Constraints in Universal Algebra

Ross Willard

University of Waterloo, CAN

SSAOS 2014
September 10, 2014
Lecture 3
Outline

Lecture 1: Intersection problems and congruence $SD(\wedge)$ varieties

Lecture 2: Constraint problems in ternary groups (and generalizations)

Lecture 3: Constraint problems in Taylor varieties
WARNING

This lecture has been modified to fit our shorter attention spans.
Review

An **instance of 3-CSP(A)** of degree \(n \) is a list \((s_1, C_1), \ldots, (s_p, C_p)\) where
- Each scope \(s_i \) satisfies \(s_i \subseteq \{1, 2, \ldots, n\} \) and \(1 \leq |s_i| \leq 3 \).
- Each constraint relation \(C_i \) is a non-empty subuniverse of \(A^{s_i} \).

It is **3-minimal** if
- Every 3-element subset of \(\{1, 2, \ldots, n\} \) occurs as a scope.
- For any two constraints \((s, C_i), (t, C_j)\), if \(s \subseteq t \) then \(\text{proj}_s(C_j) = C_i \).

The **solution-set** of the instance is \([s_1, C_1] \cap \cdots \cap [s_p, C_p]\), where

\[
[s_i, C_i] = \{a \in A^n : \text{proj}_{s_i}(a) \in C_i\} \leq A^n.
\]

3-CSP(A): Given a (3-minimal) instance, does a solution exist?

Central problem of CSP (Feder, Vardi) – Dichotomy

Given a finite algebra \(A \), either

1. Find a poly-time algorithm deciding 3-minimal instances of 3-CSP(A),

or

2. Show that 3-CSP(A) is NP-complete.
3 algorithms deciding 3-minimal instances of 3-CSP(\(A\))

- Few subpowers algorithm
- Always answer “yes”

Gaussian Elimination

- Sets
- CM
- CD
- SD(\(\wedge\))
- 3-ary abelian groups of prime exponent
- Lattices
- Semilattices
Algebraic CSP Dichotomy Conjecture

There is a class, outside of which each 3-CSP(A) is provably NP-complete.

Conjecture (Bulatov *et al*): For every A inside the class, 3-CSP(A) is in P.
Defining the “dividing line”

Definition. A term \(t(x_1, \ldots, x_n) \) is a **Taylor term** (for an algebra) if

1. It is idempotent (i.e., \(t(x, x, \ldots, x) = x \)).
2. \(n \geq 2 \).
3. For each \(1 \leq i \leq n \) there is an identity satisfied by \(t \) of the form

 \[
 t(\ldots, x, \ldots) = t(\ldots, y, \ldots)
 \]

 where \(x \) occurs at position \(i \) on the left, \(y \) occurs at position \(i \) on the right, and all other positions are filled with \(x \) or \(y \).

Example: A Maltsev term is a Taylor term, because \(m(x, x, x) = x \) and

\[
\begin{align*}
m(x, x, y) &= m(y, y, y) \quad \text{works for } i = 1, 2 \\
m(x, x, x) &= m(x, y, y) \quad \text{works for } i = 3
\end{align*}
\]
Theorem/Conjecture (Bulatov, Jeavons, Krokhin 2005)

Let \(A \) be a finite, idempotent algebra.

1. (Theorem) If \(A \) does not have a Taylor term, then \(3\text{-CSP}(A) \) is NP-complete.
2. (Conjecture) Otherwise \(3\text{-CSP}(A) \) is in P.
Goals of this lecture:

1. Describe a new, “easy” poly-time CSP algorithm for ternary groups.
 - Roughly speaking, “enforcing 3-minimality + Gaussian elimination.”

2. Describe how the algorithm adapts to any Taylor algebra!

3. Caveats
 - The algorithm is for 2-CSP(\textbf{A}) only. (Which is fine.)
 - I don’t know whether the algorithm actually works . . .
First, some technicalities
Potatoes

Let \(Inst = ((s_1, C_1), \ldots, (s_p, C_p)) \) be a 3-minimal instance of 3-CSP(\(A \)), of degree \(n \).

1. \(V := \{1, 2, \ldots, n\} \). ("variables")

2. Every 3-element subset \(s \subseteq V \) is the scope of a \(unique \) constraint. Call it \((s, C_s) \).

3. For all \(t \subseteq V \) with \(|t| = 1 \) or \(2 \), there is a unique "implied" constraint \((t, C_t) \), namely \((t, \text{proj}_t(C_s)) \) for any \(t \subseteq s \) with \(|s| = 3 \).

