
On the Parameterized Complexity of Deletion to H-free
Strong Components

Rian Neogi1, M. S. Ramanujan2, Saket Saurabh1 and Roohani
Sharma1

1Institute of Mathematical Sciences, and 2University of Warwick

MFCS 2020

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 1 / 24



Table of Contents

1 Introduction

2 Preliminaries

3 Reducing to the partioned problem

4 Solving the partitioned problem

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 2 / 24



Directed FVS and related problems

Directed Feedback Vertex Set
Input: Directed graph D, integer k
Output: Does there exist a set S of size at most k such that D − S is
acyclic?

Best known FPT algorithm: O∗(k!4k) (here O∗ notation suppresses
polynomial factors)

Improving this is a big open problem in parameterized complexity.

Recent work by Göke et al. [CIAC 2019] designs FPT algorithms for
related problems.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 3 / 24



Directed FVS and related problems

1-Out Regular Vertex Deletion
Input: Directed graph D, integer k
Output: Does there exist a set S of size at most k such that every
strong component of D − S has every vertex of degree at most 1?

Bounded Size Strong Component Vertex Deletion
Input: Directed graph D, integers k , s
Output: Does there exist a set S of size at most k such that every
strong component of D − S contains at most s vertices?

Göke et al. gave a 2O(k3)nO(1) algorithm for the first problem and a
4k(ks + k + s)!nO(1) algorithm for the second one.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 4 / 24



Directed FVS and related problems

1-Out Regular Vertex Deletion
Input: Directed graph D, integer k
Output: Does there exist a set S of size at most k such that every
strong component of D − S has every vertex of degree at most 1?

Bounded Size Strong Component Vertex Deletion
Input: Directed graph D, integers k , s
Output: Does there exist a set S of size at most k such that every
strong component of D − S contains at most s vertices?

Göke et al. gave a 2O(k3)nO(1) algorithm for the first problem and a
4k(ks + k + s)!nO(1) algorithm for the second one.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 4 / 24



Directed FVS and related problems

1-Out Regular Vertex Deletion
Input: Directed graph D, integer k
Output: Does there exist a set S of size at most k such that every
strong component of D − S has every vertex of degree at most 1?

Bounded Size Strong Component Vertex Deletion
Input: Directed graph D, integers k , s
Output: Does there exist a set S of size at most k such that every
strong component of D − S contains at most s vertices?

Göke et al. gave a 2O(k3)nO(1) algorithm for the first problem and a
4k(ks + k + s)!nO(1) algorithm for the second one.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 4 / 24



Our problem

We generalize these problems to a more unified framework.

H-free Strong Connected Component Deletion
Input: Directed graph D, integer k , finite family of graphs H
Output: Does there exist a set S of at most k vertices such that every
strong component of D−S does not have a subgraph isomorphic to any
graph H

Directed Feedback Vertex Set. Here H is an independent set on
two vertices.

1-Out Regular Vertex Deletion. Here H is a star with 2 leaves.

Bounded Size Strong Component Vertex Deletion. Here H is
an independent set on s + 1 vertices.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5 / 24



Our problem

We generalize these problems to a more unified framework.

H-free Strong Connected Component Deletion
Input: Directed graph D, integer k , finite family of graphs H
Output: Does there exist a set S of at most k vertices such that every
strong component of D−S does not have a subgraph isomorphic to any
graph H

Directed Feedback Vertex Set. Here H is an independent set on
two vertices.

1-Out Regular Vertex Deletion. Here H is a star with 2 leaves.

Bounded Size Strong Component Vertex Deletion. Here H is
an independent set on s + 1 vertices.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5 / 24



Our problem

We generalize these problems to a more unified framework.

H-free Strong Connected Component Deletion
Input: Directed graph D, integer k , finite family of graphs H
Output: Does there exist a set S of at most k vertices such that every
strong component of D−S does not have a subgraph isomorphic to any
graph H

Directed Feedback Vertex Set. Here H is an independent set on
two vertices.

1-Out Regular Vertex Deletion. Here H is a star with 2 leaves.

Bounded Size Strong Component Vertex Deletion. Here H is
an independent set on s + 1 vertices.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5 / 24



Our problem

We generalize these problems to a more unified framework.

