further, as x ≤ y , we get c(y) ≥ c(u) + 2 . Continuing in this fashion, since
(y, z) ∈ E(G) , we get c(z) ≥ c(u) + 3 . But as c(u) ≥ 1 , we now have c(z) > 3 , which
is a contradiction. ◻

Observation 5 Let G be any graph. If there is an ordering � of V(G) that contains no
disjoint triple, then G is 3-colourable.

Proof We orient the edges of G using � . The edge (u, v) is oriented from u to v
if u <𝜙 v . Since there is no disjoint triple in � , there cannot be a directed path of
length 3 in the oriented graph. By the Gallai-Roy-Vitaver Theorem (see Chapter 5 of
[15]), we then have that G is 3-colourable. ◻

It follows from Observations 4 and 5 that a graph G is 3-colourable if and only if
there is an ordering of its vertex set containing no disjoint triple.

3354 Algorithmica (2021) 83:3338–3362

1 3

Another observation is that in any 3-C-E ordering � of G, for any pair of non-
adjacent vertices u, v ∈ V(G) , the vertices that are adjacent to both u and v and
lie between u and v in � must be an independent set in G. Indeed, if there is an
edge (a, b) such that u <𝜙 a <𝜙 b <𝜙 v and a, b are adjacent to both u and v, then
G[{u, a, b, v}] is an ordered K−

4
 in � . This suggests a reduction from 3-colouriNg.

The idea is that, associated to every edge e = (u, v) ∈ E(G) , we will add a vertex te
1
 ,

and a pair of adjacent vertices te
2
 and te

3
 . We will add edges so that the t2 vertices and

t3 vertices together form a clique and the t1 vertices form an independent set. We also
add edges between all t2, t3 vertices and t1 vertices. We will add a gadget to ensure
that te

1
, te
2
, te
3
 all lie between u and v in any 3-C-E ordering of G′.

If G is not 3-colourable, then for any ordering � of V(G�) , there will be a disjoint
triple in �|V(G) . If the disjoint triple is formed by the edges (u, v), (w, x), (y, z) of G,
where u <𝜙 v ≤𝜙 w <𝜙 x ≤𝜙 y <𝜙 z , then the vertices t(u,v)

1
, t

(w,x)

2
, t

(w,x)

3
, t

(y,z)

1
 form an

ordered K−
4
 in � , and hence there can be no 3-C-E ordering of G′ . On the other hand,

our construction makes sure that if G is a 3-colourable graph, then there exists a
3-C-E ordering for G′ . We now describe the reduction in detail.

Fig. 4 The construction of G′ from G. The vertices inside each shaded block form a clique. An edge
between a vertex u and a block means that u is adjacent to every vertex in the block, and an edge between
two blocks means that every vertex in one block is adjacent to every vertex in the other block. Note that
an edge between vertices a and b is denoted as ab instead of (a, b) to reduce clutter.

3355

1 3

Algorithmica (2021) 83:3338–3362

The Construction. Given a graph G, we construct a supergraph G′ as explained
below (also see Fig. 4). For subsets A,B ⊆ V(G) , by “join A and B”, we mean that
we add all possible edges between vertices in A and vertices in B. To construct the
vertex set of G′ , we take the vertex set of G and add the following.

1. Add 4 sets of vertices A = {a, a1, a2, a3} , B = {b, b1, b2, b3} , C = {c, c1, c2, c3}
and D = {d, d1, d2, d3}

2. Add the sets of ver t ices F = {f e
i
∣ e ∈ E(G), i ∈ {1, 2,… , 6}} and

T = {te
i
∣ e ∈ E(G), i ∈ {1, 2, 3}}

To construct the edge set of G′ , we take the edge set of G and add the following.

