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Abstract Periodic rescheduling is a commonly used method for scheduling short
term operations. Through computational experiments that vary plant parameters,
such as the load and the capacity of a facility, we investigate the effects these
parameters have on plant performance under periodic rescheduling. The results
show that choosing a suitable rescheduling policy depends highly on some key
plant parameters. In particular, by modifying various parameters of the facility, the
performance ranking of the various rescheduling policies may be reversed compared
to the results obtained with nominal parameter values. This highlights the need to
consider both facility characteristics and what the crucial objective of the facility
is when selecting a rescheduling policy. This study considers a variant of the job
shop problem, used to model the operation of an industrial-scale analytical services
facility using different periodic rescheduling policies. A rolling horizon routine is
used to schedule operations over the scheduling horizon. Performance is measured
in terms of job throughput, job makespan, and proportion of jobs on time at the
end of the scheduling horizon to obtain a more complete understanding of how
performance varies between rescheduling policies.

Keywords Scheduling · Rescheduling · Fixed-Periodic · Frequency

1 Introduction

Scheduling is an integral part of any production operation. A schedule dictates
what operations should be performed and when, in order to optimize a particular
metric such as makespan, throughput, or profit. Proper scheduling can greatly
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increase the efficiency of a production plant and therefore is of great practical
importance. Typically, works on scheduling have considered finding an optimal
schedule in a static environment where all of the operating conditions are known
with certainty throughout the scheduling horizon. While it is necessary to first
understand scheduling in this context, in practice it may not always be realistic
to assume that all of the information pertinent to generating an optimal schedule
will be known in advance, and that no unexpected disruptions to the schedule will
occur during operation.

In particular, an initially generated schedule can become infeasible or non-
optimal because of uncertainties, such as a machine breaking down, the arrival
of a rush order, or actual processing times differing from expected processing
times (Baykasoğlu and Karaslan, 2017; Pfund and Fowler, 2017; Vieira et al.,
2003; Hozak and Hill, 2009; Ouelhadj and Petrovic, 2008). These events moti-
vate the need to reschedule operations in practice. The decisions involved with
rescheduling can be divided into two issues of ‘how-to’ and ‘when-to’ resched-
ule (Sabuncuoglu and Kizilisik, 2003). The ‘how-to’ addresses how new schedules
should be generated. Some examples include a full rescheduling of all operations
or a partial rescheduling, where some operations that were previously scheduled
remain fixed (Vieira et al., 2003; Sabuncuoglu and Kizilisik, 2003). The ‘when-to’
addresses when new schedules should be generated. Thorough reviews on process
rescheduling are available elsewhere, for instance in Vieira et al. (2003).

Multiple works have been conducted over the last few decades investigating
how rescheduling frequency affects schedule performance. There have been studies
conducted in a variety of environments such as job shop scheduling (Baykasoğlu
and Karaslan, 2017; Muhlemann et al., 1982; Church and Uzsoy, 1992; Shafaei
and Brunn, 1999; Vieira et al., 2000a,b), chemical production scheduling (Gupta
and Maravelias, 2016; Koller et al., 2018), material requirements planning (Yano
and Carlson, 1987), and scheduling flexible manufacturing systems (Pfund and
Fowler, 2017; Sabuncuoglu and Kizilisik, 2003; Kim and Kim, 1994; Sabuncuoglu
and Karabuk, 1999). Many different types of disturbances have been considered
as well, such as new job arrivals, random processing times, machine breakdowns,
due date modifications, and rush order arrivals (Vieira et al., 2003; Ouelhadj and
Petrovic, 2008).

Despite these efforts, a general agreement on how rescheduling frequency affects
performance has not been conclusive in the literature. Some works suggest that
both scheduling too frequently and not frequently enough result in decreased per-
formance (Kim and Kim, 1994; Gupta and Maravelias, 2016). On the other hand,
other studies suggest that one should reschedule as frequently as possible (Pfund
and Fowler, 2017; Muhlemann et al., 1982; Shafaei and Brunn, 1999), although
relative benefits may drop off after some critical point (Sabuncuoglu and Kizilisik,
2003; Church and Uzsoy, 1992; Sabuncuoglu and Karabuk, 1999). Hozak and Hill
(2009) discussed these differences. They identified some modelling choices that
may help explain why the conclusions have been mixed, such as how instability is
modelled, the assumptions used for demands and productions, and not considering
human factors. Irrespective of these differing conclusions, it is clear that the per-
formance of different rescheduling frequencies will vary, and hence studying this
tradeoff is of interest from a practical standpoint.

Nevertheless, most of the studies described above have focused on case stud-
ies that use a fixed set of parameters for their experiments and do not consider
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how the choice of parameters affect the results, e.g. different plant capacities, or
different plant loads. These results can lead to recommendations which may not
be valid for similar facilities that are used for the same purpose but have different
processing capacities or processing loads than the original facility studied. Addi-
tionally, they typically focus on a single metric for comparing performance even
though a facility may consider many different objectives, some of which may be
conflicting, e.g. maximizing job throughput and minimizing job makespan. There-
fore, recommendations made based on optimizing a particular metric may not hold
for another facility whose main objective is different.

To address these gaps in the literature, this study compares the performance of
various rescheduling policies subject to different plant loads and plant capacities.
The efficacy of each rescheduling policy is measured in terms of job throughput,
proportion of jobs on time, and job makespan, and performance comparisons are
made based on each of these metrics. These experiments fill in a gap in the liter-
ature and the results demonstrate that the performance of a rescheduling policy
does depend on the plant characteristics, and therefore care should be taken when
selecting a rescheduling policy. In this study, we consider the rescheduling of a
multipurpose industrial-scale plant subject to new job arrivals. Various fixed pe-
riod rescheduling policies are compared on the aforementioned facility through
extensive, long-term computational experiments. Because of the length of the sim-
ulations, a rolling horizon implementation is considered in this work. Through an
empirical analysis on the results of the computational case studies conducted, we
determine some general recommendations on selecting a rescheduling frequency
depending on the plant parameters and main objective of the plant.

