On the Parameterized Complexity of Deletion to H-free
Strong Components

Rian Neogi', M. S. Ramanujan?, Saket Saurabh® and Roohani
Sharma'

LInstitute of Mathematical Sciences, and 2University of Warwick

MFCS 2020

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 1/24

Table of Contents

© Introduction

=] & = E DA
Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

Directed FVS and related problems

DIRECTED FEEDBACK VERTEX SET

Input: Directed graph D, integer k

Output: Does there exist a set S of size at most k such that D — S is
acyclic?

Best known FPT algorithm: O*(k!4X) (here O* notation suppresses
polynomial factors)

Improving this is a big open problem in parameterized complexity.

Recent work by Goke et al. [CIAC 2019] designs FPT algorithms for
related problems.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 3/24

Directed FVS and related problems

1-OuT REGULAR VERTEX DELETION

Input: Directed graph D, integer k
Output: Does there exist a set S of size at most k such that every

strong component of D — S has every vertex of degree at most 17

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 4/24

Directed FVS and related problems

1-OuT REGULAR VERTEX DELETION

Input: Directed graph D, integer k

Output: Does there exist a set S of size at most k such that every
strong component of D — S has every vertex of degree at most 17

BOUNDED SI1ZE STRONG COMPONENT VERTEX DELETION

Input: Directed graph D, integers k, s

Output: Does there exist a set S of size at most k such that every
strong component of D — S contains at most s vertices?

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 4/24

Directed FVS and related problems

1-OuT REGULAR VERTEX DELETION

Input: Directed graph D, integer k

Output: Does there exist a set S of size at most k such that every
strong component of D — S has every vertex of degree at most 17

BOUNDED SI1ZE STRONG COMPONENT VERTEX DELETION

Input: Directed graph D, integers k, s

Output: Does there exist a set S of size at most k such that every
strong component of D — S contains at most s vertices?

Goke et al. gave a 20(k*) nO(1) algorithm for the first problem and a
4K (ks + k + s)!n®(1) algorithm for the second one.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 4/24

Our problem

We generalize these problems to a more unified framework.

‘H-FREE STRONG CONNECTED COMPONENT DELETION

Input: Directed graph D, integer k, finite family of graphs H

Output: Does there exist a set S of at most k vertices such that every
strong component of D — S does not have a subgraph isomorphic to any
graph H

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5/24

Our problem

We generalize these problems to a more unified framework.

‘H-FREE STRONG CONNECTED COMPONENT DELETION

Input: Directed graph D, integer k, finite family of graphs H
Output: Does there exist a set S of at most k vertices such that every
strong component of D — S does not have a subgraph isomorphic to any
graph H

DIRECTED FEEDBACK VERTEX SET. Here H is an independent set on
two vertices.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5/24

Our problem

We generalize these problems to a more unified framework.

‘H-FREE STRONG CONNECTED COMPONENT DELETION

Input: Directed graph D, integer k, finite family of graphs H

Output: Does there exist a set S of at most k vertices such that every
strong component of D — S does not have a subgraph isomorphic to any
graph H

DIRECTED FEEDBACK VERTEX SET. Here H is an independent set on
two vertices.

1-OUT REGULAR VERTEX DELETION. Here H is a star with 2 leaves.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5/24

Our problem

We generalize these problems to a more unified framework.

‘H-FREE STRONG CONNECTED COMPONENT DELETION

Input: Directed graph D, integer k, finite family of graphs H
Output: Does there exist a set S of at most k vertices such that every
strong component of D — S does not have a subgraph isomorphic to any
graph H

DIRECTED FEEDBACK VERTEX SET. Here H is an independent set on
two vertices.

1-OUT REGULAR VERTEX DELETION. Here H is a star with 2 leaves.

BOUNDED Si1ZzE STRONG COMPONENT VERTEX DELETION. Here H is
an independent set on s + 1 vertices.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5/24

Our Results

o A 20(K'logk) ,0(h) glgorithm for when each graph in 7 has a ‘rooted’
property. Here h is the maximum size amognst all graphs in .