4. Each \(C_{\{i\}} \) is a subuniverse of \(A \). The corresponding subalgebra is denoted \(P_i \) and is called a "potato."

\[\begin{array}{l}
\text{C}_{\{1,2\}} \\
\text{P}_1 \\
\text{P}_2 \\
\text{P}_3 \\
\ldots \\
\end{array} \]

\[\begin{array}{l}
\text{A} \\
\text{A} \\
\text{A} \\
\end{array} \]
Congruence completeness

Definition. A 3-minimal instance of 3-CSP(A) is **congruence complete** if for every $i \in V$ and every $\alpha \in \text{Con}(P_i)$ there exists $j \in V$ such that $C\{i,j\}$ is the graph of a surjective homomorphism $h_{ij} : P_i \rightarrow P_j$ with kernel α.

(I will say $P_j \sim P_i / \alpha$.)

We can always enforce congruence completeness (by adding new variables).
Now we focus on ternary groups
Definition. Let \(A = (G, xy^{-1}z) \) be a ternary group, \(\alpha \in \text{Con}(A) \), and \(p \) a prime. We say \(\alpha \) is an \textbf{elementary} \(p \)-\textbf{abelian} congruence if \(N := 1/\alpha \) (\(\triangleleft G \)) is an abelian group of exponent \(p \).

Key fact. If \(\alpha \in \text{Con}(A) \) is elementary \(p \)-abelian, then every \(\alpha \)-block \(C \), considered as a subalgebra \(C \leq A \), is a ternary abelian group of exponent \(p \).

Proposition

Let \(A = (G, xy^{-1}z) \) be a finite ternary group and \(\alpha \) a \textbf{minimal} congruence. If \(\alpha \) is abelian, then \(\alpha \) is elementary \(p \)-abelian for some prime \(p \).

Proof. \(N = 1/\alpha \) is a minimal normal subgroup of \(G \) and is abelian. If \(\exp(N) = mk \) is composite, then \(\{x \in N : mx = 1\} \) is a proper nontrivial subgroup of \(N \).

It is also characteristic in \(N \), so is normal in \(G \), contradiction. \(\square \)
Warning: technicalities ahead
Let $Inst$ be a 3-minimal instance of 3-CSP(\mathbf{A}), of degree n.

Definition. For each prime p, let

$$VC_p = \{ (i, \alpha) : i \in V, \alpha \in \text{Con}(P_i), \text{ and } \alpha \text{ is elementary } p\text{-abelian} \}.$$

For $(i, \alpha), (j, \beta) \in VC_p$, define $[(i, \alpha) \leq (j, \beta)]$ iff

$$((a, b), (a', b') \in C_{\{i,j\}} \& (a, a') \in \alpha) \implies (b, b') \in \beta.$$

($C_{\{i,j\}}$ “induces” a homomorphism $P_i/\alpha \to P_j/\beta$.)
Fix p and $(i, \alpha) \in VC_p$. Define

$$V_{(i, \alpha)} = \{ j \in V : \exists \beta \in \text{Con}(P_j) \text{ with } (i, \alpha) \leq (j, \beta) \in VC_p \}.$$

Fact: for each $j \in V_{(i, \alpha)}$ there exists a smallest witnessing β; call it β_j.

Let $f_j : P_i/\alpha \to P_j/\beta_j$ be the homomorphism induced by $C\{i,j\}$.

Definition

Let A, Inst, p and (i, α) be as above.

1. $\text{Inst}_{(i, \alpha)}$ is the restriction of Inst^{a} to the variable-set $V_{(i, \alpha)}$.
2. For each α-block B, $\text{Inst}_{(i, \alpha)}^{B}$ is the restriction of $\text{Inst}_{(i, \alpha)}$ obtained by
 - Replacing each potato P_j by $f_j(B)$, and
 - Restricting the constraint relations of $\text{Inst}_{(i, \alpha)}$ to these new potatoes.

\[a\text{More precisely, of the implied constraints } (t, C_t), 1 \leq |t| \leq 3, \text{ of } \text{Inst}.\]

Note: Each potato of $\text{Inst}_{(i, \alpha)}^{B}$ is a ternary abelian group of exponent p.