H-free Strong Connected Component Deletion
Input: Directed graph D, integer k , finite family of graphs H
Output: Does there exist a set S of at most k vertices such that every
strong component of D−S does not have a subgraph isomorphic to any
graph H

Directed Feedback Vertex Set. Here H is an independent set on
two vertices.

1-Out Regular Vertex Deletion. Here H is a star with 2 leaves.

Bounded Size Strong Component Vertex Deletion. Here H is
an independent set on s + 1 vertices.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 5 / 24



Our Results

A 2O(k3 log k)nO(h) algorithm for when each graph in H has a ‘rooted’
property. Here h is the maximum size amognst all graphs in H.

A 2O(k3 log k)nO(1) algorithm for the case when H contains a path.

A 2O(k log k)nO(1) algorithm for 1-Out Regular Vertex
Deletion.

A 2O(k(log k+log s))nO(1) algorithm for Bounded Size Strong
Component Vertex Deletion.

Last two results improve on the bounds given by Göke et al.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6 / 24



Our Results

A 2O(k3 log k)nO(h) algorithm for when each graph in H has a ‘rooted’
property. Here h is the maximum size amognst all graphs in H.

A 2O(k3 log k)nO(1) algorithm for the case when H contains a path.

A 2O(k log k)nO(1) algorithm for 1-Out Regular Vertex
Deletion.

A 2O(k(log k+log s))nO(1) algorithm for Bounded Size Strong
Component Vertex Deletion.

Last two results improve on the bounds given by Göke et al.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6 / 24



Our Results

A 2O(k3 log k)nO(h) algorithm for when each graph in H has a ‘rooted’
property. Here h is the maximum size amognst all graphs in H.

A 2O(k3 log k)nO(1) algorithm for the case when H contains a path.

A 2O(k log k)nO(1) algorithm for 1-Out Regular Vertex
Deletion.

A 2O(k(log k+log s))nO(1) algorithm for Bounded Size Strong
Component Vertex Deletion.

Last two results improve on the bounds given by Göke et al.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6 / 24



Our Results

A 2O(k3 log k)nO(h) algorithm for when each graph in H has a ‘rooted’
property. Here h is the maximum size amognst all graphs in H.

A 2O(k3 log k)nO(1) algorithm for the case when H contains a path.

A 2O(k log k)nO(1) algorithm for 1-Out Regular Vertex
Deletion.

A 2O(k(log k+log s))nO(1) algorithm for Bounded Size Strong
Component Vertex Deletion.

Last two results improve on the bounds given by Göke et al.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6 / 24



Our Results

A 2O(k3 log k)nO(h) algorithm for when each graph in H has a ‘rooted’
property. Here h is the maximum size amognst all graphs in H.

A 2O(k3 log k)nO(1) algorithm for the case when H contains a path.

A 2O(k log k)nO(1) algorithm for 1-Out Regular Vertex
Deletion.

A 2O(k(log k+log s))nO(1) algorithm for Bounded Size Strong
Component Vertex Deletion.

Last two results improve on the bounds given by Göke et al.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6 / 24



Our Results

A 2O(k3 log k)nO(h) algorithm for when each graph in H has a ‘rooted’
property. Here h is the maximum size amognst all graphs in H.

A 2O(k3 log k)nO(1) algorithm for the case when H contains a path.

A 2O(k log k)nO(1) algorithm for 1-Out Regular Vertex
Deletion.

A 2O(k(log k+log s))nO(1) algorithm for Bounded Size Strong
Component Vertex Deletion.

Last two results improve on the bounds given by Göke et al.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 6 / 24



This talk

In this talk, we will covering the 2O(k3 log k)nO(h) algorithm for when each
graph has a special ‘rooted’ property.

The 2O(k3 log k)nO(1) algorithm for when H contains a path is based upon a
reduction to the rooted case.

Algorithms for 1-Out Regular Vertex Deletion and Bounded
Size Strong Component Vertex Deletion are based upon similar
ideas.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 7 / 24



This talk

In this talk, we will covering the 2O(k3 log k)nO(h) algorithm for when each
graph has a special ‘rooted’ property.

The 2O(k3 log k)nO(1) algorithm for when H contains a path is based upon a
reduction to the rooted case.

