The decidable discriminator variety problem

Ross Willard

University of Waterloo, CAN

Logic Colloquium 2016
University of Leeds
1 Aug 2016
Variations on Homogeneity
In the box: certain \forall_1 classes of structures which are

- locally finite
- in a finite signature

”small \forall_1 classes”

Which small \forall_1 classes are in the box?
Hints

Which small $\forall_1 \mathcal{K}$ are in the box?

1. If \mathcal{K} is a finite set of finite structures, then \mathcal{K} is in the box.
2. If every countable member of \mathcal{K} is (hereditarily) homogeneous, then \mathcal{K} is in the box.

▶ homogeneous: every isomorphism between finite substructures extends to an automorphism.
▶ hereditarily: every substructure is homogeneous.

3. The box is a candidate for the smallest “natural” collection of small \forall_1 classes satisfying (1)–(2).

Intuition

The box captures some version of “hereditarily homogeneous modulo finite.”
Guess #1

Definition

1. \(M \) is **weakly hereditarily homogeneous** if there exists a finite set \(A \subseteq M \) such that \(M_A \) is hereditarily homogeneous.

2. A small \(\forall_1 \) class \(\mathcal{K} \) is **weakly hereditarily homogeneous** if there exists \(n \geq 0 \) such that every countable member \(M \in \mathcal{K} \) is weakly hereditarily homogeneous via a set \(A \subseteq M \) of size \(\leq n \).

Getting warm!

- Every class in the box is weakly hereditarily homogeneous.
- But not conversely: the class

 \[\{ \text{graphs having at most one edge} \} \]

 is **not** in the box.
Guess #2

Definition

A small \forall_1 class \mathcal{K} is upwardly weakly hereditarily homogeneous if there exists $n \geq 0$ such that for all $M \in \mathcal{K}_{\text{fin}}$ there exists $A \subseteq M$ with $|A| \leq n$, satisfying:

1. M_A is hereditarily homogeneous.
2. For all $N \in \mathcal{K}_{\text{fin}}$ and embeddings $\sigma_1, \sigma_2 : M \hookrightarrow N$ with $\sigma_1|_A = \sigma_2|_A$, there exists $\alpha \in \text{Aut } N$ with $\alpha \circ \sigma_1 = \sigma_2$.

Getting hot!!

- $\{\text{graphs with } \leq 1 \text{ edge}\}$ is not UWHH.
- Every class in the box is UWHH.
- (I don’t know if the converse holds.)
Suppose κ is a small \forall_1 class.

Definition

κ is **in the box** if there exists a relation \triangleleft between finite sets and members of κ_{fin} such that for some $n \geq 0$,

1. $A \triangleleft M$ implies $A \subseteq M$, M_A is homogeneous, and $|A| \leq n$.
2. \triangleleft is invariant under isomorphisms.
3. For all $M \in \kappa_{fin}$ there exists $A \triangleleft M$.
4. If $A \triangleleft M$ and $A \subseteq M' \leq M$, then $A \triangleleft M'$.
5. If $A \triangleleft M \leq N \in \kappa_{fin}$ then there exists $B \triangleleft N$ with $A \subseteq B$.
6. If $A \subseteq B \triangleleft N$ and $M_1, M_2 \leq N$ with $A \triangleleft M_1, M_2$, then every isomorphism $\sigma : M_1 \cong M_2$ fixing A pointwise extends to some $\alpha \in \text{Aut } N$ fixing B pointwise.

(Ugh)
Decidable equational classes
Universal algebra

Algebraic structure, or **algebra**: a structure in a signature with no relation symbols.

Equational theory: a deduction-closed set of **identities**

\[\forall x : s(x) = t(x) \]

Equational class: \(\text{Mod}(T) \) for some equational theory \(T \).
Decidable Equational Class Problem

Problem
For which equational classes \mathcal{E} in finite signature is the 1st-order theory of \mathcal{E} decidable?

