# On the Parameterized Complexity of Deletion to $\mathcal{H}$-free Strong Components 

Rian Neogi ${ }^{1}$, M. S. Ramanujan ${ }^{2}$, Saket Saurabh ${ }^{1}$ and Roohani Sharma ${ }^{1}$

${ }^{1}$ Institute of Mathematical Sciences, and ${ }^{2}$ University of Warwick

MFCS 2020

## Table of Contents

(1) Introduction

## (2) Preliminaries

(3) Reducing to the partioned problem

4 Solving the partitioned problem

## Directed FVS and related problems

Directed Feedback Vertex Set
Input: Directed graph $D$, integer $k$
Output: Does there exist a set $S$ of size at most $k$ such that $D-S$ is acyclic?

Best known FPT algorithm: $O^{*}\left(k!4^{k}\right)$ (here $O^{*}$ notation suppresses polynomial factors)

Improving this is a big open problem in parameterized complexity. Recent work by Göke et al. [CIAC 2019] designs FPT algorithms for related problems.

## Directed FVS and related problems

1-Out Regular Vertex Deletion
Input: Directed graph $D$, integer $k$
Output: Does there exist a set $S$ of size at most $k$ such that every strong component of $D-S$ has every vertex of degree at most 1 ?

## Directed FVS and related problems

1-Out Regular Vertex Deletion
Input: Directed graph $D$, integer $k$
Output: Does there exist a set $S$ of size at most $k$ such that every strong component of $D-S$ has every vertex of degree at most 1 ?

Bounded Size Strong Component Vertex Deletion
Input: Directed graph $D$, integers $k$, s
Output: Does there exist a set $S$ of size at most $k$ such that every strong component of $D-S$ contains at most $s$ vertices?

## Directed FVS and related problems

1-Out Regular Vertex Deletion
Input: Directed graph $D$, integer $k$
Output: Does there exist a set $S$ of size at most $k$ such that every strong component of $D-S$ has every vertex of degree at most 1 ?

Bounded Size Strong Component Vertex Deletion
Input: Directed graph $D$, integers $k$, s
Output: Does there exist a set $S$ of size at most $k$ such that every strong component of $D-S$ contains at most $s$ vertices?

Göke et al. gave a $2^{O\left(k^{3}\right)} n^{O(1)}$ algorithm for the first problem and a $4^{k}(k s+k+s)!n^{O(1)}$ algorithm for the second one.

## Our problem

We generalize these problems to a more unified framework.
$\mathcal{H}$-free Strong Connected Component Deletion
Input: Directed graph $D$, integer $k$, finite family of graphs $\mathcal{H}$
Output: Does there exist a set $S$ of at most $k$ vertices such that every strong component of $D-S$ does not have a subgraph isomorphic to any graph $\mathcal{H}$

## Our problem

We generalize these problems to a more unified framework.
$\mathcal{H}$-free Strong Connected Component Deletion
Input: Directed graph $D$, integer $k$, finite family of graphs $\mathcal{H}$
Output: Does there exist a set $S$ of at most $k$ vertices such that every strong component of $D-S$ does not have a subgraph isomorphic to any graph $\mathcal{H}$

Directed Feedback Vertex Set. Here $\mathcal{H}$ is an independent set on two vertices.

## Our problem

We generalize these problems to a more unified framework.
$\mathcal{H}$-free Strong Connected Component Deletion
Input: Directed graph $D$, integer $k$, finite family of graphs $\mathcal{H}$
Output: Does there exist a set $S$ of at most $k$ vertices such that every strong component of $D-S$ does not have a subgraph isomorphic to any graph $\mathcal{H}$

Directed Feedback Vertex Set. Here $\mathcal{H}$ is an independent set on two vertices.

1-Out Regular Vertex Deletion. Here $\mathcal{H}$ is a star with 2 leaves.