 1. Add edges to make A, B, C and D into cliques on 4 vertices each.
 2. Add edges to make te

i
, f e
2i−1

, f e
2i

 into a clique, for each edge e ∈ E(G) and i ∈ [3]

 3. Join {a1, a2, a3} and {b1, b2, b3}
 4. Join {b1, b2, b3} and {c1, c2, c3}
 5. Join {c1, c2, c3} and {d1, d2, d3}
 6. Join {d1, d2, d3} and {a1, a2, a3}
 7. Join {a1, a2, a3, b1, b2, b3} and V(G)
 8. Join {c1, c2, c3, d1, d2, d3} and V(G) ∪ F

 9. Add edges (f (u,v)
i

, u) and (f (u,v)
i

, v) , for each (u, v) ∈ E(G) and i ∈ {1,… , 6}

 10. Add edges to make
⋃

e∈E(G){t
e
2
, te
3
} into a clique

 11. Join
⋃

e∈E(G) t
e
1
 and

⋃
e∈E(G){t

e
2
, te
3
}

Lemma 8 If G′ has a 3-C-E ordering then G is 3-colourable.

Proof Suppose that � is a 3-C-E ordering of G′ . By Observation 5, we only need to
show that there is no disjoint triple in the ordering �|V(G) . We can assume without
loss of generality that there exist distinct i, j ∈ {1, 2, 3} such that in the ordering � , we
have ai <𝜙 aj <𝜙 a (reversing the ordering � if necessary; recall Observation 1). If
there is a vertex w ∈ V(G) ∪ {b1, b2, b3, d1, d2, d3} such that w <𝜙 ai , then w, ai, aj, a
form an ordered K−

4
 in � , which contradicts the fact that � is a 3-C-E ordering.

Therefore, we can assume without loss of generality that the vertex a1 occurs before
every vertex of V(G) ∪ {b1, b2, b3, d1, d2, d3} in the ordering � . This also means that
if there exist distinct i, j ∈ {1, 2, 3} such that bi <𝜙 bj <𝜙 b , then a1, bi, bj, b would
form an ordered K−

4
 in � . Thus, we conclude that there exist distinct i, j ∈ {1, 2, 3}

such that b <𝜙 bi <𝜙 bj , and arguing as before, we assume without loss of general-
ity that the vertex b1 occurs after every vertex of V(G) ∪ {a1, a2, a3, c1, c2, c3} in the
ordering � . Now if there exist distinct i, j ∈ {1, 2, 3} such that c <𝜙 ci <𝜙 cj , then
c, ci, cj, b1 form an ordered K−

4
 in � . Thus, there exist distinct i, j ∈ {1, 2, 3} such that

ci <𝜙 cj <𝜙 c , and reasoning as before, we can assume without loss of generality that
c1 occurs before every vertex in V(G) ∪ {b1, b2, b3, d1, d2, d3} . Using similar argu-
ments, we conclude that d1 occurs after every vertex in V(G) ∪ {a1, a2, a3, c1, c2, c3}
in �.

3356 Algorithmica (2021) 83:3338–3362

1 3

Claim For every edge (u, v) ∈ E(G) , all the vertices in {f (u,v)
i

∶ 1 ≤ i ≤ 6} occur
between u and v in �.

Proof Suppose that there exists i ∈ {1, 2,… , 6} such that f (u,v)
i

<𝜙 u <𝜙 v . Then
the vertices f (u,v)

i
, u, v, b1 form an ordered K−

4
 in � , which contradicts the fact that

� is a 3-C-E ordering. Similarly, if u <𝜙 v <𝜙 f
(u,v)

i
 for some i ∈ {1, 2,… , 6} , then

a1, u, v, f
(u,v)

i
 form an ordered K−

4
 in � ; again a contradiction. ◻

Claim For every edge e ∈ E(G) and i ∈ {1, 2, 3} , the vertex te
i
 occurs between f e

2i−1

and f e
2i

 in �.