The organization of this study is as follows: in section 2, the problem and
corresponding model are formally defined. The rolling horizon approach used for
the computational experiments is also described in this section. In section 3 we
present the design of the experiments that were carried out. We then go on to
present and discuss the results of the experiments, leading to some recommen-
dations on choosing rescheduling frequencies based on the properties of the pro-
duction environment. Section 4 presents concluding remarks and further research
considerations.

2 Problem Definition and Methodology

2.1 The Model Formulation

We now discuss and define the model used for our experiments. The problem under
consideration is a variant of the job shop problem. A facility receives a set of jobs
to process, I, and has access to a set of processes, J . Each job i ∈ I is made up of a
discrete collection of samples, and a sequence of processes, P i, called a path, that
must be performed (in a particular order) on the samples. Using this notation, we
specify the k’th process in the path of job i as P ik for k = 1, . . . , |P i|. Each process
j ∈ J of the plant has a set of identical resources (e.g. machines) that perform
a single operation on samples. Each of these resources has a fixed capacity, κ(j),
measured in terms of samples and a fixed processing time, Π(j). Furthermore, we
let ρ(j) represent the number of resources available for each process j. We assume
that resources may not be interrupted once they have started processing, and that
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each resource may process samples from many jobs simultaneously, as long as there
is available capacity.

We consider scheduling operations for H minutes from time S until time S+H.
We refer to the interval [S, S + H] as the time horizon for the problem. Based
on the results discussed in Lagzi et al. (2017), we choose to discretize time and
use the flexible discrete-time formulation presented in that study. The flexible
discrete-time formulation can schedule samples to run on processes only on a set
of timepoints that are determined a priori. Each process j has a set of timepoints
ε(j) = {ε(j, t) : t = 1, . . . , |ε(j)|}, where ε(j, t) ≥ ε(j, t − 1) ∀j = 2, . . . , |ε(j)|,
ε(j, 1) = S, and ε(j, |ε(j)|) = S +H.

To decide where to include timepoints for each process, we chose to follow the
non-uniform discrete 60 (NUD60) time discretization used in Lagzi et al. (2017) as
it was shown to have a good tradeoff between solving time and solution quality. In
the NUD60 time discretization, each process j has an associated timestep ∆(j) =
min {60, Π(j)} and the timepoints for process j are ε(j) = {S, S +∆(j), . . . , S +

(bH/∆(j)c)∆(j), S + H}. This choice of timepoints allows processes which have
short processing times to have fine granularity, and also allows us to be flexible
enough with the scheduling of long processes by including a timepoint each hour.

Using the rolling horizon implementation, which will be described in section
2.2, requires the use of a few more parameters. To denote both the samples that
arrive at the facility and samples that have not finished processing and are carried
over from a previous horizon, we use A(i, k, t) to be the number of samples for
job i that arrive at process P ik at time ε(P ik, t). Z(j, t) denotes the number of
resources of process j that have been pre-allocated at time ε(j, t), e.g. a machine
is scheduled to be taken down for maintenance, or a machine is still running a
process that started in a previous horizon. This is needed for ensuring consistency
between horizons in the rolling horizon approach.

For every job i, every process P ik in the path of job i, and timepoint t for
process P ik we have an integer decision variable x(i, k, t) which denotes the number
of samples of job i that begin processing on process P ik at time ε(P ik, t). Similarly,
we let w(i, k, t) be the number of samples of job i that can be processed on process
P ik and instead wait at time ε(P ik, t). For every process j and every timepoint
t = 1, . . . , |ε(j)| we have an integer decision variable y(j, t) which denotes the
number of resources of process j that begin processing samples at time ε(j, t).

Two additional sets are needed to complete the model. The first set is
Θ1(i, k, t) = {t′ = 1, . . . ,

∣∣ε(P ik−1)
∣∣ : ε(P ik, t − 1) < ε(P ik−1, t

′) + Π(P ik−1) ≤
ε(P ik, t)}. Θ1(i, k, t) is the set of timepoints t′ such that if process P ik−1 starts
at t′, then it will end in the interval (ε(P ik, t − 1), ε(P ik, t)]. The second set is
Θ2(j, t) = {t′ = 1, . . . , |ε(j)| : ε(j, t) < ε(j, t′) +Π(j) ≤ ε(j, t) +Π(j)}. Θ2(j, t) is
the set of timepoints t′ for process j such that if process j started processing at
t′, then the process would still be running at time ε(j, t).

We now show the complete model formulation, given by problem (P1). The
model takes the form of a Flexible Discrete-Time Formulation; for a more in depth
discussion of the model, we refer the reader to Lagzi et al. (2017).

The constraints given by (1), and (2) above are flow constraints. They en-
sure that at every point in time for each process in the path of each job, every
sample that is available at this point either waits at the current process or is pro-
cessed. Constraints (3) ensure that at the first timepoint, no samples are processed,
however note that this is without loss of generality as we may define a second time-
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max
x,w,y

∑
i∈I

|P i|∑
k=1

|ε(P i
k)|∑

t=1

ν(i, k, t)x(i, k, t)−
∑
j∈J

|ε(j)|∑
t=1

c(j, t)y(j, t) (P1)

s.t. x(i, k, t) + w(i, k, t)− w(i, k, t− 1)

