Amendments and Errata for Cook and Lawless (2007)

1. Page 5, line 13
 Reference should be to Table D.3.

2. Page 30, Theorem 2.2 of Cook and Lawless (2007) states:

 Theorem 2.2. For an event process with integrable intensity (2.1),

 \[
 \Pr\{N(s, t) = 0|H(s^+)\} = \exp\left\{-\int_s^t \lambda(u|H(u))du\right\}. \tag{2.8}
 \]

 In the statement of the theorem and the associated proof, we took \(H(u)\) in the intensity function on the right hand side of (2.8) to stand for \(\{N(s^+), N(s, u) = 0\}\). This is implied by the probability being calculated, and was assumed in subsequent uses of this theorem in the book. However, it has been pointed out to us that a reader might not assume this, and that a rigorous proof and statement of the theorem should make this explicit. Consequently, we restate the theorem as follows:

 Theorem 2.2. For an event process with integrable intensity (2.1),

 \[
 \Pr\{N(s, t) = 0|H(s^+)\} = \exp\left\{-\int_s^t \lambda(u|H(u))du\right\}, \tag{2.8}
 \]

 where in the right hand side of (2.8), \(H(u) = \{H(s^+), N(s, u) = 0\}\). Lines 3 and 4 of the proof can be similarly amended to:

 \[
 \Pr\{N(s, t) = 0|H(s^+)\} = \lim_{R \to \infty} \prod_{r=1}^R \Pr\{\Delta N(u_r) = 0|H(s^+, N(s^+, u_{r-1}) = 0)\Delta u_r + o(\Delta u_r)\}.
 \]

3. Page 36, Equation (2.29)
 Given only \(z_i\) the probability function is then

 \[
 \Pr(N_i(s, t) = n|z_i) = \int_0^\infty \frac{[u \mu_i(s, t)]^n}{n!} \exp\{-u \mu_i(s, t)\} g(u; \phi) du \tag{2.29}
 \]

 \[
 = \frac{\Gamma(n + \phi^{-1})}{\Gamma(\phi^{-1})n!} \frac{[\phi \mu_i(s, t)]^n}{[1 + \phi \mu_i(s, t)]^{n + \phi^{-1}}} \quad n = 0, 1, 2, \ldots
 \]

 which is of negative binomial form.

4. Page 55, Question 2.6 b)
 and variance \(\phi\{1 + \phi N(t^-)\}/\{1 + \phi \mu(t)\}^2\).

5. Page 192, Table 5.4
 Entries under Model 4 have been updated.

Table 5.4. Modulated Markov models for pulmonary exacerbations.
6. Page 231, Table 6.3
 The following entry has been updated.

Table 1: Estimates from regression models for infection shunt failures.

<table>
<thead>
<tr>
<th>Etiology</th>
<th>SHUNT 1</th>
<th>SHUNT 2</th>
<th>SHUNT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsten</td>
<td>1.27</td>
<td>-0.24</td>
<td>-1.41</td>
</tr>
<tr>
<td></td>
<td>0.61</td>
<td>0.92</td>
<td>1.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>-0.29</td>
<td>-0.31</td>
<td>-0.51</td>
<td>-0.43</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.13</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>Treatment ($t \leq 80$)</td>
<td>-</td>
<td>-</td>
<td>-0.16</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>0.14</td>
</tr>
<tr>
<td>Treatment ($t > 80$)</td>
<td>-</td>
<td>-</td>
<td>-0.19</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>FEV</td>
<td>-0.017</td>
<td>-0.019</td>
<td>-0.019</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>$I(N(t^-) \geq 1)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>Variance (ϕ)</td>
<td>-</td>
<td>-</td>
<td>0.94</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.0†</td>
<td>48.0†</td>
</tr>
</tbody>
</table>

† Significant at the 0.05 level.
7. Page 235, Table 6.5
The following table has been updated.

Table 6.5. Estimates from semiparametric random effect models with independent gamma frailties, for the bronchitis data.

<table>
<thead>
<tr>
<th>Covariate</th>
<th>AECB to AECB-Free</th>
<th>AECB-Free to AECB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EST.</td>
<td>S.E.</td>
</tr>
<tr>
<td>First Observed Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.527</td>
<td>0.159</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.201</td>
<td>0.160</td>
</tr>
<tr>
<td>Severity</td>
<td>-0.268</td>
<td>0.249</td>
</tr>
<tr>
<td>Symptoms</td>
<td>-0.111</td>
<td>0.016</td>
</tr>
<tr>
<td>Second and Subsequent Durations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.058</td>
<td>0.132</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.070</td>
<td>0.135</td>
</tr>
<tr>
<td>Severity</td>
<td>0.015</td>
<td>0.181</td>
</tr>
<tr>
<td>Symptoms</td>
<td>-0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>Season</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan–March</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>April–Jun</td>
<td>0.358</td>
<td>0.118</td>
</tr>
<tr>
<td>July–Sept</td>
<td>0.117</td>
<td>0.147</td>
</tr>
<tr>
<td>Oct–Dec</td>
<td>0.269</td>
<td>0.122</td>
</tr>
<tr>
<td>Disease duration</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Variance (ϕ_j)</td>
<td>$\hat{\phi}_1 = 0.1723$</td>
<td>$\hat{\phi}_2 = 0.2767$</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-2843.178</td>
<td>-2151.203</td>
</tr>
</tbody>
</table>

8. Page 235, line -3

$RR = 1.69$, $p = 0.001$.