Proof Since in the ordering � , c1 occurs before every vertex in V(G) and d1 occurs
after every vertex in V(G), it follows from the above claim that c1 occurs before
every vertex in F and d1 occurs after every vertex in F. Now suppose that for some
e ∈ E(G) and i ∈ {1, 2, 3} , we have f e

2i−1
, f e
2i
<𝜙 te

i
 . Then the vertices c1, f e2i−1, f

e
2i
, te
i

form an ordered K−
4
 in � , which is a contradiction. Similarly, if te

i
<𝜙 f e

2i−1
, f e
2i

 , then
the vertices te

i
, f e
2i−1

, f e
2i
, d1 form an ordered K−

4
 in � , again a contradiction. ◻

From the above two claims, it follows that for any edge (a, b) ∈ E(G)
and i ∈ {1, 2, 3} , the vertex t(a,b)

i
 occurs between a and b in � . Now sup-

pose for the sake of contradiction that (u, v), (w, x), (y, z) ∈ E(G) form a dis-
joint triple in �|V(G) , where u <𝜙 v ≤𝜙 w <𝜙 x ≤𝜙 y <𝜙 z . Then we have
u <𝜙 t

(u,v)

1
<𝜙 v ≤𝜙 w <𝜙 t

(w,x)

2
, t

(w,x)

3
<𝜙 x ≤𝜙 y <𝜙 t

(y,z)

1
<𝜙 z . But then the vertices

t
(u,v)

1
, t

(w,x)

2
, t

(w,x)

3
, t

(y,z)

1
 form an ordered K−

4
 in � , a contradiction. ◻

Lemma 9 If G is 3-colourable then G′ has a 3-C-E ordering.

Proof Let M = V(G) ∪ F , L = M ∪ A ∪ B ∪ C ∪ D and U = F ∪ T . Note that
L ∩ U = F and in fact F separates L and U. The idea is to apply Lemma 1 on the
subgraphs L and U. Let V1,V2,V3 be a partition of V(G) into three colour classes. Let
E1 = {(u, v) ∈ E(G) ∣ u ∈ V1} and E2 = {(u, v) ∈ E(G) ∣ u ∈ V2, v ∈ V3} . Observe
that {E1,E2} is a partition of E(G). Let � be an ordering of M such that

Here the sum notation denotes iterated concatenation. For example, the term ∑
i∈3,2,1

∑
e∈E1

(f e
2i
, f e
2i−1

) would be a shorthand for

where {e1, e2,…} are the edges in E1 . Similarly, the term
∑

i∈1,2,3

∑
e∈E2

(f e
2i−1

, f e
2i
)

would be

where {e1, e2,…} are the edges in E2 . Let � be the following ordering of L.

� ∈ V1 ++
∑

i∈3,2,1

∑

e∈E1

(f e
2i
, f e
2i−1

) ++ V2 ++
∑

i∈1,2,3

∑

e∈E2

(f e
2i−1

, f e
2i
) ++ V3

(f
e1
6
, f

e1
5
, f

e2
6
, f

e2
5
,… , f

e1
4
, f

e1
3
, f

e2
4
, f

e2
3
,… , f

e1
2
, f

e1
1
, f

e2
2
, f

e2
1
,…)

(f e
1

1
, f e

1

2
, f e

2

1
, f e

2

2
,… , f e

1

3
, f e

1

4
, f e

2

3
, f e

2

4
,… , f e

1

5
, f e

1

6
, f e

2

5
, f e

2

6
,…)

3357

1 3

Algorithmica (2021) 83:3338–3362

We also define an ordering � of U as follows.

Note that �|F = �|F = �|F . We claim that � is a 3-C-E ordering of G�[L] and � is
a 3-C-E ordering of G�[U] . If the claim is true, we are done as the lemma statement
will follow from an application of Lemma 1. Note that � has the property that, if
a ∈ T is adjacent to a 2-clique (u, v) in F, then u <𝜓 a <𝜓 v . Thus � satisfies the last
condition for Lemma 1.

Claim � is a 3-C-E ordering of G�[U] = G�[T ∪ F].

Proof Suppose that there exists an ordered K−
4
 having vertices u, x, y, v, such that

u <𝜓 x <𝜓 y <𝜓 v . Since every vertex in F has degree 2 in G�[T ∪ F] , only the
endpoints of {u, x, y, v} can belong to F. Thus {x, y} ⊆ T . Now, the fact that every
vertex in F is adjacent to exactly one vertex in T implies that {u, x, y, v} ⊆ T .
Since (u, v) ∉ E(G�) , we have that u, v ∈

⋃
e∈E(G){t

e
1
} , which implies that

x, y ∈
⋃

e∈E(G){t
e
2
, te
3
} . But in � , it is impossible for two vertices from

⋃
e∈E(G){t

e
2
, te
3
}

to occur between two vertices in
⋃

e∈E(G){t
e
1
} . Thus we have a contradiction. ◻

Claim � is a 3-C-E ordering of G�[M] = G�[V(G) ∪ F].

