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1. Algebras, term operations, varieties

An algebra: A = (A; F )
= (universe; {fundamental operations})

term: any formal expression built from [names for] the fundamental
operations and variables

terms in n variables define n-ary term operations of A.

Definition

The clone of A is Clo(A) = {all term operations of A} = 〈F 〉.

Clo(A) is the fundamental invariant of A.

Definition

A,B are term-equivalent if they have the same universe and same term
functions.
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Definition

f : An → A is idempotent if f (x , x , . . . , x) = x ∀x ∈ A.

A = (A,F ) is idempotent if every f ∈ F (equivalently, f ∈ 〈F 〉) is
idempotent.

CSP’ers care only about idempotent algebras.

This tutorial is not specifically focussed on idempotent algebras.

Oh well.
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Varieties

Definition

A class of algebras is

equational if it can be axiomatized by identities, i.e. (universally
quantified) equations between terms.

a variety if it is closed under forming homomorphic images (H),
subalgebras (S), and products (P).

Basic theorems
1 (G. Birkhoff) Varieties = equational classes.

2 (Tarski) The smallest variety var(K) containing K is
var(K) = HSP(K).

var(A), the variety generated by A, is another useful invariant of A.
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2. Congruences

Suppose A,B are algebras “in the same language” and σ : A → B is a
homomorphism.

[Picture]

The pre-images of σ partition A.

Definition

ker(σ) = the equivalence relation on A given by this partition.

congruence of A: any kernel of a homomorphism with domain A.

Alternatively: congruences of A are the equivalence relations θ on A which

Are compatible with F (∀f ∈ F , a
θ∼ a′ ⇒ f (a, b, . . .)

θ∼ f (a′, b, . . .),
etc.)

Support a natural construction of A/θ on the θ-classes.
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Definition

Con(A) = {set of all congruences of A}.

(Con(A),⊆) is a poset with top = A2 and bottom = {(a, a) : a ∈ A} . . .

[Picture]

. . . and is a lattice: any two θ, ϕ have a g.l.b. (meet) and a l.u.b. (join):

θ ∧ ϕ = θ ∩ ϕ

θ ∨ ϕ = transitive closure of θ ∪ ϕ

= {all (a, b) connected by alternating θ, ϕ-paths}.

(Con(A);∧,∨) is a surprisingly useful invariant of A.
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3. Classifying algebras by congruence properties

Distributive law (for lattices): x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and dually.

Modular law: distributive law restricted to non-antichain triples (x , y , z).

Definitiion

Say A is if Con(A)

congruence distributive (CD) is distributive
congruence modular (CM) is modular
congruence permutable (CP) satisfies x ◦ y = y ◦ x

First approx. to θ ∨ ϕ:

θ ◦ ϕ
def
= {(a, c) : ∃b, a

θ∼ b
ϕ∼ c}.

Fact: For an algebra A, TFAE and imply CM:

θ ∨ ϕ = θ ◦ ϕ ∀θ, ϕ ∈ Con(A).
θ ◦ ϕ = ϕ ◦ θ ∀θ, ϕ ∈ Con(A).
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A connection: existence of term operations satisfying certain identities ⇔
congruence lattice properties. For example:

Definition

Let m(x , y , z) be a 3-ary term for A.

m is a majority (or 3-NU) term for A if

A |= m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x .

m is a Mal’tsev term for A if

A |= m(x , x , y) ≈ m(y , x , x) ≈ y .

Examples

Using lattice ops, m(x , y , z) := (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) is 3-NU.

Using group ops, m(x , y , z) := x · y−1 · z (or x − y + z) is Mal’tsev.
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Theorem

A has a 3-NU term ⇒ every B ∈ var(A) is CD.

A has a Mal’tsev term ⇔ every B ∈ var(A) is CP.

Proof of 2nd item (Mal’tsev term ⇔ var(A) is CP).

(⇒). Let m(x , y , z) be a Mal’tsev term for A. Let B ∈ var(A) and
θ, ϕ ∈ Con(B). It suffices to show θ ◦ ϕ ⊆ ϕ ◦ θ. Assume (a, c) ∈ θ ◦ ϕ,

say a
θ∼ b

ϕ∼ c .

m is also a Mal’tsev term for B, so

a = m(a, c , c)
ϕ∼ m(a, b, c)

θ∼ m(a, a, c) = c

witnessing (a, c) ∈ ϕ ◦ θ.