Algorithms for 1-Out Regular Vertex Deletion and Bounded
Size Strong Component Vertex Deletion are based upon similar
ideas.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 7 / 24



This talk

In this talk, we will covering the 2O(k3 log k)nO(h) algorithm for when each
graph has a special ‘rooted’ property.

The 2O(k3 log k)nO(1) algorithm for when H contains a path is based upon a
reduction to the rooted case.

Algorithms for 1-Out Regular Vertex Deletion and Bounded
Size Strong Component Vertex Deletion are based upon similar
ideas.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 7 / 24



Table of Contents

1 Introduction

2 Preliminaries

3 Reducing to the partioned problem

4 Solving the partitioned problem

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 8 / 24



Preliminaries

For an S-T separator C , we define R(S ,C ) to be the set of vertices
reachable from S after the deletion of C .

Important property. There is a unique minimum ‘closest’ separator i.e.
there is a unique minimum S-T separator C such that R(S ,C ) ⊆ R(S ,C ′)
for all other minimum S-T separators C ′.

Symmetrically, there is a unique minimum ‘furthest’ separator i.e.
separator C such that R(S ,C ) ⊇ R(S ,C ′) for all other minimum S-T
separators C ′.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 9 / 24



Preliminaries

For an S-T separator C , we define R(S ,C ) to be the set of vertices
reachable from S after the deletion of C .

Important property. There is a unique minimum ‘closest’ separator i.e.
there is a unique minimum S-T separator C such that R(S ,C ) ⊆ R(S ,C ′)
for all other minimum S-T separators C ′.

Symmetrically, there is a unique minimum ‘furthest’ separator i.e.
separator C such that R(S ,C ) ⊇ R(S ,C ′) for all other minimum S-T
separators C ′.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 9 / 24



Preliminaries

For an S-T separator C , we define R(S ,C ) to be the set of vertices
reachable from S after the deletion of C .

Important property. There is a unique minimum ‘closest’ separator i.e.
there is a unique minimum S-T separator C such that R(S ,C ) ⊆ R(S ,C ′)
for all other minimum S-T separators C ′.

Symmetrically, there is a unique minimum ‘furthest’ separator i.e.
separator C such that R(S ,C ) ⊇ R(S ,C ′) for all other minimum S-T
separators C ′.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 9 / 24



Preliminaries
A minimum S-T separator C is said to cover another minimum S-T
separator C ′ if R(S ,C ) ⊇ R(S ,C ′).

A minimum S-T separator C is said to tightly cover another minimum
S-T separator C ′ if R(S ,C ) ⊇ R(S ,C ′) and there is no other minimum
S-T separator C ′′ such that R(S ,C ) ⊇ R(S ,C ′′) ⊇ R(S ,C ′).

Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 10 / 24



Preliminaries
A minimum S-T separator C is said to cover another minimum S-T
separator C ′ if R(S ,C ) ⊇ R(S ,C ′).

A minimum S-T separator C is said to tightly cover another minimum
S-T separator C ′ if R(S ,C ) ⊇ R(S ,C ′) and there is no other minimum
S-T separator C ′′ such that R(S ,C ) ⊇ R(S ,C ′′) ⊇ R(S ,C ′).

Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 10 / 24



Preliminaries
A minimum S-T separator C is said to cover another minimum S-T
separator C ′ if R(S ,C ) ⊇ R(S ,C ′).

A minimum S-T separator C is said to tightly cover another minimum
S-T separator C ′ if R(S ,C ) ⊇ R(S ,C ′) and there is no other minimum
S-T separator C ′′ such that R(S ,C ) ⊇ R(S ,C ′′) ⊇ R(S ,C ′).

Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 10 / 24



Preliminaries
A minimum S-T separator C is said to cover another minimum S-T
separator C ′ if R(S ,C ) ⊇ R(S ,C ′).

A minimum S-T separator C is said to tightly cover another minimum
S-T separator C ′ if R(S ,C ) ⊇ R(S ,C ′) and there is no other minimum
S-T separator C ′′ such that R(S ,C ) ⊇ R(S ,C ′′) ⊇ R(S ,C ′).

Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 10 / 24



Important Separators

Important Separators

For a graph D and subsets S ,T ⊆ V (G ), an S-T separator C is said to be
important if there is no other S-T separator C ′ such that |C ′| ≤ |C | and
R(S ,C ′) ⊇ R(S ,C ).

I.e. important separators are separators can cannot be ‘pushed’ further
without increasing its size.

Lemma

There are at most 4k important separators of size at most k, and they can
be enumerated in O∗(4k) time.

Fundamental lemma for designing FPT algorithms for cut problems.

Prove something of the form “If there exists a solution, then there is a
solution that contains an important separator”, then branch on the 4k

important separators.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11 / 24



Important Separators

Important Separators

For a graph D and subsets S ,T ⊆ V (G ), an S-T separator C is said to be
important if there is no other S-T separator C ′ such that |C ′| ≤ |C | and
R(S ,C ′) ⊇ R(S ,C ).

I.e. important separators are separators can cannot be ‘pushed’ further
without increasing its size.

Lemma

There are at most 4k important separators of size at most k, and they can
be enumerated in O∗(4k) time.

Fundamental lemma for designing FPT algorithms for cut problems.

Prove something of the form “If there exists a solution, then there is a
solution that contains an important separator”, then branch on the 4k

important separators.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11 / 24



Important Separators

Important Separators

For a graph D and subsets S ,T ⊆ V (G ), an S-T separator C is said to be
important if there is no other S-T separator C ′ such that |C ′| ≤ |C | and
R(S ,C ′) ⊇ R(S ,C ).

I.e. important separators are separators can cannot be ‘pushed’ further
without increasing its size.

Lemma

There are at most 4k important separators of size at most k, and they can
be enumerated in O∗(4k) time.

Fundamental lemma for designing FPT algorithms for cut problems.

Prove something of the form “If there exists a solution, then there is a
solution that contains an important separator”, then branch on the 4k

important separators.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11 / 24



Important Separators

Important Separators

For a graph D and subsets S ,T ⊆ V (G ), an S-T separator C is said to be
important if there is no other S-T separator C ′ such that |C ′| ≤ |C | and
R(S ,C ′) ⊇ R(S ,C ).

I.e. important separators are separators can cannot be ‘pushed’ further
without increasing its size.

Lemma

There are at most 4k important separators of size at most k, and they can
be enumerated in O∗(4k) time.

Fundamental lemma for designing FPT algorithms for cut problems.

Prove something of the form “If there exists a solution, then there is a
solution that contains an important separator”, then branch on the 4k

important separators.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 11 / 24



Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r .

Here r is called the root of the graph.

Turns out that this property is very helpful in designing algorithms for the
H-free SCC Deletion problem.

We will look at the special case when each graph in H is rooted.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 / 24



Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r .

Here r is called the root of the graph.

Turns out that this property is very helpful in designing algorithms for the
H-free SCC Deletion problem.

We will look at the special case when each graph in H is rooted.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 / 24



Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r .

Here r is called the root of the graph.

Turns out that this property is very helpful in designing algorithms for the
H-free SCC Deletion problem.

We will look at the special case when each graph in H is rooted.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 / 24



Rooted property

Graph is rooted if there exists a vertex r such that every other vertex in
the graph can be reached from r .

Here r is called the root of the graph.

Turns out that this property is very helpful in designing algorithms for the
H-free SCC Deletion problem.

We will look at the special case when each graph in H is rooted.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 12 / 24



Table of Contents

1 Introduction

2 Preliminaries

3 Reducing to the partioned problem

4 Solving the partitioned problem

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 13 / 24



The Problem

Rooted H-free Strong Connected Component Deletion
Input: Graph D, integer k , finite family of graphs H where every graph
is rooted
Output: Does there exist a set S of at most k vertices such that every
strong component of D−S does not have a subgraph isomorphic to any
graph H

Using the technique of Iterative Compression, it suffices to solve the
disjoint version of the problem.

Disjoint Rooted H-free SCC Deletion
Input: Graph D, integer k , finite family of graphs H where every graph
is rooted, and solution W ⊆ V (D) of size k + 1
Output: Does there exist a solution of size k that is disjoint from W

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 14 / 24



The Problem

Rooted H-free Strong Connected Component Deletion
Input: Graph D, integer k , finite family of graphs H where every graph
is rooted
Output: Does there exist a set S of at most k vertices such that every
strong component of D−S does not have a subgraph isomorphic to any
graph H

Using the technique of Iterative Compression, it suffices to solve the
disjoint version of the problem.