## Our problem

We generalize these problems to a more unified framework.
$\mathcal{H}$-free Strong Connected Component Deletion
Input: Directed graph $D$, integer $k$, finite family of graphs $\mathcal{H}$
Output: Does there exist a set $S$ of at most $k$ vertices such that every strong component of $D-S$ does not have a subgraph isomorphic to any graph $\mathcal{H}$

Directed Feedback Vertex Set. Here $\mathcal{H}$ is an independent set on two vertices.

1-Out Regular Vertex Deletion. Here $\mathcal{H}$ is a star with 2 leaves. Bounded Size Strong Component Vertex Deletion. Here $\mathcal{H}$ is an independent set on $s+1$ vertices.

## Our Results

- A $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph in $\mathcal{H}$ has a 'rooted' property. Here $h$ is the maximum size amognst all graphs in $\mathcal{H}$.


## Our Results

- A $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph in $\mathcal{H}$ has a 'rooted' property. Here $h$ is the maximum size amognst all graphs in $\mathcal{H}$.
- A $2^{O\left(k^{3} \log k\right)} n^{O(1)}$ algorithm for the case when $\mathcal{H}$ contains a path.


## Our Results

- A $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph in $\mathcal{H}$ has a 'rooted' property. Here $h$ is the maximum size amognst all graphs in $\mathcal{H}$.
- A $2^{O\left(k^{3} \log k\right)} n^{O(1)}$ algorithm for the case when $\mathcal{H}$ contains a path.
- A $2^{O(k \log k)} n^{O(1)}$ algorithm for 1-Out Regular Vertex Deletion.


## Our Results

- A $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph in $\mathcal{H}$ has a 'rooted' property. Here $h$ is the maximum size amognst all graphs in $\mathcal{H}$.
- A $2^{O\left(k^{3} \log k\right)} n^{O(1)}$ algorithm for the case when $\mathcal{H}$ contains a path.
- A $2^{O(k \log k)} n^{O(1)}$ algorithm for 1-Out Regular Vertex Deletion.
- A $2^{O(k(\log k+\log s))} n^{O(1)}$ algorithm for Bounded Size Strong Component Vertex Deletion.


## Our Results

- A $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph in $\mathcal{H}$ has a 'rooted' property. Here $h$ is the maximum size amognst all graphs in $\mathcal{H}$.
- A $2^{O\left(k^{3} \log k\right)} n^{O(1)}$ algorithm for the case when $\mathcal{H}$ contains a path.
- A $2^{O(k \log k)} n^{O(1)}$ algorithm for 1-Out Regular Vertex Deletion.
- A $2^{O(k(\log k+\log s))} n^{O(1)}$ algorithm for Bounded Size Strong Component Vertex Deletion.


## Our Results

- A $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph in $\mathcal{H}$ has a 'rooted' property. Here $h$ is the maximum size amognst all graphs in $\mathcal{H}$.
- A $2^{O\left(k^{3} \log k\right)} n^{O(1)}$ algorithm for the case when $\mathcal{H}$ contains a path.
- A $2^{O(k \log k)} n^{O(1)}$ algorithm for 1 -OUT REGUlar Vertex Deletion.
- A $2^{O(k(\log k+\log s))} n^{O(1)}$ algorithm for Bounded Size Strong Component Vertex Deletion.

Last two results improve on the bounds given by Göke et al.

## This talk

In this talk, we will covering the $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph has a special 'rooted' property.

## This talk

In this talk, we will covering the $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph has a special 'rooted' property. The $2^{O\left(k^{3} \log k\right)} n^{O(1)}$ algorithm for when $\mathcal{H}$ contains a path is based upon a reduction to the rooted case.

## This talk

In this talk, we will covering the $2^{O\left(k^{3} \log k\right)} n^{O(h)}$ algorithm for when each graph has a special 'rooted' property.
The $2^{O\left(k^{3} \log k\right)} n^{O(1)}$ algorithm for when $\mathcal{H}$ contains a path is based upon a reduction to the rooted case.

Algorithms for 1-Out Regular Vertex Deletion and Bounded Size Strong Component Vertex Deletion are based upon similar ideas.