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6/24

Our Results

o A 20(K'logk) ,0(h) glgorithm for when each graph in 7 has a ‘rooted’
property. Here h is the maximum size amognst all graphs in .

o A 20(K'logk),0(1) algorithm for the case when H contains a path.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6/24

Our Results

o A 20(K'logk) ,0(h) glgorithm for when each graph in 7 has a ‘rooted’
property. Here h is the maximum size amognst all graphs in .

o A 20(K'logk),0(1) algorithm for the case when H contains a path.

o A 20(klogk),O(1) 3lgorithm for 1-OUT REGULAR VERTEX
DELETION.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6/24

Our Results

o A 20(K'logk) ,0(h) glgorithm for when each graph in 7 has a ‘rooted’
property. Here h is the maximum size amognst all graphs in .

o A 20(K'logk),0(1) algorithm for the case when H contains a path.

o A 20(klogk),O(1) 3lgorithm for 1-OUT REGULAR VERTEX
DELETION.

o A 20(k(logk+logs)) nO(1) glgorithm for BOUNDED SIZE STRONG
COMPONENT VERTEX DELETION.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6/24

Our Results

o A 20(K'logk) ,0(h) glgorithm for when each graph in 7 has a ‘rooted’
property. Here h is the maximum size amognst all graphs in .

o A 20(K'logk),0(1) algorithm for the case when H contains a path.

o A 20(klogk),O(1) 3lgorithm for 1-OUT REGULAR VERTEX
DELETION.

o A 20(k(logk+logs)) nO(1) glgorithm for BOUNDED SIZE STRONG
COMPONENT VERTEX DELETION.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6/24

Our Results

o A 20(K'logk) ,0(h) glgorithm for when each graph in 7 has a ‘rooted’
property. Here h is the maximum size amognst all graphs in .

o A 20(K'logk),0(1) algorithm for the case when H contains a path.

o A 20(klogk),O(1) 3lgorithm for 1-OUT REGULAR VERTEX
DELETION.

o A 20(k(logk+logs)) nO(1) glgorithm for BOUNDED SIZE STRONG
COMPONENT VERTEX DELETION.

Last two results improve on the bounds given by Goke et al.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6/24

This talk

In this talk, we will covering the 20(k* log k) nO(h)

graph has a special ‘rooted’ property.

algorithm for when each

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 7/24

This talk

In this talk, we will covering the 20(k* log k) nO(h) algorithm for when each
graph has a special ‘rooted’ property.

The 20(k*log k) nO(1) algorithm for when H contains a path is based upon a
reduction to the rooted case.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 7/24

This talk

In this talk, we will covering the 20(k* log k) nO(h) algorithm for when each
graph has a special ‘rooted’ property.

The 20(k* log k) ,O(1) algorithm for when H contains a path is based upon a
reduction to the rooted case.

Algorithms for 1-OUT REGULAR VERTEX DELETION and BOUNDED
S1ZE STRONG COMPONENT VERTEX DELETION are based upon similar
ideas.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 7/24

Table of Contents

e Preliminaries

=] & = E DA
Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

Preliminaries

For an S-T separator C, we define R(S, C) to be the set of vertices
reachable from S after the deletion of C.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 9/24

Preliminaries

For an S-T separator C, we define R(S, C) to be the set of vertices
reachable from S after the deletion of C.

Important property. There is a unique minimum ‘closest’ separator i.e.
there is a unique minimum S-T separator C such that R(S, C) C R(S, C’)
for all other minimum S-T separators C'.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 9/24

Preliminaries

For an S-T separator C, we define R(S, C) to be the set of vertices
reachable from S after the deletion of C.

Important property. There is a unique minimum ‘closest’ separator i.e.
there is a unique minimum S-T separator C such that R(S, C) C R(S, (')
for all other minimum S-T separators C'.

Symmetrically, there is a unique minimum ‘furthest’ separator i.e.
separator C such that R(S. C) 2 R(S, C’) for all other minimum S-T
separators C'.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 9/24

Preliminaries

separator C' if R(S,C) D R(S, C').