Key: m(x , y , z) gives a uniform witness to θ ◦ ϕ ⊆ ϕ ◦ θ.
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(⇐). We construct a generic instance of θ ◦ ϕ
?
⊆ ϕ ◦ θ in var(A).

Let B = Fvar(A)(x , y , z) ∈ var(A), the free var(A)-algebra of rank 3
θ = the smallest congruence of B containing (x , y)
ϕ = the smallest congruence of B containing (y , z).

Clearly x
θ∼ y

ϕ∼ z , so (x , z) ∈ θ ◦ ϕ.

Assuming var(A) is CP, then (x , z) ∈ ϕ ◦ θ.

Choose a witness m ∈ B, so x
ϕ∼ m

θ∼ z .

m “is” a term.

(x ,m) ∈ ϕ implies var(A) |= x ≈ m(x , z , z)

(m, z) ∈ θ implies var(A) |= m(x , x , z) ≈ z .
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Commentary on 1st item (3-NU term ⇒ every var(A) is CD).

Theorem (B. Jónsson)

Given A, TFAE:

var(A) is CD.

Every Con(B) |= α ∩ (β ◦ γ) ⊆ (α ∩ β) ∨ (α ∩ γ)

∃k such that every Con(B) |=

α ∩ (β ◦ γ) ⊆ (α ∩ β) ◦ (α ∩ γ) ◦ (α ∩ β) ◦ · · · ◦ (α ∩ [β|γ])︸ ︷︷ ︸
k

Call the displayed condition CD(k).

Exercise

var(A) |= CD(2) ⇔ A has a 3-NU term.

Remark: CD(3) is witnessed by a pair of 3-ary terms, etc. (Called Jónsson
terms)
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4. The abelian/nonabelian dichotomy

Definition

An algebra A is abelian if the diagonal 0A := {(a, a) : a ∈ A} is a block
of some congruence of A2.

Equivalently, if for all term operations f (x̄ , ȳ),

∀ā, b̄, c̄ , d̄ : f (ā, c̄) = f (ā, d̄) → f (b̄, c̄) = f (b̄, d̄). (∗)

Examples: abelian groups; R-modules; G -sets.

Non-examples: nonabelian groups; anything with a semilattice operation.

By restricting the quantifiers in (∗), can define notion of a congruence
being abelian; or of one congruence centralizing another. Leads to
notions of solvability, nilpotency.
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Nicest setting: in CM varieties.

Abelian algebras (and congruences) are affine (see below).

Definition

A is affine if (i) A has a Mal’tsev term m(x , y , z), and (ii) all fundamental
operations commute with m(x , y , z).

Equivalently, if there is a ring R, an R-module RM with universe A, and a
submodule U ≤ RR × RM such that

CloA = all
n∑

i=1

rixi + a (ri ∈ R, a ∈ A)

for which
(
1−

n∑
i=1

ri , a
)
∈ U.

(In which case m(x , y , z) = x − y + z .)
(Idempotent case: U = {(0, 0)}.)
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Still in CM varieties:

Centralizer relation on congruences is understood.

Abelian-free intervals in Con(A) correspond to structure “similar to”
that in CD varieties.

Thus we get positive information on either side of the
abelian/nonabelian dichotomy.

Example (Freese, McKenzie, 1981): Let A be a finite algebra in a CM
variety. Whether or not var(A) is residually finite can be
characterized by centralizer facts in HS(A).
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Part II: Tame Congruence Theory

5. Polynomial subreducts

6. Minimal sets and traces (of a minimal congruence)

7. The 5-fold classification and types

8. Classifying algebras by the types their varieties omit
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5. Polynomial subreducts

Polynomial operations: like term operations, but allowing parameters.

Definition

Algebras A, B are polynomially equivalent if they have the same
universe and the same polynomial operations.

Polynomial equivalence is coarser than term-equivalence.