−
∑

t′∈Θ1(i,k,t)

x(i, k − 1, t′) = A(i, k, t) ∀i ∈ I, k = 2, . . . , |P i|, (1)

t = 2, . . . , |ε(P ik)|
x(i, 1, t) + w(i, 1, t)− w(i, 1, t− 1) = A(i, 1, t) ∀i ∈ I, t = 2, . . . , |ε(P i1)| (2)

x(i, k, 1) = 0 ∀i ∈ I, k = 1, . . . , |P i| (3)

w(i, k, 1) = A(i, k, 1) ∀i ∈ I, k = 1, . . . , |P i| (4)∑
i∈I,k′=1,...,|P i|:P i

k′=j

x(i, k′, t) ≤ κ(j)y(j, t) ∀j ∈ J, t = 1, . . . , |ε(j)| (5)∑
t′∈Θ2(j,t)

y(j, t′) ≤ ρ(j)− Z(j, t) ∀j ∈ J, t = 1, . . . , |ε(j)| (6)

x(i, k, t), w(i, k, t) ≥ 0 ∀i ∈ I, k = 1, . . . , |P i|, (7)

t = 1, . . . , |ε(P ik)| (8)
y(j, t) ≥ 0 ∀j ∈ J, t = 1, . . . , |ε(j)| (9)

x,w, y integral, (10)

point with the same time as the first timepoint. Constraints (4) set the number
of samples that are waiting at the beginning of the horizon based on any samples
that arrive at the beginning of the horizon, and any samples that were waiting at
the end of the previous horizon. Constraints (5) ensure that enough machines are
allocated to meet the proposed schedule. Constraints (6) enforce that we do not
allocate more machines than we have available. Constraints (7) - (10) enforce that
our variables are non-negative, and integral.

The objective function presented in (P1) is designed to maximize the number of
samples that begin processing during the horizon. This was selected to incentivize
the processing of samples even if it was not possible to finish processing them
during the time horizon H to ensure that progress is made on finishing jobs.
ν(i, k, t) in (P1) is used to represent the per sample value of processing the k’th
process in job i’s path at time ε(P ik, t) and c(j, t) is the per machine cost of starting
process j at time ε(j, t).

We will now discuss the choice of objective function used for our experiments.
We compare the performance of the various policies based on job throughput,
average job makespan, and proportion of jobs on time, over the scheduling horizon.
These metrics are discussed in more detail in section 3.3. However, we do not
optimize these metrics directly because of the inherent difficulties associated both
with optimizing multiple and conflicting objectives, and the length of some job
paths being longer than the lengths of the subhorizons used. For instance, suppose
job throughput was our main objective and hence the objective function only
provided incentive to processing the last process in each job’s path. If we consider
a job whose path length is longer than the length of the subhorizon, then the model
would have no incentive for processing the job through earlier processes in its path
and potentially no progress would be made on the job. Instead of optimizing these
metrics directly, we used the objective function above and chose the values for the
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objective function parameters to be the following:

ν(i, k, t) =
(

1 +
|ε(P i

k)|−t
|ε(P i

k)|

)(
k∑|Pi|

m=1m

)
,

∀i ∈ I, k = 1, . . . , |P i|, t = 1, . . . , |ε(P ik)|
c(j, t) = 0.001, ∀j ∈ J, t = 1, . . . , |ε(j)|

These values were chosen to put a larger weight on processing samples that are
further along in their path, and also to put a higher priority on processing samples
earlier in the horizon. The rationale behind these decisions was that, by prioritizing
samples that were closer to being finished we would push currently open jobs
toward completion before starting new jobs. Furthermore, if a schedule could be
shifted in time we would prefer it be executed as early as possible so that resources
may be left unused to accommodate for possible job arrivals in the future. This
was accomplished by assigning more weight to processing samples earlier in the
horizon. We also assign a cost for using resources so that optimal schedules will
allocate process resources if and only if the schedule assigns samples to be run
on those resources. These decisions were done in an attempt to obtain attractive
solutions (measured in terms of job throughput, job makespan, and proportion of
jobs on time), in the rolling horizon framework. We note that these choices for the
objective function parameters do not assign a cost to schedule disruptions between
horizons. These costs are more difficult to quantify and are beyond the scope of
this work.

2.2 Rolling Horizon Routine

A rolling horizon routine was used with the present model to simulate the operation
of the facility over long periods of time (e.g. months). Decomposing the scheduling
horizon into several smaller, contiguous time horizons is necessary as scheduling
over the entire horizon at once would be computationally intractable. Furthermore,
when scheduling operations in practice for a facility whose future arrivals are
not known in advance, and over an indeterminate amount of time, the operator
must implicitly use a rolling horizon strategy to schedule operations. The choice
of how often to reschedule operations and how long the horizons should be will
impact when new job arrivals are considered by the model, the computational
cost of scheduling, and the quality of the actual implemented schedule. For these
reasons, it is important to gain insight on the tradeoffs of using different policies so
that an operator can make an informed decision when choosing how to reschedule
operations in practice.

The routine can be thought of as partitioning the entire horizon that needs to
be scheduled into smaller sub-horizons and then solving each of these sub-horizons
sequentially. Let Γ denote the time horizon that needs to be scheduled, and denote
the i’th sub-horizon by Γi for some partitioning of Γ into n sub-horizons, see figure
1. We start by setting i = 1 and the state of the facility as having an initial set of
jobs arriving at time S and all machines empty. We then solve the model discussed
in section 2.1 over sub-horizon Γi to generate a schedule Schedi. Denote the set
of jobs that arrive at the facility during sub-horizon Γi as Ai. The state of the
facility is updated using Schedi and Ai to reflect the current jobs and the current
machine usage at the beginning of sub-horizon Γi+1. After updating the state of
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Fig. 1 Above is the scheduling horizon before partitioning. Below is a partition of scheduling
sub-horizons that we may actually solve.

the facility, we then check if there are other sub-horizons to schedule over. If there
are, then we increment i and repeat the process. If we have scheduled over all of
the sub-horizons, then we stop and concatenating (Sched1, . . ., Schedn) gives us
a feasible schedule for the entire horizon Γ .

After generating a schedule Schedi and considering arrivals Ai for sub-horizon
Γi, several operations must be performed to update the state of the facility for
the following sub-horizon. These operations are done to maintain consistency of
the facility between horizons and we describe them next. Jobs which arrive during
the sub-horizon Γi have their arrival times pushed back to the start of sub-horizon
Γi+1 since we may not consider these jobs during the current horizon but want
the model to be able to schedule them at the beginning of the next sub-horizon.
Samples which arrived at the facility prior to sub-horizon Γi are carried over to
the following sub-horizon. If a sample was in progress of being processed at the
end of Γi, then its arrival time is set to whenever the current process ends, and
the process it arrives at is set to the next process in its path. If a sample was not
being processed at the end of Γi, then its arrival time is set to the beginning of
Γi+1. Any machines that will continue running beyond the end of Γi are set to
continue running during Γi+1 using the Z(j, t) variables, until they finish running.