Proof Suppose that there exists an ordered K−
4
 having vertices u, x, y, v such that

u <𝜎 x <𝜎 y <𝜎 v . Note that �|V(G) ∈ V1 ++ V2 ++ V3 , and it is therefore a 3-C-E order-
ing of V(G) by Observation 3. Thus {u, x, y, v} is not contained in V(G), implying
that {u, x, y, v} ∩ F ≠ � . Since G�[F] is a collection of disjoint edges, it follows that
|{u, x, y, v} ∩ F| ≤ 2 . If F intersects {u, x, y, v} at a single vertex, since every vertex
in F has at most 2 neighbours in V(G), that vertex must be an endpoint of {u, x, y, v}
and its neighbours in V(G) must be x, y, a contradiction to the fact that every vertex
in F lies between its two neighbours in V(G) in � . Thus |{u, x, y, v} ∩ F| = 2 . If the
two vertices in {u, x, y, v} ∩ V(G) occur consecutively in u, x, y, v, then they have
common neighbour in F that does not lie between them in � , which is a contradic-
tion. If in u, x, y, v, there is exactly one vertex in F between the two vertices in V(G),
then it means that in � , there is a vertex in V(G) between two adjacent vertices in
F, which is again a contradiction. Thus we have that x, y ∈ F and u, v ∈ V(G) . But
now u and v are two neighbours of x ∈ F in V(G) that are not adjacent to each other,
which is again a contradiction. ◻

Claim � is a 3-C-E ordering of G�[L] = G�[M ∪ A ∪ B ∪ C ∪ D].

Proof Suppose that there exists an ordered K−
4
 having vertices u, x, y, v such that

u <𝜙 x <𝜙 y <𝜙 v . As a has no neighbours to its right and no non-neighbours to its
left in � , we have a ∉ {u, x, y, v} . Symmetrically, b ∉ {u, x, y, v} . If c ∈ {u, x, y, v} ,

� = (a1, a2, a3, a, c1, c2, c3, c) ++ � ++ (d, d1, d2, d3, b, b1, b2, b3)

� =
∑

i∈3,2,1

∑

e∈E1

(f e
2i
, te
i
, f e
2i−1

) ++
∑

i∈1,2,3

∑

e∈E2

(f e
2i−1

, te
i
, f e
2i
)

3358 Algorithmica (2021) 83:3338–3362

1 3

then since in � , c has no neighbours to its right and its only neighbours to the left
are c1, c2, c3 , we have v = c , u ∈ {a1, a2, a3} and x, y ∈ {c1, c2, c3} . But now we have
a contradiction to the fact that (u, x) ∈ E(G) . Thus c ∉ {u, x, y, v} . Symmetrically,
we also get d ∉ {u, x, y, v} . If ai, aj ∈ {u, x, y, v} for some distinct i, j ∈ {1, 2, 3} , then
{ai, aj} = {x, y} , since ai and aj are true twins. But then in � , there is no common
neighbour of ai and aj that is not a true twin of theirs to the left of x, so u has to
be a true twin of x and y, which is a contradiction. Therefore, at most one among
a1, a2, a3 can be present in {u, x, y, v} , so we shall assume without loss of generality
that a2, a3 ∉ {u, x, y, v} . Using similar arguments, we shall assume without loss of
generality that b2, b3 ∉ {u, x, y, v} , c2, c3 ∉ {u, x, y, v} and d2, d3 ∉ {u, x, y, v}.

First, suppose c1 ∈ {u, x, y, v} , then since c1 has no neighbours to the left of it in
� , we have c1 = u , and v ∈ {b, d} as they are the only non-neighbours of c1 to the
right of it. This is a contradiction to our earlier observation that b, d ∉ {u, x, y, v} .
Thus c1 ∉ {u, x, y, v} . Symmetrically, d1 ∉ {u, x, y, v}.