## Table of Contents

## (1) Introduction

(2) Preliminaries

## (3) Reducing to the partioned problem

(4) Solving the partitioned problem

## Preliminaries

For an $S$ - $T$ separator $C$, we define $R(S, C)$ to be the set of vertices reachable from $S$ after the deletion of $C$.

## Preliminaries

For an $S$ - $T$ separator $C$, we define $R(S, C)$ to be the set of vertices reachable from $S$ after the deletion of $C$.

Important property. There is a unique minimum 'closest' separator i.e. there is a unique minimum $S-T$ separator $C$ such that $R(S, C) \subseteq R\left(S, C^{\prime}\right)$ for all other minimum $S-T$ separators $C^{\prime}$.

## Preliminaries

For an $S$ - $T$ separator $C$, we define $R(S, C)$ to be the set of vertices reachable from $S$ after the deletion of $C$.

Important property. There is a unique minimum 'closest' separator i.e. there is a unique minimum $S$ - $T$ separator $C$ such that $R(S, C) \subseteq R\left(S, C^{\prime}\right)$ for all other minimum $S$ - $T$ separators $C^{\prime}$.
Symmetrically, there is a unique minimum 'furthest' separator i.e. separator $C$ such that $R(S, C) \supseteq R\left(S, C^{\prime}\right)$ for all other minimum $S$ - $T$ separators $C^{\prime}$.

## Preliminaries

A minimum $S-T$ separator $C$ is said to cover another minimum $S-T$ separator $C^{\prime}$ if $R(S, C) \supseteq R\left(S, C^{\prime}\right)$.

## Preliminaries

A minimum $S-T$ separator $C$ is said to cover another minimum $S-T$ separator $C^{\prime}$ if $R(S, C) \supseteq R\left(S, C^{\prime}\right)$.
A minimum $S-T$ separator $C$ is said to tightly cover another minimum $S$ - $T$ separator $C^{\prime}$ if $R(S, C) \supseteq R\left(S, C^{\prime}\right)$ and there is no other minimum $S$ - $T$ separator $C^{\prime \prime}$ such that $R(S, C) \supseteq R\left(S, C^{\prime \prime}\right) \supseteq R\left(S, C^{\prime}\right)$.

## Preliminaries

A minimum $S-T$ separator $C$ is said to cover another minimum $S-T$ separator $C^{\prime}$ if $R(S, C) \supseteq R\left(S, C^{\prime}\right)$.
A minimum $S-T$ separator $C$ is said to tightly cover another minimum $S$ - $T$ separator $C^{\prime}$ if $R(S, C) \supseteq R\left(S, C^{\prime}\right)$ and there is no other minimum $S$ - $T$ separator $C^{\prime \prime}$ such that $R(S, C) \supseteq R\left(S, C^{\prime \prime}\right) \supseteq R\left(S, C^{\prime}\right)$.


## Preliminaries

A minimum $S$ - $T$ separator $C$ is said to cover another minimum $S-T$ separator $C^{\prime}$ if $R(S, C) \supseteq R\left(S, C^{\prime}\right)$.

A minimum $S-T$ separator $C$ is said to tightly cover another minimum $S$ - $T$ separator $C^{\prime}$ if $R(S, C) \supseteq R\left(S, C^{\prime}\right)$ and there is no other minimum $S$ - $T$ separator $C^{\prime \prime}$ such that $R(S, C) \supseteq R\left(S, C^{\prime \prime}\right) \supseteq R\left(S, C^{\prime}\right)$.


## Lemma (Pushing Routine)

Given a minimum $S-T$ separator $C$, in polynomial one can either

- Compute a minimum $S$ - $T$ separator $C^{\prime}$ that tightly covers $C$
- Conclude that there is no such $C^{\prime}$, i.e. $C$ is the unique furthest minimum separator.


## Important Separators

## Important Separators

For a graph $D$ and subsets $S, T \subseteq V(G)$, an $S-T$ separator $C$ is said to be important if there is no other $S$ - $T$ separator $C^{\prime}$ such that $\left|C^{\prime}\right| \leq|C|$ and $R\left(S, C^{\prime}\right) \supseteq R(S, C)$.