Example: on the set 2 := {0, 1}, there are exactly 7 algebras up to
polynomial equivalence.

[picture on next slide]
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Strange construction #1.

Definition

Let A = (A,F) be an algebra and S ⊆ A. Form a new algebra with

universe = S

clone of operations = all f |Sn , f an n-ary polynomial operation of A
with f (Sn) ⊆ S .

This is A|S , the polynomial algebra induced on S (by A).

Ross Willard (Waterloo) Tame Congruence Theory Nashville, June 2007 20 / 35



Toy example

A = 1-dimensional vector space over finite field F = GF (pn)

= (F ; {+, (λx)λ∈F})

Polynomial operations of A: all

n∑
i=1

λixi + a, λi ∈ F , a ∈ F

Let S = F ∗ = F \ {0}. Then

Exercise

Every nonconstant operation of A|S depends on exactly one variable.

A|S is term-equivalent to a G -set with all constants, where G is the
cyclic group of order pn − 1.
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Another toy example

A = (A4, ·), the alternating group on 4 letters.

Recall: |A4| = 12, and the elements include the 8 permutations of
{1, 2, 3, 4} which cycle 3 elements, the 3 permutations which match each
element with a partner and switch partners, and the identity permutation.

Polynomial operations of A: rather more complicated.

Let N = its 4-element normal subgroup.

Group Theory Exercise

A|N is term-equivalent to a 1-dimensional vector space over GF (4) with all
constants.

In both examples, the point is that A|S is not a subalgebra of A, or even
of the same type of algebra as A.
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6. Minimal sets and traces (of a minimal congruence)

Strange construction #2. Let A be a finite algebra.

Definition

E (A) = {all unary polynomials e(x) of A satisfying e(e(x)) = e(x)}.
Neighborhood: any e(A), e ∈ E (A).

Let α ∈ Con(A) be a minimal (nonzero) congruence.

Definition

NA(α) = {those neighborhoods which intersect at least one α-block
in ≥ 2 points}.

α-minimal set: any minimal member of NA(α) (with respect to ⊆).

α-trace: any intersection of an α-minimal set with an α-block,
provided the intersection has ≥ 2 points.

α-body: the union of all α-traces in one α-minimal set.
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Example: the group A4. [Picture]

Let N be the 4-element normal subgroup and α = θN the congruence
whose classes are the three cosets of N.

Fix an element a of order 3. (So the cosets of N are N, aN, a2N.)

Consider the following unary polynomials of A4.

e1(x) = x4 U1 = e1(A4)

e2(x) = a(a(ax4)4)4 U2 = e2(A4)

e3(x) = a(a−1x)3 U3 = e3(A4).

e1(x) = x for all x ∈ aN ∪ a2N while e1(x) = 1 for x ∈ N. Hence
e1(e1(x)) = e1(x) and U1 = {1} ∪ aN ∪ a2N is a neighborhood.

e2 maps N to 1, aN to a and a2N to a2. Hence e2(e2(x)) = e2(x) and
U2 = {1, a, a2} is a neighborhood. (In fact, every transversal of the cosets
of N is a neighborhood.)
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Example (continued)

e3(x) = x for x ∈ aN while e3(x) = a for x ∈ N ∪ a2N. Hence
e3(e3(x)) = e3(x) and U3 = aN is a neighborhood.

U2 6∈ NA(α) since U2 does not meet any α-class nontrivially. U1 ∈ NA(α)
but U1 is not an α-minimal set because U3 ∈ NA(α) and U3 ⊂ U1. A
computer can show that U3 is an α-minimal set. In fact, the cosets of N
are precisely the α-minimal sets.

Since each α-minimal set in this example is contained entirely inside an
α-class, the α-traces and α-bodies are identical to the α-minimal sets, i.e.,
the cosets of N.

Warning: this is not the typical picture!!

[Typical picture on next page]
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This portrays the classes of a minimal congruence α (dashed lines), one
α-minimal set (dark black line), and an α-body consisting of two α-traces
(red lines). The two points not in the body comprise the tail.
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7. The 5-fold classification and types

Key step: focus on polynomial algebras induced on α-minimal sets and
α-traces.