Disjoint Rooted H-free SCC Deletion
Input: Graph D, integer k , finite family of graphs H where every graph
is rooted, and solution W ⊆ V (D) of size k + 1
Output: Does there exist a solution of size k that is disjoint from W

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 14 / 24



The Problem

Rooted H-free Strong Connected Component Deletion
Input: Graph D, integer k , finite family of graphs H where every graph
is rooted
Output: Does there exist a set S of at most k vertices such that every
strong component of D−S does not have a subgraph isomorphic to any
graph H

Using the technique of Iterative Compression, it suffices to solve the
disjoint version of the problem.

Disjoint Rooted H-free SCC Deletion
Input: Graph D, integer k , finite family of graphs H where every graph
is rooted, and solution W ⊆ V (D) of size k + 1
Output: Does there exist a solution of size k that is disjoint from W

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 14 / 24



Structure of solution X . After contracting all strongly connected
components of D − X , we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W .

I.e. Vertices of W in the same strongly connected components D − X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D − X .

We start by guessing this ordered partition on W !

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 / 24



Structure of solution X . After contracting all strongly connected
components of D − X , we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W .

I.e. Vertices of W in the same strongly connected components D − X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D − X .

We start by guessing this ordered partition on W !

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 / 24



Structure of solution X . After contracting all strongly connected
components of D − X , we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W .

I.e. Vertices of W in the same strongly connected components D − X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D − X .

We start by guessing this ordered partition on W !

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 / 24



Structure of solution X . After contracting all strongly connected
components of D − X , we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W .

I.e. Vertices of W in the same strongly connected components D − X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D − X .

We start by guessing this ordered partition on W !

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 / 24



Structure of solution X . After contracting all strongly connected
components of D − X , we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of W .

I.e. Vertices of W in the same strongly connected components D − X
correspond to vertices in the same partition, and a partition come before
another partition in the ordering if that strong component comes before
the other in the topological ordering of D − X .

We start by guessing this ordered partition on W !

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 15 / 24



Now the problem reduces to the following: Given an ordered partition on
W = (W1, . . . ,Wq), find a solution X that is disjoint from W and of size
k such that the aforementioned topological ordering of D − X induces
same ordered partition on W .

That is, if Wi and Wj are sets in the partition with i > j then we want to
kill all paths from Wi to Wj and deal with subgraphs isomorphic to a
graph in H that we encounter.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 16 / 24



Now the problem reduces to the following: Given an ordered partition on
W = (W1, . . . ,Wq), find a solution X that is disjoint from W and of size
k such that the aforementioned topological ordering of D − X induces
same ordered partition on W .

That is, if Wi and Wj are sets in the partition with i > j then we want to
kill all paths from Wi to Wj and deal with subgraphs isomorphic to a
graph in H that we encounter.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 16 / 24



Now the problem reduces to the following: Given an ordered partition on
W = (W1, . . . ,Wq), find a solution X that is disjoint from W and of size
k such that the aforementioned topological ordering of D − X induces
same ordered partition on W .

That is, if Wi and Wj are sets in the partition with i > j then we want to
kill all paths from Wi to Wj and deal with subgraphs isomorphic to a
graph in H that we encounter.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 16 / 24



Table of Contents

1 Introduction

2 Preliminaries

3 Reducing to the partioned problem

4 Solving the partitioned problem

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 17 / 24



We want to kill all paths from Wq to W1 ∪ . . . ∪Wq−1. So our solution
must contain an S-T separator where S = Wq and T = W1 ∪ . . . ∪Wq−1.

New task. Given S , T : Kill all S-T paths and deal with forbidden
subgraphs F ∈ H that are in the same strongly connected component of S .

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S .

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase λ: the minimum S-T
separator size.

Eventually when λ = k, either k must drop or we can conclude that is a
NO-instance once λ > k , since every solution must contain an S-T
separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 / 24



We want to kill all paths from Wq to W1 ∪ . . . ∪Wq−1. So our solution
must contain an S-T separator where S = Wq and T = W1 ∪ . . . ∪Wq−1.

