Maltsev constraints

Ross Willard

University of Waterloo, CAN

Open Problems in Universal Algebra Vanderbilt University May 28, 2015

(2,3)-systems over a finite algebra

Let **A** be a finite algebra. A **(2,3)-system over A** is a triple

$$\mathfrak{I} = (V, (P_x : x \in V), (R_{x,y} : x, y \in V))$$

where

- V is a finite nonempty set.
- **Each** "potato" P_x is a nonempty subuniverse of **A**.
- ▶ Each "edge relation" $R_{x,y} \leq_{sd} \mathbf{P}_x \times \mathbf{P}_y$.
- $R_{y,x} = (R_{x,y})^{-1}$ and $R_{x,x} = 0_{P_x}$.
- ▶ $R_{x,z} \subseteq R_{x,y} \circ R_{y,z}$ for all $x, y, z \in V$.

 $\mathrm{Sol}(\mathfrak{I})=\{ \text{all solutions to } \mathfrak{I}\}, \text{ where a solution is a function } s:V\to A \text{ satisfying } (s(x),s(y))\in R_{x,y} \text{ for all } x,y\in V.$

$CSP(\mathbf{A}, 2)$

Fix a finite algebra **A**.

CSP(A,2)

Input: a (2,3)-system \mathcal{I} over \mathbf{A} .

Question: Is $Sol(\mathfrak{I}) \neq \emptyset$?

Holy Grail

Prove that $\mathsf{CSP}(\mathbf{A},2)$ is in P whenever **A** belongs to a Taylor variety.

Bulatov's theorem and improvements

Theorem (Bulatov 2002)

If **A** is in a Maltsev variety, then CSP(A, 2) is in P.

Theorem (Bulatov, Dalmau 2006)

Same result, (much) simpler algorithm.

Improvements, generalizations:

- ▶ Dalmau 2006
- Idziak et al 2007
- Barto (submitted)

Theorem

A version of the Bulatov-Dalmau algorithm solves $CSP(\mathbf{A}, 2)$ whenever \mathbf{A} belongs to a congruence modular variety.

The Bulatov-Dalmau algorithm

Main idea:

▶ Find a generating set for the algebra of solutions of one constraint R_{x_1,y_1} , then of two constraints R_{x_1,y_1} , R_{x_2,y_2} , . . .

Positive features:

- ► Correctly solves CSP(**A**, 2) in polynomial time.
- No algebra required.

Negative features:

- No hope of extending beyond the congruence modular setting.
- No algebra required.

Challenge

Challenge

Find a new algorithm solving $\mathsf{CSP}(\mathbf{A},2)$ when \mathbf{A} is in a Maltsev variety . . .

- With the possibility of generalization beyond the CM case.
- Exploiting algebraic knowledge of Maltsev varieties.

Intuition

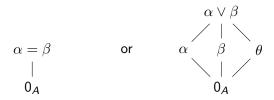
- Propagation, search for inconsistency
- ► Local consistency + Gaussian elimination should be enough.

Abelian atoms in finite Taylor algebras

Let **A** be a finite algebra in a Taylor variety.

Definition

- 1. $At(\mathbf{A}) := \{ \alpha \in Con(\mathbf{A}) : \mathbf{0}_{\mathbf{A}} \prec \alpha, \alpha \text{ is abelian} \}.$
- 2. For $\alpha, \beta \in \text{At}(\mathbf{A})$, define $\alpha \approx \beta$ iff $\alpha = \beta$ or α, β are two of the three middle elements in an M_3 in $\text{Con}(\mathbf{A})$.



Geometrical congruences

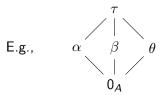
Let **A** be a finite algebra in a Taylor variety.

Lemma

 \Rightarrow is an equivalence relation on $At(\mathbf{A})$.

Definition

 $\tau \in \mathrm{Con}(\mathbf{A})$ is **geometrical** if there exists $\Phi \subseteq \mathrm{At}(\mathbf{A})$ such that $\Phi \subseteq \mathsf{a}$ single \Leftrightarrow -class, and $\tau = \bigvee \Phi$.



 $Geom(\mathbf{A}) := \{ \tau \in Con(\mathbf{A}) : \tau \text{ is geometrical} \}.$

Coordinatization

Lemma

Suppose A is a finite algebra in a Taylor variety. TFAE:

- 1. τ is geometrical.
- 2. The interval $I[0_A, \tau]$ is isomorphic to the lattice of subspaces of a fin. dim. vector space V over some finite field \mathbb{F}_q .

When (2) holds, each τ -block can be "coordinatized" as a matrix power of V.

Corollary

For each $\tau \in \text{Geom}(\mathbf{A}) \setminus \{0_A\}$ there exists a unique prime p such that $|a/\tau| = p^{n_a}$ for all $a \in A$.