## Important Separators

## Important Separators

For a graph $D$ and subsets $S, T \subseteq V(G)$, an $S-T$ separator $C$ is said to be important if there is no other $S-T$ separator $C^{\prime}$ such that $\left|C^{\prime}\right| \leq|C|$ and $R\left(S, C^{\prime}\right) \supseteq R(S, C)$.
I.e. important separators are separators can cannot be 'pushed' further without increasing its size.

## Important Separators

## Important Separators

For a graph $D$ and subsets $S, T \subseteq V(G)$, an $S$ - $T$ separator $C$ is said to be important if there is no other $S-T$ separator $C^{\prime}$ such that $\left|C^{\prime}\right| \leq|C|$ and $R\left(S, C^{\prime}\right) \supseteq R(S, C)$.
I.e. important separators are separators can cannot be 'pushed' further without increasing its size.

## Lemma

There are at most $4^{k}$ important separators of size at most $k$, and they can be enumerated in $O^{*}\left(4^{k}\right)$ time.

Fundamental lemma for designing FPT algorithms for cut problems.

## Important Separators

## Important Separators

For a graph $D$ and subsets $S, T \subseteq V(G)$, an $S-T$ separator $C$ is said to be important if there is no other $S-T$ separator $C^{\prime}$ such that $\left|C^{\prime}\right| \leq|C|$ and $R\left(S, C^{\prime}\right) \supseteq R(S, C)$.
I.e. important separators are separators can cannot be 'pushed' further without increasing its size.

## Lemma

There are at most $4^{k}$ important separators of size at most $k$, and they can be enumerated in $O^{*}\left(4^{k}\right)$ time.

Fundamental lemma for designing FPT algorithms for cut problems.
Prove something of the form "If there exists a solution, then there is a solution that contains an important separator", then branch on the $4^{k}$ important separators.

## Rooted property

Graph is rooted if there exists a vertex $r$ such that every other vertex in the graph can be reached from $r$.

## Rooted property

Graph is rooted if there exists a vertex $r$ such that every other vertex in the graph can be reached from $r$.

Here $r$ is called the root of the graph.


## Rooted property

Graph is rooted if there exists a vertex $r$ such that every other vertex in the graph can be reached from $r$.

Here $r$ is called the root of the graph.


Turns out that this property is very helpful in designing algorithms for the $\mathcal{H}$-free SCC Deletion problem.

## Rooted property

Graph is rooted if there exists a vertex $r$ such that every other vertex in the graph can be reached from $r$.

Here $r$ is called the root of the graph.


Turns out that this property is very helpful in designing algorithms for the $\mathcal{H}$-free SCC Deletion problem.

We will look at the special case when each graph in $\mathcal{H}$ is rooted.

## Table of Contents

## (1) Introduction

(2) Preliminaries
(3) Reducing to the partioned problem

## (4) Solving the partitioned problem

## The Problem

Rooted $\mathcal{H}$-free Strong Connected Component Deletion
Input: Graph $D$, integer $k$, finite family of graphs $\mathcal{H}$ where every graph
is rooted
Output: Does there exist a set $S$ of at most $k$ vertices such that every strong component of $D-S$ does not have a subgraph isomorphic to any graph $\mathcal{H}$

## The Problem

> Rooted $\mathcal{H}$-free Strong Connected Component Deletion Input: Graph $D$, integer $k$, finite family of graphs $\mathcal{H}$ where every graph is rooted
> Output: Does there exist a set $S$ of at most $k$ vertices such that every strong component of $D-S$ does not have a subgraph isomorphic to any graph $\mathcal{H}$

Using the technique of Iterative Compression, it suffices to solve the disjoint version of the problem.

## The Problem

Rooted $\mathcal{H}$-free Strong Connected Component Deletion Input: Graph $D$, integer $k$, finite family of graphs $\mathcal{H}$ where every graph is rooted
Output: Does there exist a set $S$ of at most $k$ vertices such that every strong component of $D-S$ does not have a subgraph isomorphic to any graph $\mathcal{H}$

Using the technique of Iterative Compression, it suffices to solve the disjoint version of the problem.