New task. Given S , T : Kill all S-T paths and deal with forbidden
subgraphs F ∈ H that are in the same strongly connected component of S .

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S .

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase λ: the minimum S-T
separator size.

Eventually when λ = k, either k must drop or we can conclude that is a
NO-instance once λ > k , since every solution must contain an S-T
separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 / 24



We want to kill all paths from Wq to W1 ∪ . . . ∪Wq−1. So our solution
must contain an S-T separator where S = Wq and T = W1 ∪ . . . ∪Wq−1.

New task. Given S , T : Kill all S-T paths and deal with forbidden
subgraphs F ∈ H that are in the same strongly connected component of S .

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S .

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase λ: the minimum S-T
separator size.

Eventually when λ = k, either k must drop or we can conclude that is a
NO-instance once λ > k , since every solution must contain an S-T
separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 / 24



We want to kill all paths from Wq to W1 ∪ . . . ∪Wq−1. So our solution
must contain an S-T separator where S = Wq and T = W1 ∪ . . . ∪Wq−1.

New task. Given S , T : Kill all S-T paths and deal with forbidden
subgraphs F ∈ H that are in the same strongly connected component of S .

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S .

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase λ: the minimum S-T
separator size.

Eventually when λ = k, either k must drop or we can conclude that is a
NO-instance once λ > k , since every solution must contain an S-T
separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 / 24



We want to kill all paths from Wq to W1 ∪ . . . ∪Wq−1. So our solution
must contain an S-T separator where S = Wq and T = W1 ∪ . . . ∪Wq−1.

New task. Given S , T : Kill all S-T paths and deal with forbidden
subgraphs F ∈ H that are in the same strongly connected component of S .

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S .

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase λ: the minimum S-T
separator size.

Eventually when λ = k, either k must drop or we can conclude that is a
NO-instance once λ > k , since every solution must contain an S-T
separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 / 24



We want to kill all paths from Wq to W1 ∪ . . . ∪Wq−1. So our solution
must contain an S-T separator where S = Wq and T = W1 ∪ . . . ∪Wq−1.

New task. Given S , T : Kill all S-T paths and deal with forbidden
subgraphs F ∈ H that are in the same strongly connected component of S .

We will start with the unique closest minimum S-T separator C and
iteratively try to push C further and further away from S .

While we push, we want to break all the forbidden subgraphs in H that we
encounter.

At every branch, we either drop k or increase λ: the minimum S-T
separator size.

Eventually when λ = k, either k must drop or we can conclude that is a
NO-instance once λ > k , since every solution must contain an S-T
separator.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 18 / 24



Initially we find the closest S-T separator C and try to ‘clean’ R(S ,C ) by
breaking any forbidden subgraphs F ∈ H such that the root of F is in
R(S ,C ).

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution.

2 All vertices of F should not be reachable from S , which is equivalent
to killing all S-{r} paths (where r is the root of F ). This can be
achieved by adding r to T and recursing.

3 Kill all {u}-S paths for some vertex u ∈ F , we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size λ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 / 24



Initially we find the closest S-T separator C and try to ‘clean’ R(S ,C ) by
breaking any forbidden subgraphs F ∈ H such that the root of F is in
R(S ,C ).

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution.

2 All vertices of F should not be reachable from S , which is equivalent
to killing all S-{r} paths (where r is the root of F ). This can be
achieved by adding r to T and recursing.

3 Kill all {u}-S paths for some vertex u ∈ F , we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size λ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 / 24



Initially we find the closest S-T separator C and try to ‘clean’ R(S ,C ) by
breaking any forbidden subgraphs F ∈ H such that the root of F is in
R(S ,C ).

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution.

2 All vertices of F should not be reachable from S , which is equivalent
to killing all S-{r} paths (where r is the root of F ). This can be
achieved by adding r to T and recursing.

3 Kill all {u}-S paths for some vertex u ∈ F , we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size λ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 / 24



Initially we find the closest S-T separator C and try to ‘clean’ R(S ,C ) by
breaking any forbidden subgraphs F ∈ H such that the root of F is in
R(S ,C ).