Definition

 $char(\tau) = this prime p.$

Application to (2,3)-systems

Suppose that, in a (2,3)-system $\mathfrak{I}=(V,\ldots)$ over **A**, we have

- ▶ A collection $\{\mathbf{P}_x : x \in C\}$ of potatoes $(C \subseteq V)$.
- ▶ For each $x \in C$, $\tau_x \in \text{Geom}(\mathbf{P}_x)$

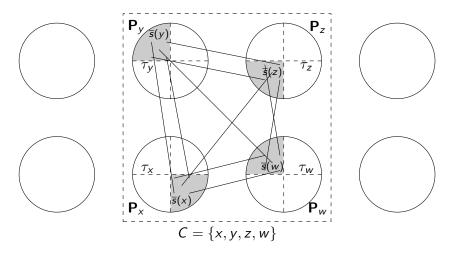
with $char(\tau_x) = char(\tau_y) =: p \text{ for all } x, y \in C$.

Notation

- 1. $\mathfrak{I}|_{\mathcal{C}}$ is the restriction of \mathfrak{I} to potatoes from \mathcal{C} .
- 2. $(\mathfrak{I}|_{\mathcal{C}})/\tau$ is the (2,3)-system with potatoes \mathbf{P}_x/τ_x ($x \in \mathcal{C}$) and constraints $\overline{\mathbf{R}}_{x,y} := \{(a/\tau_x,b/\tau_y): (a,b) \in R_{x,y}\}.$

(Thus if $\overline{s} \in \operatorname{Sol}((\mathfrak{I}|_{\mathcal{C}})/\tau)$ then \overline{s} names a τ_x -block for each $x \in \mathcal{C}$.)

3. $\Im[\overline{s}]$ is the restriction of $\Im|_{\mathcal{C}}$ to the τ_x -blocks named by \overline{s} .



 $\Im[\overline{s}]=$ the restriction of $\Im|_{\mathcal{C}}$ to the shaded regions given by \overline{s} .

Easy Fact

Each $\mathfrak{I}[\overline{s}]$ can be encoded as a system of linear equations over \mathbb{F}_p .

Issues

On their own, such coordinatizations aren't particularly helpful.

- 1. $(\mathfrak{I}|_{\mathcal{C}})/\tau$ may have exponentially many distinct solutions \overline{s} . In the worst case we must solve every linear system $\mathfrak{I}[\overline{s}]$.
- 2. Focussing on C for which $|\operatorname{Sol}((\mathfrak{I}|_C)/\tau)|$ is small (e.g., "following strands") may fail to capture inconsistency.

In the remainder of this lecture I discuss one response to these issues which can be formulated in **difference term varieties**.

Similarity

(Freese 1982; also Freese & McKenzie 1987; cf. H. Neumann 1967)

Let \mathcal{V} be a CM variety.

There is an equivalence relation \sim between SI members of \mathcal{V} .

Let **A**, **B** be SIs with <u>abelian</u> monoliths μ, ν . Let $\operatorname{ann}(\mu) = (0_A : \mu)$ and $\operatorname{ann}(\nu) = (0_B : \nu)$.

$$\operatorname{Con}(\mathbf{A}) = \begin{pmatrix} \mathbf{1}_{A} & \mathbf{1}_{B} \\ \operatorname{ann}(\mu) & \\ \mathbf{0}_{B} \end{pmatrix}$$

Rough Definition

 $\mathbf{A} \sim \mathbf{B}$ means $\exists h : \mathbf{A}/\mathrm{ann}(\mu) \cong \mathbf{B}/\mathrm{ann}(\nu)$ such that

► The "module actions" of $\mathbf{A}/\mathrm{ann}(\mu)$ on μ -blocks, and of $\mathbf{B}/\mathrm{ann}(\nu)$ on ν -blocks, are compatible with h.

Generalizing similarity

We can generalize \sim :

- ▶ From SIs to pairs (\mathbf{A}, α) where $\alpha \in At(\mathbf{A})$.
- ► From CM varieties to Difference Term (DT) varieties

Moreover, the generalization plays nicely with (2,3)-systems.

Congruence Completeness

Let
$$J = (V, ...)$$
 be a (2,3)-system.

Definition

If $x, y \in V$ and $\theta \in \text{Con}(\mathbf{P}_x)$, write

$$P_y \equiv (P_x \mod \theta)$$
 (also $h : P_y \equiv (P_x \mod \theta)$)

to mean $R_{x,y} = \operatorname{graph}(h)$ where $h : \mathbf{P}_x \twoheadrightarrow \mathbf{P}_y$ and $\ker(h) = \theta$.

Definition

I is congruence complete if for all $x \in V$ and $\theta \in \operatorname{Con}(\mathbf{P}_x)$ there exists $y \in V$ such that $\mathbf{P}_y \equiv (\mathbf{P}_x \mod \theta)$.

Remark. We can always assume that \mathcal{I} is congruence complete.

Difference term varieties

Definition

 \mathcal{V} is a **difference term** (DT) variety if it has a term d(x, y, z) such that

- $ightharpoonup d(x,x,y) \approx y$
- ▶ d(a, b, b) = a whenever (a, b) belongs to an abelian congruence of a member of \mathcal{V} .

Recall

- 1. There is an idempotent linear Maltsev characterization.
- 2. $CM \Rightarrow DT \Rightarrow Taylor$.