Now suppose that a1 ∈ {u, x, y, v} . Then since a1 has no neighbours to its left,
we have u = a1 . As (u, v) ∉ E(G�) , we now have v ∈ F . Also, since x and y are
neighbours of u, we have x, y ∈ V(G) ∪ {b1} . Since x and y occur before v in the
ordering, we further have that x, y ∈ V(G) . But now we have the contradiction that
in � , the vertex v ∈ F does not lie between its two neighbours x, y ∈ V(G) . Thus
a1 ∉ {u, x, y, v} . Symmetrically, we have b1 ∉ {u, x, y, v} . Thus no vertex from
A ∪ B ∪ C ∪ D can be in {u, x, y, v} , which implies that {u, x, y, v} ⊆ M . But this
means that u, x, y, v form an ordered K−

4
 in � , which a contradiction to the previous

claim. ◻

This proves that if G is 3-colourable, then G′ has a 3-C-E ordering. ◻

Lemmas 8 and 9 prove the correctness of the reduction and thus we have the fol-
lowing theorem.

Theorem 6 find 3-C-e Ordering is nP-hard.

7 (n − k)‑C‑E Ordering Parameterized by k

Observe that every graph on n vertices is an n-C-E graph. So following the lines of
‘below-guarantee parameterization’ [9], a natural problem to consider is deciding
whether an input graph on n vertices has an (n − k)-C-E ordering when parameter-
ized by k, and this has been called sometimes as dual parameterization. It is known
for example that k-coloring is NP-hard for k ≥ 3 , but determining whether a graph
on n vertices has a proper (n − k)-coloring is fixed-parameter tractable when param-
eterized by k (see [3]). We explore both the problems VEriFy (n − k)-c-E ordEriNg
and FiNd (n − k)-c-E ordEriNg, parameterized by k, and show that they are fixed
parameter tractable.

Theorem 7 Verify (n − k)-C-e Ordering can be solved in time 2k ⋅ nO(1).

3359

1 3

Algorithmica (2021) 83:3338–3362

Proof Let G be the input graph and let � be input ordering of V(G). We can enu-
merate all maximal cliques on at least n − k − 1 vertices in time 2k ⋅ nO(1) . To see
this, observe that C ⊆ V(G) is a clique on s vertices in G if and only if C is an inde-
pendent set on s vertices in G , which happens if and only if V(G)⧵C is a vertex
cover in G on n − s vertices. So it suffices to enumerate all minimal vertex covers
in G on at most k + 1 vertices. This can be done in 2k ⋅ nO(1) time using the standard
parameterized branching algorithm for vertex cover (see [3]). Once we have enu-
merated all maximal cliques in G on at least n − k − 1 vertices, for each such clique
C and pair of non-adjacent vertices u, v ∈ V(G) , we compute the set of vertices
S = {s ∈ C ∩ N(u) ∩ N(v) ∣ u <𝜙 s <𝜙 v} . If |S| ≥ n − k − 1 , then {u, v} ∪ S contains
an ordered K−

n−k+1
 in � and we can output “no”. Otherwise, if |S| < n − k − 1 for

every clique C and pair of non-adjacent vertices u, v, then there is no ordered K−
n−k+1

in � and we output “yes”. ◻

Theorem 8 find (n − k)-C-e Ordering can be solved in time (3k2)! ⋅ 2k ⋅ nO(1).

Proof Let G be the input graph. First, we prove the following claim.

Claim If k2 + 2k ≤ n then there is always an (n − k)-C-E ordering of G, and moreo-
ver, such an ordering can be found in time 2k ⋅ nO(1).

Proof Let C be an (n − k)-clique in G (if such a clique does not exist,
then any ordering is an (n − k)-C-E ordering of G). Let K = V(G)⧵C
and let K� = {v ∈ K ∶ |N(v) ∩ C| ≥ n − 2k} be the set of vertices in K
that have at least n − 2k neighbours in C. Note that |K�| ≤ |K| = k . Let
S = {u ∈ C ∶ (u, v) ∉ E(G) for some v ∈ K�} be the set of vertics in C that have a
non-neighbour in K′ . Since each v ∈ K� has at least n − 2k neighbours in C, it fol-
lows that each v ∈ K� has at most n − k − (n − 2k) = k non-neighbours in C, and so
we have |S| ≤ |K′| ⋅ k ≤ k2.