Theorem (McKenzie, Valeriote 1989)
In the locally finite case, this problem is solved modulo two special cases:

1. Modules over a finite ring.
2. “Discriminator varieties.”

What is a *discriminator variety*?
Discriminator varieties
Recipe

1. Start with a \forall_1-class of structures.

2. Replace each n-ary basic relation R with an $n + 2$-ary operation f_R defined by

 \[f_R(x, y, z) = \begin{cases}
 y & \text{if } R(x) \\
 z & \text{else.}
 \end{cases} \]

3. Also add f_\equiv.

4. Denote the resulting \forall_1-class of algebras \mathcal{K}^*.

5. Let $T_e(\mathcal{K}^*)$ be the equational theory of \mathcal{K}^*.

6. $\mathcal{D}(\mathcal{K}) := \text{Mod}(T_e(\mathcal{K}^*))$ is a typical discriminator variety.

 - Note: \mathcal{K}^* is the class of simple algebras in $\mathcal{D}(\mathcal{K})$.

Example

Start with $\mathcal{K} = \{2\}$ where $2 = (\{0, 1\}, 0, 1)$.

$\mathcal{K}^* = \{2^*\}$ where $2^* = (\{0, 1\}, f_\equiv, 0, 1)$,

$$f_\equiv(x, y, z, w) = \begin{cases} z & \text{if } x = y \\ w & \text{else.} \end{cases}$$

Note: 2^* is the 2-element boolean algebra. Hence

\[
\mathcal{D}(\{2\}) = \text{Mod}(T_e(\{2^*\})) \\
= \text{Mod}(T_e(\{\text{the 2-element boolean algebra}\})) \\
= \{\text{all boolean algebras}\}
\]
1. Discriminator varieties correspond to \forall_1 classes:

\[
(\text{loc. fin., fin. sign.}) \leftrightarrow \forall_1 \text{ classes}
\]

\[
\mathcal{D}(\mathcal{K}) \iff \mathcal{K}^* \equiv \mathcal{K}
\]

2. Discriminator varieties are (equational) classes of “generalized boolean algebras.”
The Decidable Discriminator Variety problem

The question

Which (loc. fin., fin. sign.) discriminator varieties have decidable 1st-order theory?

can be reformulated

Which (small) \forall_1 classes \mathcal{K} are such that $D(\mathcal{K})$ has decidable 1st-order theory?

Conjecture

Answer to 2nd question: the ones in the box!
Evidence

Theorem (W)

Suppose \mathcal{K} is in the box.

1. $\{\text{graphs}\}$ does not interpret\(^1\) into $\mathcal{D}(\mathcal{K})$.

2. If $\text{Th}_{\forall_1}(\mathcal{K})$ is decidable (e.g., if \mathcal{K} is finitely axiomatizable), then $\text{Th}(\mathcal{D}(\mathcal{K}))$ is decidable.

Moreover

In classes studied to date\(^2\), no counter-examples found to:

1. \mathcal{K} not in the box \Rightarrow $\{\text{graphs}\}$ interprets into $\mathcal{D}(\mathcal{K})$.

2. \mathcal{K} in the box \Rightarrow \mathcal{K} finitely axiomatizable.

\(^1\)“right totally” as per Hodges

\(^2\)unary algebras (W ’93), lattices (W ’94), dihedral groups (Delić ‘05)
Ingredients in the proof

- Every member of $\mathcal{D}(\mathcal{K})$ has a representation as the algebra of global sections of some Hausdorff sheaf over a Stone space, with stalks from \mathcal{K}^*.

- Assuming \mathcal{K} is in the box, one can obtain a (non-effective) Feferman-Vaught analysis of the countable members of $\mathcal{D}(\mathcal{K})$ (via their representations).

- This translates the theory of $\mathcal{D}(\mathcal{K})$ to the theory of boolean algebras with countably many ideals (decidable by Rabin).

- If $\text{Th}_{\forall_1}(\mathcal{K})$ is decidable, then the translation can be made effective.
Help!

Recall: \(\mathcal{K} \) in the box \(\implies \mathcal{K} \) UWHH.

1. Does \(\mathcal{K} \) UWHH \(\implies \) \(\mathcal{K} \) in the box?

2. What are generic obstacles to UWHH? To being in the box?
 ▶ In all examples I know, there is a witnessing pair \(M < N \) of countably infinite structures and a finite set \(A \) such that \(\text{Aut}(M_A) \) has an infinite orbit that gets “badly split” in \(N_A \).

3. Does UWHH (or being in the box) imply finite axiomatizability?

4. Does anyone give a rip??

Thank you!