The latter are catalogued up to polynomial equivalence.

Theorem 1 (P. P. Pálfy)

Let A be a finite algebra, α a minimal congruence, and N an α-trace.
Then the induced polynomial algebra A|N is polynomially equivalent to
one of:

1. a G -set.

2. a 1-dimensional vector space over a finite field.

3. a 2-element boolean algebra.

4. a 2-element lattice (L, {∧,∨}).

5. a 2-element semilattice (S ,∨).
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Theorem 2

Let A be a finite algebra and α a minimal congruence. If N1,N2 are any
two α-traces, then A|N1

∼= A|N2 .

Thus we get a 5-fold classification of minimal congruences.

Definition

For α a minimal congruence of A, the type of α is the common type

Type 1 (unary)

Type 2 (vector space)

Type 3 (boolean)

Type 4 (lattice)

Type 5 (semilattice)

of the polynomial algebras induced on the α-traces of A.

Example: The minimal congruence of the group A4 has “Type 2.”
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The 5 types reflect 5 distinct “local” structures in an algebra A.

In turn, the local structure reflects and is reflected by the global structure
of A.

The lowest-order tool is:

Theorem 3

Let α be a minimal congruence of A.

(Connectedness) Each nontrivial α-block is the union of connected
α-traces.

Moreover, A has enough unary polynomials to:

(Isomorphism) . . . map any α-trace isomorphically to any other.

(Density) . . . map any two distinct elements in an α-block to distinct
elements of an α-trace.
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Connecting local and global structure

Example:

Theorem

Let α be a minimal congruence of finite A.

α is abelian ⇔ the type of α is 1 or 2.

If α is abelian and A is idempotent, then each block of α (as a
subalgebra of A) is quasi-affine (i.e., is a subalgebra of a reduct of a
module).
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Typing Con(A)

Suppose α ∈ Con(A) is not minimal. Choose δ < α so that α is minimal
over δ.

[Picture]

Passing to A/δ, we can assign a type (1–5) to the pair (δ, α).

In this way, a type (1–5) is assigned to each edge of the graph of Con(A).
Much is known.

In applications, one often needs local information about (δ, α) in A (not
just in A/δ).

Leads to a refined def. of (δ, α)-minimal sets, traces and bodies ( ⊆ A).

Polynomial algebras induced on (δ, α)-traces are completely understood in
types 3 and 4, largely understood in cases 1, 2 and 5.
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Classifying algebras by the types their varieties omit

Definition

Let A be a finite algebra and i ∈ {1, 2, 3, 4, 5}. We say that var(A)

admits type i if type i occurs in Con(B) for some (finite)
B ∈ var(A). (WLOG, B ≤ An.)

omits type i otherwise.

Omitting types gives us another way to classify var(A). For example:

Theorem

For A finite, TFAE:

A has a Taylor term (equivalently, a weak NU-term).

var(A) omits type 1.

Similar characterizations (via terms satisfying equations) exist for var(A)
omitting any “down-set” of types (e.g., {1, 2}, {1, 5}, etc).

Ross Willard (Waterloo) Tame Congruence Theory Nashville, June 2007 32 / 35



Fitting in the congruence classifications

Theorem

var(A) is CM iff var(A) omits type 1 and 5 and has no tails.

var(A) is CD iff var(A) omits type 1, 2 and 5 and has no tails.

Another relevant class is the class of A for which var(A) omits the abelian
types 1,2. This class is characterized as those A for which every Con(B)
satisfies a certain implicational law called SD(∧).

[Big picture on next page]
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Postscript (not included in lecture):

Tame congruence theory reveals how far is the gap between those
idempotent A for which CSP(A) is known to be NP-complete (var(A)
admits type 1), and those for which CSP(A) is known to be in P (CP, NU,
bounded width, varieties generated by a finite conservative algebra).

Tame congruence theory suggests intermediate classes of algebras to be
explore.

Under weak assumptions (e.g., that var(A) omits type 1), the theory
yields subtle, positive structural information about all B ∈ var(A).

Most importantly, the theory suggests one way to localize, divide and
conquer the confusion of “all finite algebras.”
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