A minimum S-T separator C is said to cover another minimum S-T

o = = £ DA
Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

Preliminaries

A minimum S-T separator C is said to cover another minimum S-T
separator C' if R(S,C) D R(S, C').

A minimum S-T separator C is said to tightly cover another minimum
S-T separator C" if R(S,C) 2 R(S, C’) and there is no other minimum
S-T separator C” such that R(S,C) 2 R(S,C") 2 R(S,C").

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

MFCS 2020 10 /24

Preliminaries

A minimum S-T separator C is said to cover another minimum S-T
separator C' if R(S,C) D R(S, C').

A minimum S-T separator C is said to tightly cover another minimum
S-T separator C" if R(S,C) 2 R(S, C’) and there is no other minimum
S-T separator C” such that R(S,C) 2 R(S,C") 2 R(S,C").

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 10 /24

Preliminaries
A minimum S-T separator C is said to cover another minimum S-T
separator C' if R(S,C) D R(S, C').

A minimum S-T separator C is said to tightly cover another minimum
S-T separator C" if R(S,C) 2 R(S, C’) and there is no other minimum
S-T separator C” such that R(S,C) 2 R(S,C") 2 R(S,C").

Lemma (Pushing Routine)
Given a minimum S-T separator C, in polynomial one can either
@ Compute a minimum S-T separator C’ that tightly covers C

@ Conclude that there is no such C’, i.e. C is the unique furthest
minimum separator.

v

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 10 /24

Important Separators

Important Separators
For a graph D and subsets S, T C V/(G), an S-T separator C is said to be

important if there is no other S-T separator C’ such that |C'| < |C| and
R(S,C") 2 R(S, C).

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11/24

Important Separators

Important Separators

For a graph D and subsets S, T C V/(G), an S-T separator C is said to be

important if there is no other S-T separator C’ such that |C'| < |C| and
R(S,C") 2 R(S, C).

l.e. important separators are separators can cannot be ‘pushed’ further
without increasing its size.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11/24

Important Separators

Important Separators

For a graph D and subsets S, T C V/(G), an S-T separator C is said to be
important if there is no other S-T separator C’ such that |C’| < |C| and
R(S,C") 2 R(S, C).

l.e. important separators are separators can cannot be ‘pushed’ further
without increasing its size.
Lemma

There are at most 4% important separators of size at most k, and they can
be enumerated in O*(4%) time.

Fundamental lemma for designing FPT algorithms for cut problems.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11/24

Important Separators

Important Separators

For a graph D and subsets S, T C V/(G), an S-T separator C is said to be
important if there is no other S-T separator C’ such that |C’| < |C| and
R(S,C") 2 R(S, C).

l.e. important separators are separators can cannot be ‘pushed’ further
without increasing its size.
Lemma

There are at most 4% important separators of size at most k, and they can
be enumerated in O*(4%) time.

Fundamental lemma for designing FPT algorithms for cut problems.

Prove something of the form “If there exists a solution, then there is a
solution that contains an important separator”, then branch on the 4%
important separators.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11/24

Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 /24

Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r.

Here r is called the root of the graph.

£

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 /24

Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r.

Here r is called the root of the graph.

Turns out that this property is very helpful in designing algorithms for the
H-FREE SCC DELETION problem.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 /24

Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r.

Here r is called the root of the graph.

Turns out that this property is very helpful in designing algorithms for the
H-FREE SCC DELETION problem.

