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Congruence permutable varieties

Definition

A variety V is congruence permutable (or CP) if for each A ∈ V,
ConA is a lattice of permuting equivalence relations.

θ, ϕ permute if θ ∨ ϕ = θ ◦ ϕ = ϕ ◦ θ.

Examples of CP varieties: Any variety of . . .

groups

expansions of groups (e.g., rings, modules, non-associative rings, near
rings, boolean algebras, etc.)

quasi-groups in the language {·, /, \}

But not:

lattices, semilattices, semigroups, unary algebras.

Ross Willard (Waterloo) Four Unsolved Problems Nashville, June 2007 2 / 27



Basic facts about CP varieties

Fact 1

CP ⇒ congruence modularity.

Fact 2 (Mal’tsev, 1954)

For a variety V, TFAE:

V is CP.

V has a term m(x , y , z) satisfying, in all A ∈ V,

m(x , x , z) = z and m(x , z , z) = x (∗)

Definitions

Mal’tsev term: a term m(x , y , z) satisfying (∗).
Mal’tsev algebra: an algebra having a Mal’tsev term.

Mal’tsev variety: a variety having a common Mal’tsev term.

Fact 2 (restated)

CP varieties = Mal’tsev varieties.
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Aim of lecture

Mal’tsev algebras and varieties are . . .

not “far” removed from groups, rings, near-rings, quasi-groups, etc. . .

“old-fashioned,” “solved.”

Aim of this lecture: to correct this perception, by stating some open
problems that:

are general

are of current interest

are open

are ripe for study in Mal’tsev algebras and varieties.
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1. Subpower membership problem

Fix a finite algebra A.

Subpower membership problem for A

Input: X ⊆ An and f ∈ An (n ≥ 1)

Question: is f ∈ SgAn(X )?

How hard can it be?

HARD:

Naive algorithm is EXPTIME

There is no better algorithm (Friedman 1982; Bergman et al 1999.
Added in proof: Kozik, announced 2007).

However, for groups and rings the problem is solvable in polynomial time.
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Subpower membership problem for groups

(adapted from Sims 1971; Furst, Hopcroft, Luks 1980)

Fix a finite group G. Suppose H ≤ Gn.

Consider
H = H(0) ≥ H(1) ≥ · · · ≥ H(n) = {e}

where

H(i) = {g ∈ H : g = (e, . . . , e︸ ︷︷ ︸
i

, ∗, . . . , ∗)}.

Let Mi be a transversal for the cosets of H(i) in H(i−1), including ê.
Concretely:

1 g ∈ Mi ⇒ g = (e, . . . , e︸ ︷︷ ︸
i−1

, a, ∗, . . . , ∗) ∈ H.

2 Every such form witnessed in H is represented in Mi exactly once.
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Put M =
⋃n

i=1 Mi .

Facts:

1 M is small (|M| = O(n))
2 〈M〉 = H. In fact,

H = M1M2 · · ·Mn

every element h ∈ H is uniquely expressible in the form h = g1g2 · · · gn

with each gi ∈ Mi . (“Canonical form”)

3 Given h ∈ H, we can find gi ∈ Mi recursively, efficiently (knowing M).

4 Same algorithm tests arbitrary f ∈ Gn for membership in H.

5 Thus the subpower membership problem for G is solvable in
polynomial time if, given X ⊆ Gn, we can find such an M for
H = 〈X 〉.
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Finding M.

Rough idea. Given X ⊆ Gn:

Start with Mi = {ê} for each i (so M = {ê}).
For each g ∈ X , attempt to find the canonical form for g relative to
M. (Will fail.)

Each failure suggests an addition to some Mi .

The addition is always from 〈X 〉.
Action: increment this Mi by the suggested addition.

Repeat until each g ∈ X passes; i.e., X ⊆ M1M2 · · ·Mn.

Next, for each g , h ∈ M, attempt to find the canonical form for gh.

Make additions to appropriate Mi upon each failure.
Loop until g , h ∈ M ⇒ gh passes.

Ross Willard (Waterloo) Four Unsolved Problems Nashville, June 2007 8 / 27



When to stop:

Lemma

M1M2 · · ·Mn = 〈X 〉 as soon as g , h ∈ M ⇒ gh ∈ M1M2 · · ·Mn.

Corollary

The subpower membership problem is solvable in polynomial time for any
finite group G.

Remark. Similar technique works for any expansion of a group by
multilinear operations (e.g., rings, modules, nonassociative rings).

Corollary

The subpower membership problem is solvable in polynomial time for any
finite ring or module.

Ross Willard (Waterloo) Four Unsolved Problems Nashville, June 2007 9 / 27



Partial generalization to Mal’tsev algebras

(Adapted from A. Bulatov and V. Dalmau, A simple algorithm for
Mal’tsev constraints, SIAM J. Comput. 36 (2006), 16–27.)