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution.

2 All vertices of F should not be reachable from S , which is equivalent
to killing all S-{r} paths (where r is the root of F ). This can be
achieved by adding r to T and recursing.

3 Kill all {u}-S paths for some vertex u ∈ F , we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size λ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 / 24



Initially we find the closest S-T separator C and try to ‘clean’ R(S ,C ) by
breaking any forbidden subgraphs F ∈ H such that the root of F is in
R(S ,C ).

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution.

2 All vertices of F should not be reachable from S , which is equivalent
to killing all S-{r} paths (where r is the root of F ). This can be
achieved by adding r to T and recursing.

3 Kill all {u}-S paths for some vertex u ∈ F , we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size λ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 / 24



Initially we find the closest S-T separator C and try to ‘clean’ R(S ,C ) by
breaking any forbidden subgraphs F ∈ H such that the root of F is in
R(S ,C ).

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution.

2 All vertices of F should not be reachable from S , which is equivalent
to killing all S-{r} paths (where r is the root of F ). This can be
achieved by adding r to T and recursing.

3 Kill all {u}-S paths for some vertex u ∈ F , we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size λ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 / 24



Initially we find the closest S-T separator C and try to ‘clean’ R(S ,C ) by
breaking any forbidden subgraphs F ∈ H such that the root of F is in
R(S ,C ).

‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution.

2 All vertices of F should not be reachable from S , which is equivalent
to killing all S-{r} paths (where r is the root of F ). This can be
achieved by adding r to T and recursing.

3 Kill all {u}-S paths for some vertex u ∈ F , we can achieve this by
branching on all {u}-S important separators.

In the first and third case, we reduce k.

In the second case, the minimum S-T separator size λ increases because
we add a vertex to T

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 19 / 24



Let λ be the minimum S-T separator size. We will prove that λ increases
when we add r to T .

Recall that we add the vertex r ∈ R(S ,C ) to T .

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C .

However any S-(T ∪ {r}) separator cannot cover C since r ∈ R(S ,C ).

Thus the minimum S-(T ∪ {r}) separator size must be greater than λ.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20 / 24



Let λ be the minimum S-T separator size. We will prove that λ increases
when we add r to T .

Recall that we add the vertex r ∈ R(S ,C ) to T .

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C .

However any S-(T ∪ {r}) separator cannot cover C since r ∈ R(S ,C ).

Thus the minimum S-(T ∪ {r}) separator size must be greater than λ.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20 / 24



Let λ be the minimum S-T separator size. We will prove that λ increases
when we add r to T .

Recall that we add the vertex r ∈ R(S ,C ) to T .

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C .

However any S-(T ∪ {r}) separator cannot cover C since r ∈ R(S ,C ).

Thus the minimum S-(T ∪ {r}) separator size must be greater than λ.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20 / 24



Let λ be the minimum S-T separator size. We will prove that λ increases
when we add r to T .

Recall that we add the vertex r ∈ R(S ,C ) to T .

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C .

However any S-(T ∪ {r}) separator cannot cover C since r ∈ R(S ,C ).

Thus the minimum S-(T ∪ {r}) separator size must be greater than λ.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20 / 24



Let λ be the minimum S-T separator size. We will prove that λ increases
when we add r to T .

Recall that we add the vertex r ∈ R(S ,C ) to T .

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C .

However any S-(T ∪ {r}) separator cannot cover C since r ∈ R(S ,C ).

Thus the minimum S-(T ∪ {r}) separator size must be greater than λ.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20 / 24



Let λ be the minimum S-T separator size. We will prove that λ increases
when we add r to T .

Recall that we add the vertex r ∈ R(S ,C ) to T .

Since C is the closest minimum S-T separator, every other minimum S-T
separator must cover C .

However any S-(T ∪ {r}) separator cannot cover C since r ∈ R(S ,C ).

Thus the minimum S-(T ∪ {r}) separator size must be greater than λ.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 20 / 24



Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

We have a separator C and we try to ‘push’ to a new separator C ′ that
tightly covers C .

When we push, we want to make sure that R(S ,C ′) is ‘clean’. We do that
by breaking all forbidden subgraphs F ∈ H such that its root r is in
R(S ,C ′).