We will look at the special case when each graph in 7 is rooted.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 /24

Table of Contents

© Reducing to the partioned problem

=] & = E DA
Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

The Problem

ROOTED H-FREE STRONG CONNECTED COMPONENT DELETION
Input: Graph D, integer k, finite family of graphs H where every graph
is rooted

Output: Does there exist a set S of at most k vertices such that every
strong component of D — S does not have a subgraph isomorphic to any
graph H

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 14 /24

The Problem

ROOTED H-FREE STRONG CONNECTED COMPONENT DELETION
Input: Graph D, integer k, finite family of graphs H where every graph
is rooted

Output: Does there exist a set S of at most k vertices such that every
strong component of D — S does not have a subgraph isomorphic to any
graph H

Using the technique of lterative Compression, it suffices to solve the
disjoint version of the problem.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 14 /24

The Problem

ROOTED H-FREE STRONG CONNECTED COMPONENT DELETION
Input: Graph D, integer k, finite family of graphs H where every graph
is rooted

Output: Does there exist a set S of at most k vertices such that every
strong component of D — S does not have a subgraph isomorphic to any
graph H

Using the technique of lterative Compression, it suffices to solve the
disjoint version of the problem.

DissoINT ROOTED H-FREE SCC DELETION

Input: Graph D, integer k, finite family of graphs H where every graph
is rooted, and solution W C V(D) of size k + 1

Output: Does there exist a solution of size k that is disjoint from W

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 14 /24

Structure of solution X. After contracting all strongly connected
components of D — X, we get a DAG and thus a topological order.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 /24

Structure of solution X. After contracting all strongly connected
components of D — X, we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 /24

Structure of solution X. After contracting all strongly connected
components of D — X, we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W.

l.e. Vertices of W in the same strongly connected components D — X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D — X.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 /24

Structure of solution X. After contracting all strongly connected
components of D — X, we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W.

l.e. Vertices of W in the same strongly connected components D — X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D — X.

7

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 /24

Structure of solution X. After contracting all strongly connected
components of D — X, we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W.

l.e. Vertices of W in the same strongly connected components D — X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D — X.

We start by guessing this ordered partition on W1

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 /24

Now the problem reduces to the following: Given an ordered partition on
W = (Wh,..., Wy), find a solution X that is disjoint from W and of size
k such that the aforementioned topological ordering of D — X induces
same ordered partition on W.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 16 /24

Now the problem reduces to the following: Given an ordered partition on
W = (Wh,..., Wy), find a solution X that is disjoint from W and of size
k such that the aforementioned topological ordering of D — X induces
same ordered partition on V.

That is, if W; and W, are sets in the partition with / > j then we want to
kill all paths from W; to W, and deal with subgraphs isomorphic to a
graph in H that we encounter.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 16 /24

Now the problem reduces to the following: Given an ordered partition on
W = (Wh,..., Wy), find a solution X that is disjoint from W and of size
k such that the aforementioned topological ordering of D — X induces
same ordered partition on V.

That is, if W; and W, are sets in the partition with / > j then we want to
kill all paths from W; to W, and deal with subgraphs isomorphic to a
graph in H that we encounter.

ek
*

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 16 /24

Table of Contents

@ Solving the partitioned problem

=] & = E DA
Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

We want to kill all paths from W, to Wi U...U W,_1. So our solution
must contain an 5-T separator where S = W and T = Wy U ... U W,_1.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 /24

We want to kill all paths from W, to Wi U...U W,_1. So our solution
must contain an 5-T separator where S = W and T = Wy U ... U W,_1.

New task. Given S, T: Kill all 5-T paths and deal with forbidden
subgraphs F € H that are in the same strongly connected component of S.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 /24

We want to kill all paths from W, to Wi U...U W,_1. So our solution
must contain an 5-T separator where S = W and T = Wy U ... U W,_1.

New task. Given S, T: Kill all S-T paths and deal with forbidden
subgraphs F € 7 that are in the same strongly connected component of S.

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 /24

We want to kill all paths from W, to Wi U...U W,_1. So our solution
must contain an 5-T separator where S = W and T = Wy U ... U W,_1.

New task. Given S, T: Kill all S-T paths and deal with forbidden
subgraphs F € 7 that are in the same strongly connected component of S.

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S.

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 /24

We want to kill all paths from W, to Wi U...U W,_1. So our solution
must contain an 5-T separator where S = W and T = Wy U ... U W,_1.

New task. Given S, T: Kill all S-T paths and deal with forbidden
subgraphs F € 7 that are in the same strongly connected component of S.

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S.