Consider an ordering � ∈ K ++ S ++ (C⧵S) . We claim that � is an (n − k)-C-E
ordering of G. Suppose for contradiction that � is not an (n − k)-C-E ordering.
Then there exists Q ⊆ V(G) that induces an ordered K−

n−k+1
 in � . Let a, b be the

endpoints of Q in � so that a <𝜙 b and (a, b) ∉ E(G) . Let Q� = Q⧵{a, b} so that Q′
is an (n − k − 1)-clique, a comes before Q′ in � , and b comes after Q′ in � . Since
|{a} ∪ V(Q�)| = n − k , and since |K| + |S| = k + k2 ≤ n − k , it follows that b, which
comes after {a} ∪ V(Q�) in � , must come after both K and S in � , and thus lies in
C⧵S . Since (a, b) ∉ E(G) , and since C is a clique, it follows that a ∈ V(G)⧵C = K .
Moreover, since a is adjacent to every vertex in Q′ , it follows that a has at least
n − k − 1 neighbours. But since a ∈ K , at most |K| − 1 = k − 1 of these neighbours
can be from K. It follows that at least n − 2k neighbours of a must lie in C. There-
fore we have |N(a) ∩ C| ≥ n − 2k and thus a ∈ K� . Now, by definition of S, and the
fact that b ∉ S , it follows that (a, b) ∈ E(G) , a contradiction. Thus we conclude that
� contains no ordered K−

n−k+1
 , or in other words, � is an (n − k)-C-E ordering of G.

3360 Algorithmica (2021) 83:3338–3362

1 3

As explained in the Proof of Theorem 7, an (n − k)-clique C in G can be found in
2k ⋅ nO(1) time1 and therefore it is clear that the ordering � can also be constructed in
2k ⋅ nO(1) time. ◻

Now we give an algorithm for FiNd (n − k)-c-E ordEriNg that runs in time
(3k2)! ⋅ 2k ⋅ nO(1) . If k2 + 2k ≤ n then we use the above claim to find an (n − k)-C-E
ordering of G in time 2k ⋅ nO(1) . Otherwise n < k2 + 2k , which implies 3k2 > n .
Hence we can enumerate all n! < (3k2)! orderings of V(G) and check if each of them
are (n − k)-C-E orderings, which can be done in time 2k ⋅ nO(1) using the verification
algorithm in Theorem 7. Thus the total running time is (3k2)! ⋅ 2k ⋅ nO(1) . ◻

8 Conclusions and Open Problems

We have shown that the problem of determining whether a given graph has a k-C-E
ordering is NP-hard for each k ≥ 3 settling an open problem in the literature. A natu-
ral open problem is to identify graph classes where the problem can be solved in
polynomial time.

Finding a maximum clique in a k-C-E graph on n vertices is known to have an
nO(k) algorithm when a k-clique-extendible ordering is given, which we prove to be
optimal under plausible conjectures. It is also an open problem mentioned before
[14] whether we can find a maximum clique in a k-C-E graph in polynomial time for
a fixed k, if given only the adjacency matrix of the graph. It would also be interest-
ing to know polynomial time solvable problems in k-C-E graphs, even for k = 3 . As
triangle free graphs and diamond-free graphs are 3-C-E graphs, we know that the
maximum independent set problem and the chromatic number problem are NP-hard
in these classes of graphs.