This procedure allows us to generate a schedule which spans Γ by solving
smaller sub-problems when Γ is prohibitively large to schedule all at once. How-
ever, it is worth noting that even without considering new arrivals, this procedure
is a heuristic with respect to scheduling over the entire horizon. Each sub-schedule
Schedi may be optimal with respect to its corresponding sub-horizon, but the
concatenated schedule (Sched1, . . ., Schedn) will not necessarily be optimal with
respect to Γ due to the myopic nature of scheduling over each sub-horizon indi-
vidually.

3 Computational Experiments

As discussed in section 2, the plant used for our experiments is based on a mul-
tipurpose industrial-scale analytical services facility. Due to confidentiality agree-
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Table 1 Descriptions of rescheduling policies considered.

ID Description

4P
Schedule the current day’s operations at the beginning of every day and

revise the remainder of the day’s schedule 3 times during the day at equal
intervals

2P
Schedule the current day’s operations at the beginning of every day, then

revise the second half of the schedule halfway through the day
S Schedule the current day’s operations at the beginning of every day

3D
Schedule the next three days of plant operation at the beginning of every

third day

5D
Schedule the next five days of plant operation at the beginning of every fifth

day

ments, we cannot disclose detailed data. The facility is rather large with nearly 200
distinct processes, each of which may have multiple identical machines. During a
thirty day timespan, the facility received jobs comprising of over 150 unique paths,
using approximately 100 unique processes. Over this timespan, they received sev-
eral hundred jobs comprising of more than 20,000 samples. This large volume of
jobs leads to large formulations when using long horizon lengths in the rolling
horizon routine described in section 2.2. The capacities and processing times of
the individual processes vary greatly. The largest capacity amongst all processes is
over 1,300 times the size of the smallest capacity, similarly the processing times of
the processes vary from a few minutes to several days. In the supplementary infor-
mation (Online Resource 1), we present normalized values for capacity, processing
time, and number of resources for each process. These qualities differentiate the
plant studied from the simpler and smaller facilities found in other rescheduling
studies (Shafaei and Brunn, 1999; Vieira et al., 2000b; Gupta and Maravelias,
2016). Although our experiments use a plant based on the facility of our indus-
trial partner, the model defined in section 2.1 is a general flow shop formulation
that may be used for other industrial applications that require a multipurpose
plant. Accordingly, the discussions and conclusions presented in section 3.4 may
be extrapolated to other applications using multipurpose plants.

3.1 Rescheduling Policies

For the experiments presented in this work, we decided to consider only fixed
periodic rescheduling policies. This decision was made because it is the simplest
policy that may be widely implemented in practice and we do not anticipate the use
of more complex scheduling policies to be highly beneficial in our context. Since the
disturbances we consider are not highly disruptive to the plant operation, i.e. new
jobs arriving will not make the current schedule infeasible, we do not expect to gain
much by triggering immediate reschedules which dissuades us from using an event-
driven or hybrid policy. The decision to allow all operations to be rescheduled (the
‘how-to’ reschedule) was made to allow the facility to completely change schedules
if needed to obtain the best performance possible. This is an optimistic way to
reschedule as we assume that we are able to pivot from our current schedule to a
new schedule without significantly affecting the plant’s current operations. Table
1 gives a summary of the rescheduling policies considered in this work.
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As shown in Table 1, policies “4P”, and “2P”, which can be thought of as “4
Parts”, and “2 Parts”, both schedule operations more than once per day at equal
intervals. For example, if we consider scheduling operations for twenty four hours
per day with the “4P” policy, then we will first generate a schedule for the next
twenty four hours at the beginning of the day. We will follow this schedule for the
first six hours, and then a new schedule will be generated for the following eighteen
hours of the day. We will then generate a schedule for the remaining twelve hours
after twelve hours and similarly for the last six hours after eighteen hours. These
rescheduling policies emulate the operation of a facility that is concerned with
the short term, day to day operations and wishes to reschedule frequently based
on new job arrivals. The reason we do these reschedulings is because any new
jobs that arrive during the first six hours may not be scheduled at the beginning
of the day as they have not yet arrived at the facility, however by rescheduling
after six hours, we may generate a new schedule for the remainder of the day that
considers these new arrivals. The “2P” policy uses a similar strategy, but only
schedules operations twice, once at the start of the day and again halfway through
the day.

The “S” policy, referred to as “Single”, generates a single schedule for the
current day at the beginning of the day and will follow it, ignoring new job arrivals
until a new schedule is generated at the beginning of the following day. This policy
simulates a facility that is concerned with day to day operations but will not
disrupt or modify the current schedule. The “3D”, and “5D” policies which can
be thought of as “3 Days”, and “5 Days”, schedule operations for the next three
and five days, respectively. During this time, these policies behave like the “S”
policy, ignoring new job arrivals until the next time operations are rescheduled.
For this reason, in the worst case scenario when scheduling with the “5D” policy,
the model may not be aware of a job which arrives at the facility until five days after
it initially arrived. These policies simulate a facility that is more concerned with
schedule stability, rather than reacting quickly based on the newest job arrivals.

These period lengths were chosen for testing so that we may test a wide range
of policies and also policies which may be typically used in practice. For instance,
the “5D” policy which corresponds to scheduling on a weekly basis, and the “S”
policy which corresponds to scheduling once per day are both natural candidates
for rescheduling. The “4P” policy was chosen to obtain information about how
rescheduling very frequently would perform and the “2P” and “3D” policies were
chosen to test policies which fell between the “S” policy and the other two ex-
tremes.