Disjoint Rooted $\mathcal{H}$-free SCC Deletion
Input: Graph $D$, integer $k$, finite family of graphs $\mathcal{H}$ where every graph is rooted, and solution $W \subseteq V(D)$ of size $k+1$
Output: Does there exist a solution of size $k$ that is disjoint from $W$

Structure of solution $X$. After contracting all strongly connected components of $D-X$, we get a DAG and thus a topological order.

Structure of solution $X$. After contracting all strongly connected components of $D-X$, we get a DAG and thus a topological order. This topological order induces an ordered partition on the vertices of $W$.

Structure of solution $X$. After contracting all strongly connected components of $D-X$, we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of $W$.
I.e. Vertices of $W$ in the same strongly connected components $D-X$ correspond to vertices in the same partition, and a partition come before another partition in the ordering if that strong component comes before the other in the topological ordering of $D-X$.

Structure of solution $X$. After contracting all strongly connected components of $D-X$, we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of $W$.
I.e. Vertices of $W$ in the same strongly connected components $D-X$ correspond to vertices in the same partition, and a partition come before another partition in the ordering if that strong component comes before the other in the topological ordering of $D-X$.


Structure of solution $X$. After contracting all strongly connected components of $D-X$, we get a DAG and thus a topological order.

This topological order induces an ordered partition on the vertices of $W$.
I.e. Vertices of $W$ in the same strongly connected components $D-X$ correspond to vertices in the same partition, and a partition come before another partition in the ordering if that strong component comes before the other in the topological ordering of $D-X$.


We start by guessing this ordered partition on $W$ !

Now the problem reduces to the following: Given an ordered partition on $W=\left(W_{1}, \ldots, W_{q}\right)$, find a solution $X$ that is disjoint from $W$ and of size $k$ such that the aforementioned topological ordering of $D-X$ induces same ordered partition on $W$.

Now the problem reduces to the following: Given an ordered partition on $W=\left(W_{1}, \ldots, W_{q}\right)$, find a solution $X$ that is disjoint from $W$ and of size $k$ such that the aforementioned topological ordering of $D-X$ induces same ordered partition on $W$.

That is, if $W_{i}$ and $W_{j}$ are sets in the partition with $i>j$ then we want to kill all paths from $W_{i}$ to $W_{j}$ and deal with subgraphs isomorphic to a graph in $\mathcal{H}$ that we encounter.

Now the problem reduces to the following: Given an ordered partition on $W=\left(W_{1}, \ldots, W_{q}\right)$, find a solution $X$ that is disjoint from $W$ and of size $k$ such that the aforementioned topological ordering of $D-X$ induces same ordered partition on $W$.

That is, if $W_{i}$ and $W_{j}$ are sets in the partition with $i>j$ then we want to kill all paths from $W_{i}$ to $W_{j}$ and deal with subgraphs isomorphic to a graph in $\mathcal{H}$ that we encounter.


## Table of Contents

## (1) Introduction

(2) Preliminaries
(3) Reducing to the partioned problem
(4) Solving the partitioned problem

We want to kill all paths from $W_{q}$ to $W_{1} \cup \ldots \cup W_{q-1}$. So our solution must contain an $S-T$ separator where $S=W_{q}$ and $T=W_{1} \cup \ldots \cup W_{q-1}$.

We want to kill all paths from $W_{q}$ to $W_{1} \cup \ldots \cup W_{q-1}$. So our solution must contain an $S-T$ separator where $S=W_{q}$ and $T=W_{1} \cup \ldots \cup W_{q-1}$.

New task. Given $S, T$ : Kill all $S-T$ paths and deal with forbidden subgraphs $F \in \mathcal{H}$ that are in the same strongly connected component of $S$.