Fix a finite algebra A with Mal’tsev term m(x , y , z).

Definition

An index for An is a triple (i , a, b) ∈ {1, 2, . . . , n} × A× A.

Definition

A pair (g , h) ∈ An × An witnesses (i , a, b) if

g = (x1, . . . , xi−1, a, ∗, . . . , ∗)
h = (x1, . . . , xi−1, b, ∗, . . . , ∗)
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Consider B ≤ An.

Definition

A structured signature for B is an n-tuple (M1, . . . ,Mn) where
1 (i = 1):

M1 ⊆ B
Each form (a, ∗, . . . , ∗) ∈ B is represented exactly once in M1.

2 (2 ≤ i ≤ n):

Mi ⊆ B2

Each (g , h) ∈ Mi witnesses some index (i , a, b).
Each index (i , a, b) witnessed in B is represented exactly once in Mi

‘
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Suppose (M1, . . . ,Mn) is a structured signature for B ≤ An.
Let M be the set of all g ∈ An mentioned in (M1, . . . ,Mn).

Facts:

1 (M1, . . . ,Mn) and M are small (|M| = O(n))

2 SgAn(M) = B.

3 In fact, every element h ∈ B is expressible in the “canonical form”

h = m(m(· · ·m(m(f1, g2, h2), g3, h3), · · · ), gn, hn)

with f1 ∈ M1 and (gi , hi ) ∈ Mi for 2 ≤ i ≤ n.

Note: can also require

g2(2) = f1(2)

g3(3) = m(f1, g2, h2)(3), etc.

4 f1, g2, h2, . . . , gn, hn as above are unique for h and can be found
recursively and efficiently.

5 Same algorithm tests arbitrary f ∈ An for membership in B.
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This was enough for Bulatov and Dalmau to give a simple polynomial-time
solution to the “CSP problem with Mal’tsev constraints.”

Question: What about the subpower membership problem?

Suppose X ⊆ An and put B = SgAn(X ).

We can mimic the group algorithm by attempting to ”grow” a structured
signature for B.

Sticking point: knowing when to stop.

Problem 1

Using structured signatures or otherwise, is the Subpower Membership
Problem for finite Mal’tsev algebras solvable in polynomial time?

Ross Willard (Waterloo) Four Unsolved Problems Nashville, June 2007 13 / 27



2. The Pixley Problem

Recall: An algebra is subdirectly irreducible (or s.i.) if it cannot be
embedding in a direct product of proper homomorphic images.
(Equivalently, if its congruence lattice is monolithic.)

Definition

A variety V is a Pixley variety if:

its language is finite

every s.i. in V is finite (i.e., V is residually finite)

V has arbitrarily large (finite) s.i.’s.

Question (Pixley, 1984): Is there a congruence distributive Pixley variety?

Answer (Kearnes, W., 1999): No.

Problem: Generalize.
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What is the situation for groups, rings, etc.?

1 Commutative rings with 1.

No Pixley varieties here, since principal ideals are first-order definable.

2 Groups.

Ol’shanskii (1969) described all residually finite varieties of groups.
None are Pixley varieties.

3 Rings (with or without 1).

McKenzie (1982) analyzed all residually small varieties of rings.
None are Pixley varieties.

4 Modules.

Goodearl (priv. comm.): if R is an infinite, f.g. prime ring for which all
nonzero ideals have finite index, then all nonzero injective left
R-modules are infinite.
Kearnes (unpubl.): hence no variety of modules is Pixley.
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Commutator Theory

Mal’tsev varieties (and congruence modular varieties) have a well-behaved
theory of abelianness, solvability, centralizers and nilpotency.

Fundamental notions:

“θ centralizes ϕ” (θ, ϕ ∈ ConA), i.e., [θ, ϕ] = 0.

ϕc = largest θ which centralizes ϕ.

Frequently important: if A is s.i.:

rr&%
'$r

0

µ

µc

r1
ConA =

Fact: if V is a CM Pixley variety, then (by the Freese-McKenzie theorem)
for every s.i. in V, µc is abelian.
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An argument

Suppose V is a congruence modular variety in a finite language and having
arbitrarily large finite s.i.’s.

Case 1: There exist arbitrarily large finite s.i.’s A ∈ V with |A/µc |
bounded.

Use the module result to get an infinite s.i. A ∈ V with |A/µc |
bounded.

Case 2: Else.

Define C (x , y , z ,w) ↔ “Cg(x , y) centralizes Cg(z ,w).”

Assume C (x , y , z ,w) is first-order definable in V. Then use
compactness to get an s.i. A ∈ V with |A/µc | infinite.

Hence:

Theorem (Kearnes, W., unpubl.)

If V is congruence modular and C (x , y , z ,w) is definable in V, then V is
not a Pixley variety.
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Notes:

Previous theorem handles all varieties of groups, rings and modules.