3.2 Design of Experiments

This section provides the details on how each experiment was performed. We let
the initial state of the facility be empty with no machines running (Z(j, t) = 0,
∀j, t) and an initial influx of jobs all arriving at the beginning of the horizon (time
S). We carry out the rolling horizon routine for 60 days, assuming that new jobs
arrive uniformly at random throughout each day. We decided to carry out the
experiments for 60 days so that the plant was able to reach a stable operation
and then continue running to obtain results when measuring proportion of jobs on
time with one month lead times.
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Unless otherwise specified, the following parameters were used for the exper-
iments presented in section 3.4. To assign job paths, actual job arrivals to the
facility were recorded over the span of a high production month using actual his-
torical data from the plant. Job paths were sampled according to the observed
frequencies of each path during this timespan. In total, we observed 152 different
paths during this time, with the path length ranging from 2 to 12 processes, an
average path length of approximately 7.5 processes, and a median path length of
8 processes. The raw processing time for the paths sampled from varied from 13
minutes to 13,993 minutes, with an average of 2,926 minutes and a median of 2,226
minutes. There were some similarities in the observed paths as jobs which arrive
may be roughly categorized into one of several categories depending on the analy-
sis being done. These similarities appear as some reoccurring, short sub-sequences
in the paths. The number of samples in each job was selected uniformly at random
between ten and fifty, which was determined based on the observed historical plant
data during this month.

We allowed the facility to be fully operational for the first eight hours each
day. During this period, the plant operates with complete staffing and all available
resources may be used to process samples. During the following sixteen hours each
day we did not allow new operations to begin, but previously started operations
were allowed to continue processing. The way this was handled with the “2P”
policy was to first schedule the eight hour shift, and then revise the schedule for
hours five through eight after hour four. Similarly, we revise the remainder of
the schedule after hours two, four, and six for the “4P” policy. This was done to
simulate actual plant operation. Workers may begin new operations while they are
on site during the first eight hours each day, during the following sixteen hours
only a few workers are present to supervise the operation of previously started
processes.

After fixing the design parameters for each experiment, ten random instances
with different job arrivals and starting jobs were generated and scheduled over to
obtain an accurate representation of the results.

3.3 Performance Metrics

To compare the performance of the various policies considered in this study, we use
job completion, average job makespan, and proportion of jobs on time. We begin
by presenting the formulation of these metrics, before discussing them below.

Let arr(i) be the arrival time of job i, fin(i) be the time that the last sample
of job i finishes processing, jobs(t) = {i : arr(i) ≤ t} be the set of jobs that arrive
before or at time t, and comp(i, t) = 1 if job i has finished processing before or at
time t, and 0 otherwise. Then job completion at time t, average job makespan at
time t, and proportion of jobs on time at time t with lead times of d minutes were
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defined as follows:

completion(t) =

∑
i∈jobs(t) comp(i, t)

|jobs(t)| (1)

avg makespan(t) =

∑
i∈jobs(t):comp(i,t)=1 fin(i)− arr(i)
|{i ∈ jobs(t) : comp(i, t) = 1}| (2)

on time(d, t) =
|{i ∈ jobs(t) : comp(i, t) = 1, fin(i)− arr(i) ≤ d}|

|jobs(t)| (3)

For comparing policies using these metrics, we use the value measured at the
end of the 60 day horizon. Since we do not require that all jobs finish processing
during the corresponding scheduling horizon, for measuring average job makespan
we consider only those jobs that have finished processing at the end of the time
horizon. Job completion at time t was defined as the proportion of jobs that finished
processing all samples out of all the jobs that have arrived at the facility between
the beginning of the first horizon and t. Makespan was taken to be the difference
in minutes between when the final sample finished processing for a given job and
when that job initially arrived at the plant, and was only considered for jobs that
have finished processing. Proportion of jobs on time with respect to some lead
time d was defined as the number of jobs that finished within the lead time d out
of all jobs that had arrived before time t.

3.4 Results

The present study was performed on a 48 core machine running at 2.3GHz, with
access to 256GB of RAM. The implementation was done using the Julia program-
ming language (version 0.6.2), the CPLEX.jl (version 0.3.1) and JuMP.jl (Dunning
et al., 2017) (version 0.18.0) packages, and CPLEX (version 12.6.0.0) for the solver.
All of the CPLEX parameters were set to their default values, except for a lim-
itation to use only 2 CPU cores, setting the relative MIP gap to be 0.5%, and
imposing time limits on the instances. Time limits were set to be 15 minutes for
each day being scheduled in the horizon, e.g. if the instance was using a “3D” pol-
icy as described above, then the time limit was set to be 45 minutes. This policy
was set by the industrial partner based on their scheduling requirements. The time
limits were met by some instances that solved three or five days consecutively, but
for all of the problems that reached the time limit the relative optimality gap was
at most 5% and was typically less than 1%.

Performance profiles are one of the main representations used below for showing
the results of the experiments. In our context, we compare the performance of the
different rescheduling policies over a large test set and use performance profiles to
show the performance of each policy relative to the best performing policy with
respect to some metric over each of the tests in the test set. Examples will be
given in the following section as to how to read these figures. For more detailed
information about performance profiles we refer the reader to Dolan and More
(2002).
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3.4.1 Results with Moderate Facility Load

The experiments described next were considered to obtain results that were rep-
resentative of a facility that received enough new jobs to be running constantly,
but not enough that the queue of waiting jobs grows indefinitely. We considered
the parameters of the problem to be the following: the facility starts with 5,000
samples (approximately 170 jobs) arriving at the beginning of the first horizon,
jobs comprising 500 samples arrive uniformly at random throughout each day,
and the facility is operated for 8 hours each day as described in section 3.2. These
numbers of samples were determined experimentally. The names of the plots in
the figures below have the following format: (number of samples added per day) -
(rescheduling policy), for instance “500 - 4P” corresponds to the performance of
rescheduling four times per day for instances where 500 samples are added each
day over the 60 day horizon.