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21 / 24



Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

We have a separator C and we try to ‘push’ to a new separator C ′ that
tightly covers C .

When we push, we want to make sure that R(S ,C ′) is ‘clean’. We do that
by breaking all forbidden subgraphs F ∈ H such that its root r is in
R(S ,C ′).

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21 / 24



Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

We have a separator C and we try to ‘push’ to a new separator C ′ that
tightly covers C .

When we push, we want to make sure that R(S ,C ′) is ‘clean’. We do that
by breaking all forbidden subgraphs F ∈ H such that its root r is in
R(S ,C ′).

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21 / 24



Lemma (Pushing Routine)

Given a minimum S-T separator C , in polynomial one can either

Compute a minimum S-T separator C ′ that tightly covers C

Conclude that there is no such C ′, i.e. C is the unique furthest
minimum separator.

We have a separator C and we try to ‘push’ to a new separator C ′ that
tightly covers C .

When we push, we want to make sure that R(S ,C ′) is ‘clean’. We do that
by breaking all forbidden subgraphs F ∈ H such that its root r is in
R(S ,C ′).

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 21 / 24



‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution

2 Adding the root r to T and recursing

3 Branching on all {u}-S important separators, for every vertex u ∈ F

Again, the parameter k drops for cases 1 and 3.

However, this time, for case 2, its not so clear how we make progress.

Turns out by guessing which vertices of C that are reachable or
unreachable in the final solution, we gain enough information to make
progress in case 2 also.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 22 / 24



‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution

2 Adding the root r to T and recursing

3 Branching on all {u}-S important separators, for every vertex u ∈ F

Again, the parameter k drops for cases 1 and 3.

However, this time, for case 2, its not so clear how we make progress.

Turns out by guessing which vertices of C that are reachable or
unreachable in the final solution, we gain enough information to make
progress in case 2 also.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 22 / 24



‘Breaking’ a forbidden subgraph F involves branching into the following
cases:

1 Picking a vertex v ∈ F into our solution

2 Adding the root r to T and recursing

3 Branching on all {u}-S important separators, for every vertex u ∈ F

Again, the parameter k drops for cases 1 and 3.

However, this time, for case 2, its not so clear how we make progress.

Turns out by guessing which vertices of C that are reachable or
unreachable in the final solution, we gain enough information to make
progress in case 2 also.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 22 / 24



Conclusions and further work

We give FPT algorithms when every graph in H is rooted and when
H contains a path of arbitrary length

What about algorithms for other families H? Is it possible to design
an FPT algorithm for every such H?

What about infinite families?

Recent result by Göke, Marx and Mnich [ICALP 2020] shows that one
can design an FPT algorithm for when H is the set of cycles of length
greater than some integer s.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23 / 24



Conclusions and further work

We give FPT algorithms when every graph in H is rooted and when
H contains a path of arbitrary length

What about algorithms for other families H? Is it possible to design
an FPT algorithm for every such H?

What about infinite families?

Recent result by Göke, Marx and Mnich [ICALP 2020] shows that one
can design an FPT algorithm for when H is the set of cycles of length
greater than some integer s.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23 / 24



Conclusions and further work

We give FPT algorithms when every graph in H is rooted and when
H contains a path of arbitrary length

What about algorithms for other families H? Is it possible to design
an FPT algorithm for every such H?

What about infinite families?

Recent result by Göke, Marx and Mnich [ICALP 2020] shows that one
can design an FPT algorithm for when H is the set of cycles of length
greater than some integer s.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23 / 24



Conclusions and further work

We give FPT algorithms when every graph in H is rooted and when
H contains a path of arbitrary length

What about algorithms for other families H? Is it possible to design
an FPT algorithm for every such H?

What about infinite families?

Recent result by Göke, Marx and Mnich [ICALP 2020] shows that one
can design an FPT algorithm for when H is the set of cycles of length
greater than some integer s.

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 23 / 24



Thank You

Neogi, Ramanujan, Saurabh, Sharma H-free SCC Deletion MFCS 2020 24 / 24


	Introduction
	Preliminaries
	Reducing to the partioned problem
	Solving the partitioned problem