Doesn’t handle varieties of non-associative rings.

Problem 2

Does there exist a congruence permutable Pixley variety?

What about varieties of non-associative rings?
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3. McNulty’s Problem

Definition

A variety V is strange if

its language is finite.

V is locally finite.

V is not finitely based.

There exists a finitely based variety W having exactly the same finite
members as V.

Definition

A finite algebra is strange if the variety it generates is.

Question (Eilenberg, Schützenberger, 1976): Does there exist a strange
finite algebra?

McNulty has asked the same question for varieties.
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Lemma (Cacioppo, 1993)

If A is strange, then it is inherently nonfinitely based (INFB).

Theorem (McNulty, Székely, W., 2007?)

If A can be shown to be INFB by the “shift automorphism method,” then
A is not strange.

Examples of algebras known to be INFB but not by the shift
automorphism method:

1 (Added in proof – thank you, George): INFB Semigroups.
Characterized by Sapir; George has checked that none are strange.

2 Isaev’s non-associative ring (1989).

That’s it!

Problem 3
1 Is Isaev’s algebra strange?

2 Find more INFB algebras that are expansions of groups. Are any of
them strange?
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4. Dualizability

Definition

A finite algebra A�@ M is dualizable if

there exists an “alter ego” M∼ . . .

. . . partial operations . . . relations . . . discrete topology . . .

. . . ISP and IScP
+ . . .

. . . contravariant hom-functors . . .

. . . dual adjunction (D,E , e, ε) . . .

AARRRGGHH!!! STOP THE INSANITY!!
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Dualizability

All that you need to know about dualizability (but were afraid to ask):

“Dualizability” is a property that a finite algebra may, or may not,
have.

In practice, “dualizability” coincides with an apparently stronger
property, called “finite dualizability.”

By a theorem of Zádori and myself, “finite dualizability” can be
characterized in purely clone-theoretic terms.
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Classical clone theory

Fix a finite algebra A.

Recall that:

1 Inv(A) := {r ⊆ An : r ≤ An, n ≥ 1}.
2 Inv(A) determines Clo(A), in the sense that

∀f : An → A, f ∈ Clo(A) iff f preserves every r ∈ Inv(A).
3 Can speak of

a subset R ⊆ Inv(A) determining Clo(A)
Clo(A) being finitely determined.

Old Theorem

The following are equivalent:

R determines Clo(A)

Every r ∈ Inv(A) can be defined from R by a ∃&atomic formula.
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Partial operations with c.a.d. domains

Fix A.

A subset D ⊆ An is c.a.d. (conjunction-atomic-definable) if it is definable
in A by a &atomic formula.

Definition

Clo|cad(A) := {all restrictions of term operations of A to c.a.d. domains}.

Then:

1 Inv(A) determines Clo|cad(A), in the same sense:

∀f : D → A with c.a.d. domain, f ∈ Clo|cad(A) iff f preserves every
r ∈ Inv(A).

2 Can speak of

a subset R ⊆ Inv(A) determining Clo|cad(A)
Clo|cad(A) being finitely determined.
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Lemma/Definition

The following are equivalent:

1 A is “finitely dualizable” ( ⇒ dualizable)

2 Clo|cad(A) is finitely determined.

3 There is a finite set R ⊆ Inv(A) such that every “hom-transparent”
r ∈ Inv(A) is &atomic definable from R.

Def. r ∈ Inv(A) is hom-transparent (or balanced) if

Every homomorphism h : r → A is a coordinate projection, and

No two coordinate projections are the same.
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Dualizability problem: which finite A are (finitely) dualizable?

1 CD case:
(finitely) dualizable ⇔ A has a near-unanimity term

⇐ by Baker-Pixley, ⇒ by (Davey, Heindorf, McKenzie, 1995)

2 Commutative rings with 1:
(finitely) dualizable ⇔ R generates a residually small variety.

(Clark, Idziak, Sabourin, Szabó, W., 2001)

3 Groups:
(finitely) dualizable ⇔ G generates a residually small variety.

⇒ by (Quackenbush, Szabó, 2002), ⇐ by (Nickodemus, 2007?)

4 Rings (with or without 1):

(finitely) dualizable
?⇔ R generates a residually small variety.

⇒ by (Szabó, 1999), ⇐ by recent work of Kearnes, Szendrei?

5 But:
if G = S3, then GG is not dualizable, yet generates a residually small
variety (Idziak, unpubl., 1994)

∃ expansion of (Z4,+) that is (finitely) dualizable, yet generates a
residually large variety (Davey, Pitkethly, W., 2007?)
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Problem 4
1 Which finite Mal’tsev algebras are (finitely) dualizable?

Can we at least answer this for expansions of groups?

2 Is the answer to (1) decidable?
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