Figure 2 shows a performance profile comparing average job completion per-
centage over the 60 day horizon between the different rescheduling policies. On
the x-axis we have the performance of each policy measured as a factor of the
performance of the best performing policy on each test. On the y-axis we have
the proportion of tests that a policy achieves within a given factor of the optimal
performing policy for each test. This Figure shows that the “4P” policy clearly
dominates the other policies. The point (1, 1) in the curve of the “4P” policy in
the figure indicates that it was the best performer in all of the tests. Similarly,
the point (1.02, 0.5) in the curve of the “3D” policy indicates that in 50% of the
instances, the “3D” policy performed within 2% of the best performing policy for
that instance. We also observe that rescheduling more frequently continues to im-
prove job completion performance for each of the policies tested. Furthermore, in
the worst case, rescheduling only once every five days is approximately 5.6% worse
than rescheduling four times per day. This is indicated by the point (≈1.056, 1) in
the curve of the “5D” policy and by noting that for all smaller x values, the curve
lies below 1. Therefore, depending on how much importance is placed on schedule
stability, it may be worth it to delay the rescheduling of operations to only once
every few days. However, if maximum performance is desired, rescheduling more
frequently is better.

Table 2 summarizes the results obtained when considering the other metrics.
The performance profiles for the other metrics are similar to Figure 2, so instead
of presenting each performance profile, we present the average performance factor
(APF) values as a more informative measure of relative differences. The APF of
a policy is defined to be the mean performance (measured as a factor of the best
performing policy) a policy achieves over the ten random instances. The APF
was used to compare the relative performance of each policy and estimate the
differences in APF values between pairs of policies when decreasing rescheduling
frequency from most to least frequent, i.e. when moving from the “4P” policy
toward the “5D” policy.

From Table 2 we draw the same conclusion as above: rescheduling more fre-
quently improves performance. The degree of performance gain is dependent on the
chosen metric, and can vary from negligible improvements to an order of magni-
tude difference between the “4P” and “5D” policies in some cases. Furthermore, we
observe that the relative benefit obtained by moving from less frequent reschedul-
ing policies to more frequent rescheduling policies diminishes as one begins to
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Fig. 2 Performance profile comparing job completion amongst rescheduling policies for in-
stances starting with 5,000 samples and 500 samples arriving each day.

reschedule frequently. This is demonstrated by the generally increasing APF dif-
ferences as we move from the “4P” policy toward the “5D” policy. We note that
the performance differences between policies also decrease in general with respect
to proportion of jobs on time as lead times are increased. Therefore, if longer job
turn around times are acceptable, then the smaller performance loss may be a
worthwhile tradeoff for the added schedule stability achieved by rescheduling only
once every few days. For more detailed results, we include the performance profiles
which generate Table 2 as supplementary information (Online Resource 1).

Table 3 shows the average number of variables and constraints that were used
when solving each model for the industrial-scale facility. To clarify, these numbers
correspond to the average size of each model that was solved for each of the
policies tested. Note that each policy may solve a different number of models
to generate a schedule over the same scheduling horizon. For instance, the “4P”
policy generates a schedule four times per day, and hence solves 240 models over
a 60 day horizon, whereas the “5D” policy will solve 12 models over the same
60 day horizon. We also include average problem solving times. As expected, the
average time required to solve each model increases as the lengths of the horizons
scheduled in each model increases. However, we also note that there is a tradeoff
between solving smaller models and the total number of models that are solved
over the 60 day horizon by observing the total solving times for the different
policies. We observe that scheduling once per day using the “S” policy requires
the least amount of time, scheduling multiple times per day increases the total
solving time moderately, and scheduling over long horizons for the “3D” and “5D”
policies increases the total solving time considerably. This drastic increase in cost
when scheduling over multiple days can be attributed to the much larger problems
that are being solved. The problems are larger with respect to the number of
timepoints considered because of the added length of the horizon. Furthermore,
by stockpiling new job arrivals for several days, accounting for all of them during
the next horizon increases the number of jobs considered, which further increases
the problem size. Depending on the application and how quickly results are needed,
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Table 2 Average performance factor (APF) values of each metric for instances with 5,000
starting samples and 500 arriving samples per day.

ID Job Completion APF (Difference)

4P 1.0 (-)
2P 1.0021 (0.0021)
S 1.007 (0.0049)

3D 1.0199 (0.0129)
5D 1.0496 (0.0297)

ID Job Makespan APF (Difference)

4P 1.0 (-)
2P 1.0705 (0.0705)
S 1.2422 (0.1717)

3D 1.66 (0.4178)
5D 2.0822 (0.4222)

ID
Proportion of Jobs On Time APF, 1 Day

Lead Times (Difference)

4P 1.0 (-)
2P 1.2256 (0.2256)
S 2.5536 (1.328)

3D 8.1484 (5.5948)
5D 11.059 (2.9106)

ID
Proportion of Jobs On Time APF, 1 Week

Lead Times (Difference)

4P 1.0 (-)
2P 1.0031 (0.0031)
S 1.0113 (0.0082)

3D 1.0307 (0.0194)
5D 1.1075 (0.0768)

ID
Proportion of Jobs On Time APF, 1 Month

Lead Times (Difference)

4P 1.0002 (-)
2P 1.0021 (0.0019)
S 1.007 (0.0049)

3D 1.0204 (0.0134)
5D 1.05 (0.0296)

the differences between these problem solving times may be a consideration when
selecting a rescheduling policy.

Overall, the results obtained by using nominal values for load parameters agree
with the most common conclusion in the literature that more frequent reschedul-
ing is better and that the relative benefit may diminish as rescheduling frequency
increases. We noted that the degree of this benefit varies depending on the per-
formance measure chosen for comparison.

3.4.2 Effects of Different Plant Loads

To observe the effect of plant load on the results, we generated new instances that
varied both the starting number of samples and the number of arriving samples
per day from their nominal values. In particular, we kept the number of starting
samples constant but varied the number of arriving samples per day in some
experiments. In other experiments, we varied the number of starting samples but
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Table 3 Problem size statistics for instances with a moderate job load.