Fix I = (V, ...), cong. comp. (2,3)-system over **A** in a DT variety.

Definition

- 1. $At(\mathfrak{I}) := \{(x, \alpha) : x \in V, \alpha \in At(\mathbf{P}_x)\}.$
- 2. Given $(x, \alpha), (y, \beta) \in \operatorname{At}(\mathfrak{I})$, we write $(x, \alpha) \to (y, \beta)$ iff $h : \mathbf{P}_y \equiv (\mathbf{P}_x \mod \delta)$ and $(0_A, \alpha) \nearrow (\delta, \overline{\beta})$ where $\overline{\beta} = h^{-1}(\beta)$.

$$\mathbf{P}_x \xrightarrow{R_{x,y}} \mathbf{P}_y$$
 and $\mathbf{Con}(\mathbf{P}_y)$

3. Let \approx be the smallest equiv. relation on $\mathrm{At}(\mathfrak{I})$ containing \rightarrow . Call this **quasi-similarity**.

Components

 $\mathfrak{I}=(V,\ldots)$, a cong. comp. (2,3)-system over **A** in a DT variety.

Lemma

$$(x, \alpha) \approx (x, \beta)$$
 iff $\alpha \approx \beta$ in $At(P_x)$.

Let C be a \approx -block and put $C_1 := \operatorname{proj}_1(C)$.

Corollary

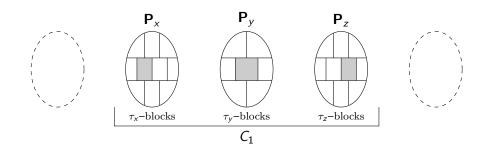
If $x \in C_1$, then $\{\alpha : (x, \alpha) \in C\}$ is a \approx -block in $At(\mathbf{P}_x)$.

Definition

For $x \in C_1$, let $\tau_x := \bigvee \{\alpha : (x, \alpha) \in C\}$. $(\tau_x \in \text{Geom}(\mathbf{P}_x))$.

Call C_1 a **component** of \mathcal{I} , with corresponding τ_x ($x \in C_1$).

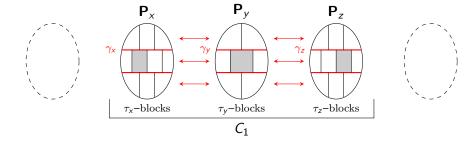
Summary: each \approx -block C gives a component C_1 and a family of geometric congruences τ_x .



Easy Fact

 $\operatorname{char}(\tau_x) = \operatorname{char}(\tau_y)$ for all $x, y \in C_1$.

Hence each $\mathfrak{I}[\overline{s}]$ encodes a linear system, $\overline{s} \in \mathrm{Sol}((\mathfrak{I}|_{C_1})/\tau)$.



Fix a component C_1 with $(\tau_x : x \in C_1)$.

For $x \in C_1$ define $\gamma_x := \operatorname{ann}(\tau_x)$. (Blocks shown in red.)

Lemma

$$\overline{R}_{x,y}: \mathbf{P}_x/\gamma_x \cong \mathbf{P}_y/\gamma_y \quad \forall x, y \in C_1.$$

Conjecture

Suppose $\overline{s}, \overline{s}'$ are solutions to $(\mathfrak{I}|_{C_1})/\tau$ belonging to the same γ -blocks. Then $\mathrm{Sol}(\mathfrak{I}[\overline{s}]) \neq \emptyset$ iff $\mathrm{Sol}(\mathfrak{I}[\overline{s}']) \neq \emptyset$.

Algorithm?

If the previous conjecture is true, then we can always reduce $\mathfrak I$ to a (2,3)-subsystem which is congruence complete and satisfies:

▶ For every component C_1 and all $x, y \in C_1$,

$$\operatorname{proj}_{x,y}(\operatorname{Sol}(\mathfrak{I}|_{C_1}))=R_{x,y}.$$

Definition

Say that I is **full on components** if it has this property.

Wild Conjecture (DT)

If \mathcal{I} is congruence complete, full on components and nonempty, then $\mathrm{Sol}(\mathcal{I}) \neq \varnothing$.

I have a plan to prove this in the Maltsev case. The plan requires overcoming an obstacle.

Obstacle

Suppose $\mathfrak I$ is congruence complete (2,3)-system over a Maltsev template, is full on components, and nonempty. If:

- 1. $X \subseteq V$ and $u \in V$.
- 2. P_u is subdirectly irreducible.
- 3. X "determines" u in the following sense: for all $s, t \in \operatorname{Sol}(\mathfrak{I}|_{X \cup \{u\}})$, if $s|_X = t|_X$ then s(u) = t(u).
- 4. X is "minimal" with respect to item (3) in the following sense: for each $x \in X$, if $[x] = \{y \in V : \mathbf{P}_y \equiv (\mathbf{P}_x \mod \theta) \text{ with } \theta \neq 0\}$ and $X' = (X \setminus \{x\}) \cup [x]$, then X' fails to determine u.
- 5. |X| > 1.

Prove that $X \cup \{u\}$ is contained in some component.

OK, I'd better stop ...