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase A: the minimum S-T
separator size.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 /24

We want to kill all paths from W, to Wi U...U W,_1. So our solution
must contain an 5-T separator where S = W and T = Wy U ... U W,_1.

New task. Given S, T: Kill all S-T paths and deal with forbidden
subgraphs F € 7 that are in the same strongly connected component of S.

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S.

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase A: the minimum S-T
separator size.

Eventually when \ = k, either k must drop or we can conclude that is a
NO-instance once A > k, since every solution must contain an 5-T
separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 /24

Initially we find the closest S-T separator C and try to ‘clean’ R(S, C) by

breaking any forbidden subgraphs F € # such that the root of F is in
R(S, C).

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 /24

Initially we find the closest S-T separator C and try to ‘clean’ R(S, C) by

breaking any forbidden subgraphs F € # such that the root of F is in
R(S, C).

‘Breaking' a forbidden subgraph F involves branching into the following
cases:

Neogi, Ramanujan, Saurabh, Sharma ‘H-free SCC Deletion MFCS 2020 19 /24

Initially we find the closest S-T separator C and try to ‘clean’ R(S, C) by

breaking any forbidden subgraphs F € # such that the root of F is in
R(S, C).

‘Breaking' a forbidden subgraph F involves branching into the following
cases:

@ Picking a vertex v € F into our solution.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 /24

Initially we find the closest S-T separator C and try to ‘clean’ R(S, C) by
breaking any forbidden subgraphs F € H such that the root of F is in
R(S, C).
‘Breaking' a forbidden subgraph F involves branching into the following
cases:
@ Picking a vertex v € F into our solution.
@ All vertices of F should not be reachable from S, which is equivalent
to killing all S-{r} paths (where r is the root of F). This can be
achieved by adding r to T and recursing.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 /24

Initially we find the closest S-T separator C and try to ‘clean’ R(S, C) by
breaking any forbidden subgraphs F € H such that the root of F is in
R(S, C).
‘Breaking' a forbidden subgraph F involves branching into the following
cases:

@ Picking a vertex v € F into our solution.

@ All vertices of F should not be reachable from S, which is equivalent
to killing all S-{r} paths (where r is the root of F). This can be
achieved by adding r to T and recursing.

@ Kill all {u}-S paths for some vertex u € F, we can achieve this by
branching on all {u}-S important separators.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 /24

Initially we find the closest S-T separator C and try to ‘clean’ R(S, C) by
breaking any forbidden subgraphs F € H such that the root of F is in
R(S, C).
‘Breaking' a forbidden subgraph F involves branching into the following
cases:

@ Picking a vertex v € F into our solution.

@ All vertices of F should not be reachable from S, which is equivalent
to killing all S-{r} paths (where r is the root of F). This can be
achieved by adding r to T and recursing.

@ Kill all {u}-S paths for some vertex u € F, we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 /24

Initially we find the closest S-T separator C and try to ‘clean’ R(S, C) by
breaking any forbidden subgraphs F € H such that the root of F is in
R(S, C).
‘Breaking' a forbidden subgraph F involves branching into the following
cases:

@ Picking a vertex v € F into our solution.

@ All vertices of F should not be reachable from S, which is equivalent
to killing all S-{r} paths (where r is the root of F). This can be
achieved by adding r to T and recursing.

@ Kill all {u}-S paths for some vertex u € F, we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size \ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 /24

when we add r to T.

Let A be the minimum S-T separator size. We will prove that A increases

o = = £ DA
Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

Let A be the minimum S-T separator size. We will prove that A increases
when we add r to T.

Recall that we add the vertex r € R(S,C) to T.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20/24

Let A be the minimum S-T separator size. We will prove that A increases
when we add r to T.

Recall that we add the vertex r € R(S,C) to T.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20/24

Let A be the minimum S-T separator size. We will prove that A increases
when we add r to T.

Recall that we add the vertex r € R(S,C) to T.

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20/24

Let A be the minimum S-T separator size. We will prove that A increases
when we add r to T.

Recall that we add the vertex r € R(S,C) to T.