We want to kill all paths from $W_{q}$ to $W_{1} \cup \ldots \cup W_{q-1}$. So our solution must contain an $S-T$ separator where $S=W_{q}$ and $T=W_{1} \cup \ldots \cup W_{q-1}$.

New task. Given $S, T$ : Kill all $S-T$ paths and deal with forbidden subgraphs $F \in \mathcal{H}$ that are in the same strongly connected component of $S$.

We will start with the unique closest minimum $S-T$ separator $C$ and iteratively try to push $C$ further and further away from $S$.

We want to kill all paths from $W_{q}$ to $W_{1} \cup \ldots \cup W_{q-1}$. So our solution must contain an $S-T$ separator where $S=W_{q}$ and $T=W_{1} \cup \ldots \cup W_{q-1}$.

New task. Given $S, T$ : Kill all $S-T$ paths and deal with forbidden subgraphs $F \in \mathcal{H}$ that are in the same strongly connected component of $S$.

We will start with the unique closest minimum $S-T$ separator $C$ and iteratively try to push $C$ further and further away from $S$.

While we push, we want to break all the forbidden subgraphs in $\mathcal{H}$ that we encounter.

We want to kill all paths from $W_{q}$ to $W_{1} \cup \ldots \cup W_{q-1}$. So our solution must contain an $S-T$ separator where $S=W_{q}$ and $T=W_{1} \cup \ldots \cup W_{q-1}$.

New task. Given $S, T$ : Kill all $S-T$ paths and deal with forbidden subgraphs $F \in \mathcal{H}$ that are in the same strongly connected component of $S$.

We will start with the unique closest minimum $S-T$ separator $C$ and iteratively try to push $C$ further and further away from $S$.

While we push, we want to break all the forbidden subgraphs in $\mathcal{H}$ that we encounter.

At every branch, we either drop $k$ or increase $\lambda$ : the minimum $S-T$ separator size.

We want to kill all paths from $W_{q}$ to $W_{1} \cup \ldots \cup W_{q-1}$. So our solution must contain an $S-T$ separator where $S=W_{q}$ and $T=W_{1} \cup \ldots \cup W_{q-1}$.

New task. Given $S, T$ : Kill all $S-T$ paths and deal with forbidden subgraphs $F \in \mathcal{H}$ that are in the same strongly connected component of $S$.

We will start with the unique closest minimum $S-T$ separator $C$ and iteratively try to push $C$ further and further away from $S$.

While we push, we want to break all the forbidden subgraphs in $\mathcal{H}$ that we encounter.

At every branch, we either drop $k$ or increase $\lambda$ : the minimum $S-T$ separator size.

Eventually when $\lambda=k$, either $k$ must drop or we can conclude that is a NO-instance once $\lambda>k$, since every solution must contain an $S-T$ separator.

Initially we find the closest $S-T$ separator $C$ and try to 'clean' $R(S, C)$ by breaking any forbidden subgraphs $F \in \mathcal{H}$ such that the root of $F$ is in $R(S, C)$.

Initially we find the closest $S-T$ separator $C$ and try to 'clean' $R(S, C)$ by breaking any forbidden subgraphs $F \in \mathcal{H}$ such that the root of $F$ is in $R(S, C)$.
'Breaking' a forbidden subgraph $F$ involves branching into the following cases:

Initially we find the closest $S-T$ separator $C$ and try to 'clean' $R(S, C)$ by breaking any forbidden subgraphs $F \in \mathcal{H}$ such that the root of $F$ is in $R(S, C)$.
‘Breaking’ a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution.

Initially we find the closest $S-T$ separator $C$ and try to 'clean' $R(S, C)$ by breaking any forbidden subgraphs $F \in \mathcal{H}$ such that the root of $F$ is in $R(S, C)$.
'Breaking' a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution.
(2) All vertices of $F$ should not be reachable from $S$, which is equivalent to killing all $S-\{r\}$ paths (where $r$ is the root of $F$ ). This can be achieved by adding $r$ to $T$ and recursing.