9. Page 236, line 24-26

There is evidence that exacerbations occur more frequently in the summer months than the winter months ($p = 0.033$), and the disease duration also appears to be a significant factor ($p = 0.008$);

10. Page 358-359

The dataframe is

```
    id  enum  etype  estart  estop  gstart  gstop  estatus  xmark
 1101   0     1     0     4      0      4      0     3
 1101   0     1     4     36     4     36     1     3
 1101   1     2     36     87     0     51     0     3
 1101   1     2     87     97     51     61     1     3
 1101   2     1     97    137     0     40     1     3
 1101   3     2    137    178     0     41     0     3
 1101   3     2    178    270     41    133     0     3
 1101   3     2    270    362    133    225     0     3
```
11. Page 359, lines -13 and -12
The phrase “trt.dt (1 = Ciprofloxacin received and in the first exacerbation, 0 = standard care)” has been deleted.

12. Page 359-361
The output given on page 359-360 has been changed to the following:

```r
> coxph(Surv(gstart,gstop,estatus) ˜
(trt+gender+severity+symptomsc)*strata(Ienum.gt.0) +
  factor(xmark)+factor(xseason)+
  strata(Ienum.gt.0)+frailty(id,distribution="gamma"),
data=chest, subset=(etype == 1), method="breslow",
control=coxph.control(eps=1e-06, iter.max=100))

n= 910

           coef  se(coef)  se2 Chisq DF  p
  trt   0.5271 0.1592 0.1440  10.97 1 9.3e-04
gender -0.2011 0.1604 0.1442   1.57 1 2.1e-01
severity -0.2680 0.2489 0.2239   1.16 1 2.8e-01
symptomsc -0.1109 0.0160 0.0150  47.81 1 4.7e-12
  factor(xmark)2 -0.1567 0.1664 0.1345   0.89 1 3.5e-01
  factor(xmark)3 -0.2827 0.1663 0.1408   2.89 1 8.9e-02
  factor(xmark)4 -0.4674 0.2011 0.1580   5.40 1 2.0e-02
  factor(xmark)5 -0.4102 0.2761 0.2165   1.00 1 3.2e-01
  factor(xmark)6 -0.2761 0.2760 0.2165   1.00 1 3.2e-01
  factor(xmark)7  0.2857 0.3391 0.2673   2.78 1 9.6e-02
  factor(xmark)8 -0.7039 0.4226 0.3471   2.90 1 9.6e-02
  factor(xseason)2  0.3584 0.1185 0.1130   9.16 1 2.5e-03
  factor(xseason)3  0.1169 0.1466 0.1408   0.64 1 4.3e-01
  factor(xseason)4  0.2687 0.1223 0.1174   4.83 1 2.8e-02
frailty(id, distribution   104.17 60 3.5e-04
  trt:strata(Ienum.gt.0) -0.4688 0.1884 0.1797   6.19 1 1.3e-02
```
gender: strata(Ienum.gt.0) 0.1316 0.1906 0.1814 0.48 1 4.9e-01
severity: strata(Ienum.gt.0) 0.2835 0.2743 0.2632 1.07 1 3.0e-01
symptomsc: strata(Ienum.gt.0) 0.0987 0.0178 0.0172 30.67 1 3.1e-08

Iterations: 8 outer, 36 Newton-Raphson
Variance of random effect = 0.17 I-likelihood = -2843.2
Degrees of freedom for terms = 0.8 0.8 0.8 0.9 5.0 2.7 60.0 0.9
Rsquare = 0.26 (max possible = 0.998)
Likelihood ratio test = 274 on 74.73 df, p=0

The output given on the bottom of 360 and top of 361 has been updated to the following:

```r
> coxph(Surv(gstart,gstop,estatus) ~
  trt + gender + severity + factor(xmark) +
  factor(xseason) + frailty(id, distribution="gamma"),
  data=chest, subset=(etype == 2), method="breslow",
  control=coxph.control(eps=1e-06, iter.max=100))

n= 1377

  coef  se(coef)  se2 Chisq DF p
trt -0.0364 0.130 0.105 0.08 1 0.78000
gender 0.2496 0.133 0.109 3.51 1 0.06100
severity 0.6185 0.182 0.140 11.59 1 0.00066
factor(xmark)2 0.0436 0.196 0.166 0.05 1 0.82000
factor(xmark)3 0.4947 0.193 0.159 6.60 1 0.01000
factor(xmark)4 0.5436 0.234 0.189 5.38 1 0.02000
factor(xmark)5 0.0196 0.271 0.226 0.01 1 0.94000
factor(xmark)6 0.4357 0.310 0.251 1.97 1 0.16000
factor(xmark)7 0.7433 0.397 0.308 3.50 1 0.06100
factor(xmark)8 0.4471 0.531 0.428 0.71 1 0.40000
factor(xmark)9 0.6922 0.343 0.265 4.08 1 0.04300
factor(xseason)2 -0.5024 0.151 0.150 11.07 1 0.00088
factor(xseason)3 -0.3068 0.144 0.143 4.94 1 0.03300
factor(xseason)4 -0.1824 0.141 0.141 1.67 1 0.20000

frailty(id, distribution = 0.10103 66 0.00360

Iterations: 7 outer, 24 Newton-Raphson
Variance of random effect = 0.276  I-likelihood = -2151.2
Degrees of freedom for terms = 0.7 0.7 0.6 5.1 3.0 66.0
Rsquare = 0.143 (max possible = 0.958)
Likelihood ratio test = 212 on 76.01 df, p=9.44e-15