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C.

However any S-(T U {r}) separator cannot cover C since r € R(S, C).

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20/24

Let A be the minimum S-T separator size. We will prove that A increases
when we add r to T.

Recall that we add the vertex r € R(S,C) to T.

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C.

However any S-(T U {r}) separator cannot cover C since r € R(S, C).

Thus the minimum S-(T U {r}) separator size must be greater than \.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20/24

Lemma (Pushing Routine)
Given a minimum S-T separator C, in polynomial one can either
e Compute a minimum S-T separator C’ that tightly covers C

@ Conclude that there is no such C’, i.e. C is the unique furthest
minimum separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21/24

Lemma (Pushing Routine)
Given a minimum S-T separator C, in polynomial one can either
e Compute a minimum S-T separator C’ that tightly covers C

@ Conclude that there is no such C’, i.e. C is the unique furthest
minimum separator.

We have a separator C and we try to ‘push’ to a new separator C’ that
tightly covers C.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21/24

Lemma (Pushing Routine)
Given a minimum S-T separator C, in polynomial one can either
e Compute a minimum S-T separator C’ that tightly covers C

@ Conclude that there is no such C’, i.e. C is the unique furthest
minimum separator.

We have a separator C and we try to ‘push’ to a new separator C’ that
tightly covers C.

When we push, we want to make sure that R(S, C’) is ‘clean’. We do that

by breaking all forbidden subgraphs F € H such that its root r is in
R(S, C").

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21/24

Lemma (Pushing Routine)
Given a minimum S-T separator C, in polynomial one can either
e Compute a minimum S-T separator C’ that tightly covers C

@ Conclude that there is no such C’, i.e. C is the unique furthest
minimum separator.

We have a separator C and we try to ‘push’ to a new separator C’ that
tightly covers C.

When we push, we want to make sure that R(S, C’) is ‘clean’. We do that

by breaking all forbidden subgraphs F € H such that its root r is in
R(S, C").

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21/24

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

@ Picking a vertex v € F into our solution
@ Adding the root r to T and recursing
@ Branching on all {u}-S important separators, for every vertex u € F

Again, the parameter k drops for cases 1 and 3.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 22/24

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

@ Picking a vertex v € F into our solution
@ Adding the root r to T and recursing
@ Branching on all {u}-S important separators, for every vertex u € F

Again, the parameter k drops for cases 1 and 3.

However, this time, for case 2, its not so clear how we make progress.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 22/24

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

@ Picking a vertex v € F into our solution
@ Adding the root r to T and recursing
@ Branching on all {u}-S important separators, for every vertex u € F

Again, the parameter k drops for cases 1 and 3.
However, this time, for case 2, its not so clear how we make progress.

Turns out by guessing which vertices of C that are reachable or
unreachable in the final solution, we gain enough information to make
progress in case 2 also.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 22/24

Conclusions and further work

o We give FPT algorithms when every graph in # is rooted and when
‘H contains a path of arbitrary length

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23/24

Conclusions and further work

o We give FPT algorithms when every graph in # is rooted and when
‘H contains a path of arbitrary length

@ What about algorithms for other families H? Is it possible to design
an FPT algorithm for every such #H?

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23 /24

Conclusions and further work

o We give FPT algorithms when every graph in # is rooted and when
‘H contains a path of arbitrary length

@ What about algorithms for other families H? Is it possible to design
an FPT algorithm for every such #H?

@ What about infinite families?

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23 /24

Conclusions and further work

o We give FPT algorithms when every graph in # is rooted and when
‘H contains a path of arbitrary length

@ What about algorithms for other families 77 Is it possible to design
an FPT algorithm for every such H?

@ What about infinite families?

@ Recent result by Goke, Marx and Mnich [ICALP 2020] shows that one
can design an FPT algorithm for when 7 is the set of cycles of length
greater than some integer s.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23 /24

Thank You

=] & = E DA
Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion

	Introduction
	Preliminaries
	Reducing to the partioned problem
	Solving the partitioned problem