Initially we find the closest $S-T$ separator $C$ and try to 'clean' $R(S, C)$ by breaking any forbidden subgraphs $F \in \mathcal{H}$ such that the root of $F$ is in $R(S, C)$.
'Breaking' a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution.
(2) All vertices of $F$ should not be reachable from $S$, which is equivalent to killing all $S-\{r\}$ paths (where $r$ is the root of $F$ ). This can be achieved by adding $r$ to $T$ and recursing.
(3) Kill all $\{u\}-S$ paths for some vertex $u \in F$, we can achieve this by branching on all $\{u\}-S$ important separators.

Initially we find the closest $S-T$ separator $C$ and try to 'clean' $R(S, C)$ by breaking any forbidden subgraphs $F \in \mathcal{H}$ such that the root of $F$ is in $R(S, C)$.
'Breaking' a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution.
(2) All vertices of $F$ should not be reachable from $S$, which is equivalent to killing all $S-\{r\}$ paths (where $r$ is the root of $F$ ). This can be achieved by adding $r$ to $T$ and recursing.
(3) Kill all $\{u\}-S$ paths for some vertex $u \in F$, we can achieve this by branching on all $\{u\}-S$ important separators.

In the first and third case, we reduce $k$.

Initially we find the closest $S-T$ separator $C$ and try to 'clean' $R(S, C)$ by breaking any forbidden subgraphs $F \in \mathcal{H}$ such that the root of $F$ is in $R(S, C)$.
'Breaking' a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution.
(2) All vertices of $F$ should not be reachable from $S$, which is equivalent to killing all $S-\{r\}$ paths (where $r$ is the root of $F$ ). This can be achieved by adding $r$ to $T$ and recursing.
(3) Kill all $\{u\}-S$ paths for some vertex $u \in F$, we can achieve this by branching on all $\{u\}-S$ important separators.

In the first and third case, we reduce $k$.
In the second case, the minimum $S$ - $T$ separator size $\lambda$ increases because we add a vertex to $T$

Let $\lambda$ be the minimum $S-T$ separator size. We will prove that $\lambda$ increases when we add $r$ to $T$.

Let $\lambda$ be the minimum $S-T$ separator size. We will prove that $\lambda$ increases when we add $r$ to $T$.

Recall that we add the vertex $r \in R(S, C)$ to $T$.

Let $\lambda$ be the minimum $S-T$ separator size. We will prove that $\lambda$ increases when we add $r$ to $T$.

Recall that we add the vertex $r \in R(S, C)$ to $T$.


Let $\lambda$ be the minimum $S-T$ separator size. We will prove that $\lambda$ increases when we add $r$ to $T$.

Recall that we add the vertex $r \in R(S, C)$ to $T$.


Since $C$ is the closest minimum $S-T$ separator, every other minimum $S-T$ separator must cover $C$.

Let $\lambda$ be the minimum $S-T$ separator size. We will prove that $\lambda$ increases when we add $r$ to $T$.

Recall that we add the vertex $r \in R(S, C)$ to $T$.


Since $C$ is the closest minimum $S-T$ separator, every other minimum $S-T$ separator must cover $C$.

However any $S-(T \cup\{r\})$ separator cannot cover $C$ since $r \in R(S, C)$.

Let $\lambda$ be the minimum $S-T$ separator size. We will prove that $\lambda$ increases when we add $r$ to $T$.

Recall that we add the vertex $r \in R(S, C)$ to $T$.


Since $C$ is the closest minimum $S-T$ separator, every other minimum $S-T$ separator must cover $C$.

However any $S-(T \cup\{r\})$ separator cannot cover $C$ since $r \in R(S, C)$.
Thus the minimum $S-(T \cup\{r\})$ separator size must be greater than $\lambda$.

## Lemma (Pushing Routine)

Given a minimum $S-T$ separator $C$, in polynomial one can either

- Compute a minimum $S-T$ separator $C^{\prime}$ that tightly covers $C$
- Conclude that there is no such $C^{\prime}$, i.e. $C$ is the unique furthest minimum separator.