Observing that every graph on n vertices has a n-C-E ordering, we have shown
that determining whether the graph has a (n − k)-C-E ordering is fixed-parameter
tractable when parameterized by k. Actually, every graph has a (�(G) + 1)-C-E
ordering where �(G) is the number of vertices in a maximum clique in G. So an
interesting open problem is the parameterized complexity of finding a (�(G) + 1 − k)

-C-E ordering parameterized by k.
It would also be interesting to study whether k-C-E graphs can be recognised

approximately. There are two suitable notions for approximation. One is the fol-
lowing: An algorithm is said to be an �-factor approximation (for � ≥ 1) if, given
a graph G and integer k, it either outputs a (�k)-C-E ordering or concludes that no
k-C-E ordering exists for G. The second notion is the following: An algorithm is
said to be a �-factor approximation (for � ≤ 1) if, given a graph G and integer k, out-
puts an ordering � such that at most � fraction of the induced K−

k+1
 in the graph are

1 Unlike in Theorem 7, here we only need to find just a clique on (n − k) vertices, for which faster algo-
rithms exist, but as the runtime for the other case dominates the overall runtime, a 2knO(1) algorithm suf-
fices.

3361

1 3

Algorithmica (2021) 83:3338–3362

ordered in � . Note that solving this problem for � = 0 is equivalent to solving FiNd k
-c-E ordEriNg.

For the second notion of approximation, there is an easy
(

2

k(k+1)

)
-factor approxi-

mation. Simply output a random ordering of the vertices of G. The probability that
any given induced K−

k+1
 is ordered is 2

k(k+1)
 . Thus by linearity of expectation, a 2

k(k+1)

fraction of all the induced K−
k+1

 in G will be ordered.
Finally as k-C-E graphs are defined by orderings, it would be interesting to relate

k-C-E graphs to other graphs defined by (vertex or edge) orderings [2, Chapter 5]
and explore interesting properties about them along the lines of those graphs defined
by orderings.

References

 1. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A ckn
5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

 2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Monographs on discrete math-
ematics and applications. Soc Indust Appl Mathemat (1999)

 3. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms, vol. 3. Springer, Berlin (2015)

 4. Francis, M., Neogi, R., Raman, V.: Recognizing k-clique extendible orderings. In: Isolde A., Haiko
M.(eds), Graph-Theoretic Concepts in Computer Science, volume 12301 of Lecture Notes in Com-
puter Science, pages 274–285, Cham, (2020). Springer International Publishing

 5. Golumbic, C.: Martin: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier, Amsterdam
(2004)

 6. Hamburger, P., McConnell, R.M., Pór, A., Spinrad, J.P., Xu, Z.: Double threshold digraphs. In:
Potapov, I., Spirakis, P., and Worrell, J. (eds) 43rd International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2018), volume 117 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 69:1–69:12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, (2018)

 7. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J.
Comput. Syst. Sci. 63(4), 512–530 (2001)

 8. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis.
Bulletin of EATCS 3(105), 41–71 (2013)

 9. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput.
Syst. Sci. 75(2), 137–153 (2009)

 10. McConnell, R.M., Spinrad, J.P.: Linear-time transitive orientation. In: Saks, M. E. (eds) Proceedings
of the eighth annual ACM-SIAM symposium on discrete algorithms, pp 19–25. Society for Indus-
trial and Applied Mathematics (1997)

 11. Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (eds)
Graphs and Order, pp. 41–101. Springer (1985)

 12. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
 13. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algo. 7, 309–

322 (1986)
 14. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society, Providence (2003)
 15. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, New Jersey (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

3362 Algorithmica (2021) 83:3338–3362

1 3

Authors and Affiliations

Mathew Francis1 · Rian Neogi2 · Venkatesh Raman2

 * Mathew Francis
 mathew@isichennai.res.in

 Rian Neogi
 rianneogi@gmail.com

 Venkatesh Raman
 vraman@imsc.res.in

1 Indian Statistical Institute, Chennai Centre, Chennai, India
2 The Institute of Mathematical Sciences, HBNI, Chennai, India

http://orcid.org/0000-0002-0498-7856

	Recognizing k-Clique Extendible Orderings
	Abstract
	1 Introduction and Motivation
	2 Preliminaries
	3 Basic Results
	4 Verifying a k-C-E Ordering
	5 Hardness of Finding Clique
	6 Finding a k-C-E Ordering
	6.1 NP-hardness for
	6.2 NP-hardness for

	7 -C-E Ordering Parameterized by k
	8 Conclusions and Open Problems
	References