4P 2P S 3D 5D

Average Number of Variables
Per Model

56,212 59,297 65,251 234,488 522,046

Average Number of
Constraints Per Model

44,525 46,092 49,123 165,283 340,737

Average Solving Time Per
Model (s)

0.64 0.96 1.82 16.8 86.5

Total Solving Time for 60 Day
Horizon (s)

153 115 109 336 1,038

kept the number of samples arriving per day constant. For each of these pairs of
number of starting samples and number of arriving samples per day, we generated
and solved ten random instances with 60 day horizons, which were used to produce
the results shown in Table 4 and Table 5.

Table 4 shows the APF values for each policy, both in terms of job completion
and average makespan, when the number of starting samples was varied, and the
number of samples added per day was fixed to 500. We tested with 2,500, 5,000,
and 10,000 starting samples as shown in Table 4 (column 2). By observing the job
completion and average makespan APF differences for the three different starting
loads, we note that, as the number of samples available at the beginning of the
experiment increases, the performance difference between policies decreases. These
results also tend to suggest that more frequent rescheduling improves performance.

Table 5 shows the APF values for each policy when the number of starting sam-
ples is fixed to 5,000 and the number of samples arriving daily is varied. Similar to
above, we tested with 250, 500, and 1,000 samples arriving per day and calculated
the APF differences between policies as rescheduling frequency is decreased, for
these different loads. Contrary to the observations for Table 4, Table 5 shows that
increasing the number of daily sample arrivals actually increases the performance
differences observed between policies. However, we again note that more frequent
rescheduling appears to perform better.

Note that by increasing the amount of samples arriving at the beginning of
the horizon, the plant begins the experiment with a larger queue of jobs. As a
consequence of this, all policies have a backlog of jobs to schedule and hence there
is less advantage to receiving new job arrivals more promptly, since there are
already many jobs to schedule. It is sensible then that the performance differences
between policies decreases as the number of starting samples increases. Similarly,
when more samples are received at the facility on a daily basis, by rescheduling
frequently the model is able to consider these many new samples earlier than
policies which will not consider these samples until at least the next day. Therefore,
it is reasonable that performance differences increase as the number of daily sample
arrivals increases. We also note that these results suggest that plant capacity may
play a role, as we observe that the differences between policies is variable with
respect to the load on the facility and the presence of a backlog of jobs.

With regards to how the proportion of jobs on time reacts to different loads on
the facility, we largely observe the same trends as when moderate loads were used
above. That is, as the number of starting samples was increased, the performance
differences between policies decreased. However, as the number of daily job ar-
rivals was increased, the performance differences between policies increased as well.
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Table 4 APF differences comparison for instances starting with various numbers of samples
and 500 new samples per day.

ID
Starting
Samples

Job Com-
pletion
APF

Job
Completion

APF
Differences

Average
Makespan

APF

Average
Makespan

APF
Differences

4P 2,500 1.0 - 1.0 -
2P 2,500 1.002 0.002 1.0658 0.0658
S 2,500 1.0083 0.0063 1.2333 0.1675

3D 2,500 1.0213 0.013 1.6709 0.4376
5D 2,500 1.0537 0.0324 2.1863 0.5154

4P 5,000 1.0 - 1.0 -
2P 5,000 1.0021 0.0021 1.0705 0.0705
S 5,000 1.007 0.0049 1.2422 0.1717

3D 5,000 1.0199 0.0129 1.66 0.4178
5D 5,000 1.0496 0.0297 2.0822 0.4222

4P 10,000 1.0 - 1.0 -
2P 10,000 1.0019 0.0019 1.0559 0.0559
S 10,000 1.0068 0.0049 1.1707 0.1148

3D 10,000 1.0179 0.0111 1.415 0.2443
5D 10,000 1.0418 0.0239 1.7077 0.2927

Table 5 APF differences comparison for instances starting with 5,000 samples and various
daily arrival loads.

ID
Samples

Added Per
Day

Job Com-
pletion
APF

Job
Completion

APF
Differences

Average
Makespan

APF

Average
Makespan

APF
Differences

4P 250 1.0001 - 1.0 -
2P 250 1.0024 0.0023 1.0657 0.0657
S 250 1.0083 0.0059 1.2145 0.1488

3D 250 1.0221 0.0138 1.5785 0.364
5D 250 1.0477 0.0256 1.9481 0.3696

4P 500 1.0 - 1.0 -
2P 500 1.0021 0.0021 1.0705 0.0705
S 500 1.007 0.0049 1.2422 0.1717

3D 500 1.0199 0.0129 1.66 0.4178
5D 500 1.0496 0.0297 2.0822 0.4222

4P 1,000 1.0002 - 1.0 -
2P 1,000 1.0029 0.0027 1.0658 0.0658
S 1,000 1.0099 0.007 1.2333 0.1675

3D 1,000 1.0263 0.0164 1.6709 0.4376
5D 1,000 1.0556 0.0293 2.1863 0.5154

These observations agree with the results discussed above concerning makespan
and job completion, and follow from the same discussion. We omit the inclusion of
these Figures here for brevity, but include them in the supplementary information
(Online Resource 1).
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Fig. 3 Performance profile comparing job completion amongst rescheduling policies for in-
stances with one eighth the original capacity.

3.4.3 Effects of Varying Plant Capacity

Based on the observations obtained from the previous scenario, we investigate the
role plant capacity plays on the rescheduling frequency. In the following exper-
iments, the capacity of all the processes in the plant was tested at 8x, 4x, 2x,
1
2x, 1

4x, and 1
8x their original capacity. These values were chosen to obtain data

for a wide range of overall capacities with the 1
8x representing a facility that is

severely starved for resources and the 8x representing a facility which has more
than enough resources to process the given demand. We performed ten random
instances for each plant capacity, and instances were run with moderate job loads.
When the capacity was between one half the original capacity and eight times
the original capacity, the conclusions with respect to job throughput remained the
same as when nominal parameter values were used as in section 3.4.1 and so we
include these results as supplementary information (Online Resource 1). When
the plant capacity was lowered to one eighth of the original capacity, we observed
that longer rescheduling policies outperformed frequent rescheduling, as shown in
Figure 3. With greatly reduced plant capacity, there is more contention for re-
sources and the longer horizons used by the “3D” and “5D” policies allows for
better utilization of processes as discussed previously. This follows the same trend
observed when increasing the load on the facility, although the results are more
pronounced with the drastic reduction in capacity across all processes. Therefore,
if there is high resource contention in the facility, rescheduling less often may
actually improve job completion performance.