## Lemma (Pushing Routine)

Given a minimum $S-T$ separator $C$, in polynomial one can either

- Compute a minimum $S-T$ separator $C^{\prime}$ that tightly covers $C$
- Conclude that there is no such $C^{\prime}$, i.e. $C$ is the unique furthest minimum separator.

We have a separator $C$ and we try to 'push' to a new separator $C^{\prime}$ that tightly covers $C$.

## Lemma (Pushing Routine)

Given a minimum $S-T$ separator $C$, in polynomial one can either

- Compute a minimum $S$ - $T$ separator $C^{\prime}$ that tightly covers $C$
- Conclude that there is no such $C^{\prime}$, i.e. $C$ is the unique furthest minimum separator.

We have a separator $C$ and we try to 'push' to a new separator $C^{\prime}$ that tightly covers $C$.

When we push, we want to make sure that $R\left(S, C^{\prime}\right)$ is 'clean'. We do that by breaking all forbidden subgraphs $F \in \mathcal{H}$ such that its root $r$ is in $R\left(S, C^{\prime}\right)$.

## Lemma (Pushing Routine)

Given a minimum $S-T$ separator $C$, in polynomial one can either

- Compute a minimum $S-T$ separator $C^{\prime}$ that tightly covers $C$
- Conclude that there is no such $C^{\prime}$, i.e. $C$ is the unique furthest minimum separator.

We have a separator $C$ and we try to 'push' to a new separator $C^{\prime}$ that tightly covers $C$.
When we push, we want to make sure that $R\left(S, C^{\prime}\right)$ is 'clean'. We do that by breaking all forbidden subgraphs $F \in \mathcal{H}$ such that its root $r$ is in $R\left(S, C^{\prime}\right)$.

'Breaking' a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution
(2) Adding the root $r$ to $T$ and recursing
(3) Branching on all $\{u\}-S$ important separators, for every vertex $u \in F$ Again, the parameter $k$ drops for cases 1 and 3 .
‘Breaking' a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution
(2) Adding the root $r$ to $T$ and recursing
(3) Branching on all $\{u\}-S$ important separators, for every vertex $u \in F$ Again, the parameter $k$ drops for cases 1 and 3.

However, this time, for case 2, its not so clear how we make progress.
‘Breaking’ a forbidden subgraph $F$ involves branching into the following cases:
(1) Picking a vertex $v \in F$ into our solution
(2) Adding the root $r$ to $T$ and recursing
(3) Branching on all $\{u\}-S$ important separators, for every vertex $u \in F$ Again, the parameter $k$ drops for cases 1 and 3.

However, this time, for case 2, its not so clear how we make progress.
Turns out by guessing which vertices of $C$ that are reachable or unreachable in the final solution, we gain enough information to make progress in case 2 also.

## Conclusions and further work

- We give FPT algorithms when every graph in $\mathcal{H}$ is rooted and when $\mathcal{H}$ contains a path of arbitrary length


## Conclusions and further work

- We give FPT algorithms when every graph in $\mathcal{H}$ is rooted and when $\mathcal{H}$ contains a path of arbitrary length
- What about algorithms for other families $\mathcal{H}$ ? Is it possible to design an FPT algorithm for every such $\mathcal{H}$ ?


## Conclusions and further work

- We give FPT algorithms when every graph in $\mathcal{H}$ is rooted and when $\mathcal{H}$ contains a path of arbitrary length
- What about algorithms for other families $\mathcal{H}$ ? Is it possible to design an FPT algorithm for every such $\mathcal{H}$ ?
- What about infinite families?


## Conclusions and further work

- We give FPT algorithms when every graph in $\mathcal{H}$ is rooted and when $\mathcal{H}$ contains a path of arbitrary length
- What about algorithms for other families $\mathcal{H}$ ? Is it possible to design an FPT algorithm for every such $\mathcal{H}$ ?
- What about infinite families?
- Recent result by Göke, Marx and Mnich [ICALP 2020] shows that one can design an FPT algorithm for when $\mathcal{H}$ is the set of cycles of length greater than some integer $s$.


# Thank You 