The makespan performance results remained largely the same as to those pre-
sented with moderate facility load in section 3.4.1. However, when the capacity
was restricted to one quarter of the original capacity, the performance differences
of the rescheduling policies decreases greatly. This is shown by the APF differ-
ences between the different policies compared to when the plant has full capacity,
as shown in Table 6.
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Table 6 Average makespan APF differences comparison between one quarter capacity and
full capacity instances.

ID
Average Makespan
APF with Quarter

Capacity

Average Makespan
APF Differences

with Quarter
Capacity

Average
Makespan APF

with Full
Capacity

Average Makespan
APF Differences

with Full Capacity

4P 1.0258 - 1.0 -
2P 1.0082 -0.0176 1.0705 0.0705
S 1.0309 0.0227 1.2422 0.1717

3D 1.0866 0.0557 1.66 0.4178
5D 1.1974 0.1108 2.0822 0.4222

Fig. 4 Proportion of jobs on time for one month lead times and instances with one eighth the
original capacity.

When measuring the proportion of jobs on time we observe that, for lead times
of at least one week, and capacity one quarter or less than the original capacity,
the policies with longer horizons perform best. Figure 4 shows the proportion
of jobs on time for each of the different policies with one eighth capacity and
one month lead times. The results with one week lead times are similar to those
with one month lead times, however in these cases the “5D” policy falls short
of the other policies. This observation is likely caused by the increased latency
between job arrival time and the first time a job may be scheduled, that the “5D”
policy is subject to. The performance profiles for these other cases are included
as supplementary information (Online Resource 1). The results when capacity
was increased beyond the original capacity did not differ substantially from those
obtained using moderate facility load, presented in section 3.4.1.

These experiments demonstrate that, for plants which are starved for resources,
the longer horizons used when scheduling less frequently can allow for better re-
source utilization. This better utilization can then be translated into better job
completion performance and more jobs considered on time if long lead times are
acceptable. These results differ from the general consensus in the literature that
more frequent rescheduling is beneficial and show that plant and problem specific
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parameters, particularly with respect to facility load, may play an important role
when choosing a suitable rescheduling policy.

3.4.4 Other Factors Considered

Beyond the results that were shown above, we also performed additional exper-
iments simulating a plant that was run continuously for 24 hours each day as
opposed to the 8 hours per day mode used for the experiments described above.
For these tests we used the “4P”, “2P”, and “S” policies described in Table 1 but
instead of using an 8 hour day with a 16 hour gap between horizons we used a 24
hour day with no gap. We also used a “2D” policy that is similar to the “3D”, and
“5D” policies which schedules two days at a time. This was done because solving
three days and five days using a 24 hour horizon was computationally taxing and
so we lessened the number of days down to two.

Additionally, when creating random jobs while generating test instances, the
set of job paths that was sampled from was varied in some experiments. We tested
sampling from paths that could be requested at the facility but did not necessar-
ily arrive during the month of observation, and also paths that were completely
random and may not be realistic to arrive at the facility.

In both of these cases, the conclusions drawn from these experiments did not
change from those discussed when considering the experiments with nominal pa-
rameter values. The results were very similar for these experiments, with the most
notable difference being that the performance differences between policies was less
than when the plant was run with actual paths that may arrive at the facility. A
possible explanation is that the increased diversity in paths spreads the process
demand over more processes, and hence leads to less resource contention. The
results of these experiments suggest that our previous results do not rely on our
choice of plant operating mode nor choice of job paths to sample from.

4 Conclusions

This work presents a comparison between several different periodic rescheduling
policies varying from generating a schedule four times per day to generating a
schedule only once every five days. Experiments were conducted simulating a real
analytical services facility to compare the performance between the policies using a
rolling horizon routine and the non-uniform discrete-time model presented in Lagzi
et al. (2017).

Based on the results obtained through the computational experiments, this
work shows that choosing a suitable rescheduling policy can depend greatly on
the environment of the facility that is being modelled. By varying the capacity of
the processes in the experiments we observed that in some instances when there is
great resource contention, less frequent rescheduling policies may outperform more
frequent rescheduling policies both in job completion and proportion of jobs on
time. In particular, in some experiments, we were able to observe nearly a complete
reversal of the results obtained when nominal parameter values were used.

When nominal parameter values were used, we observed that more frequent
rescheduling can have a significant positive impact on improving the proportion of
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jobs on time and makespan of a production plant. Additionally, the job completion
also benefited from the more frequent rescheduling.

In environments where capacity is not much of a concern or where very short
lead times are required, more frequent rescheduling policies seem to perform best
as well. However, if long lead times are acceptable or capacity is the main limit-
ing constraint, then scheduling less frequently with longer horizons can improve
performance.

Future work will consider implementing further sources of uncertainty such as
job retesting if a process malfunctions or the possibility of machine breakdowns.
With these augmentations, a more robust scheduling policy may be desirable to
reschedule immediately when a more serious disruptive event occurs and to forgo
rescheduling when it is not necessary. Additionally, more research into quantifying
the costs of rescheduling such as schedule disruption and latency introduced by
deviating from the originally intended schedule could be beneficial. In this study we
assumed that these costs were negligible but a study focusing on quantifying and
measuring these costs could help us to better understand the other side effects of
rescheduling. Furthermore, it would be worth investigating a dynamic policy whose
rescheduling period is not fixed and instead depends on the status of the facility.
It seems intuitive that a dynamic policy may be able to surpass the performance
of fixed policies; however, it is not clear how much this may improve performance
or what other tradeoffs and considerations may be inherent with such a policy.
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