R. Willard (Waterloo) Constraints in Universal Algebra SSAOS 2014 17 / 27
Lemma

Suppose \(s \subseteq V_{(i,\alpha)} \) with \(|s| \leq 3 \), and \(c \in C_s \). If there exists \(a \in \text{Sol}(\text{Inst}) \) with \(\text{proj}_s(a) = c \), then for some \(\alpha \)-block \(B \) there exists \(b \in \text{Sol}(\text{Inst}^B_{(i,\alpha)}) \) with \(\text{proj}_s(b) = c \).

Proof. Given \(a \in \text{Sol}(\text{Inst}) \), let \(B = a_{i/\alpha} \) and put \(b = a|_{V_{(i,\alpha)}} \).

\(\square \)

KEY: Each \(\text{Inst}^B_{(i,\alpha)} \) can be solved by Gaussian elimination (!), and there are only \(\text{poly}(n) \)-many of them. Hence (using the above Lemma) we can “easily” pre-process \(\text{Inst} \) to enforce the following:

For every prime \(p \), \((i, \alpha) \in VC_p \), \(s \subseteq V_{(i,\alpha)} \) with \(|s| = 2 \), and \(c \in C_s \), there exists \(b \in \text{Sol}(\text{Inst}_{(i,\alpha)}) \) with \(\text{proj}_s(b) = c \).

Call this condition **2-linear consistency**.
APOLOGY: there is one more technical definition.

It takes 3 slides to explain.
Active 3-ary constraints

Again assume \(\text{Inst} \) is a 3-minimal instance of 3-CSP(\(\mathbb{A} \)).

For any \(|s| = 3\) we always have

\[
\mathcal{C}_s \subseteq \left\{ \mathbf{a} \in \mathbb{A}^s : \text{proj}_t(\mathbf{a}) \in \mathcal{C}_t \text{ for all } t \subseteq s \text{ with } |t| = 2 \right\}.
\]

Definition. Call \((s, \mathcal{C}_s)\) passive if \(\mathcal{C}_s = \widehat{\mathcal{C}_s}\), and active if \(\mathcal{C}_s \subsetneq \widehat{\mathcal{C}_s}\).

(Aside: if we start with an instance of 2-CSP(\(\mathbb{A} \)) and enforce 3-minimality, all of the resulting 3-ary constraints will be passive.)
Example – active constraint

Suppose $i \in V$, $\alpha \in \text{Con}(P_i)$, and $\langle 0_{P_i}, \alpha \rangle$ bounds a copy of M_3.

Define $H = \{(h_{ij}(a), h_{ik}(a), h_{i\ell}(a)) : a \in P_i\} \subseteq A^{\{j,k,\ell\}}$.

Let $s = \{j, k, \ell\}$. Then $H \subsetneq \widehat{C_s}$. Hence if $C_s = H$, then (s, C_s) is active.
M₃-induced active constraints

\[
\text{Con}(P_i) =
\]

- Con (Pᵢ)

Definition. Let \(A \) be a finite ternary group and \(\text{Inst} \) a 3-minimal instance of 3-CSP(\(A \)). We say that \(\text{Inst} \) has **M₃-induced active constraints** if for every \(i \in V \), \(\alpha \in \text{Con}(P_i) \), and \(s = \{j, k, \ell\} \subseteq V \) as described on the previous slide, and with \(H = \{(h_{ij}(a), h_{ik}(a), h_{i\ell}(a)) : a \in P_i\} \),

\[
\text{if } \alpha \text{ is elementary } p\text{-abelian for some prime } p, \text{ then } C_s = H.
\]

By adding the constraint \((s, H)\) whenever required, we can easily enforce that \(\text{Inst} \) have **M₃-induced active constraints**.
Pre-processing: Summary

Let A be a finite ternary group. Given an instance of 2-$\text{CSP}(A)$, we can enforce

- 3-minimality
- Congruence completeness.
- 2-linear consistency
- M_3-induced active constraints.

If a contradiction is not found, this “super” pre-processing will produce an equivalent instance of 3-$\text{CSP}(A)$ which:

- is 3-minimal;
- is congruence complete;
- is 2-linearly consistent;
- has M_3-induced active constraints;
- has no other active constraints.
Conjecture (Stará Lesná)

Suppose \(A \) is a finite ternary group and \(\text{Inst} \) is an instance of 3-CSP(\(A \)) which:

- is 3-minimal;
- is congruence complete;
- is 2-linearly consistent;
- has \(M_3 \)-induced active constraints;
- has no other active constraints.

Then \(\text{Inst} \) has a solution.

If true, we will get the following "easy" algorithm for ternary groups \(A \):

Input: an instance of 2-CSP(\(A \))

"Super" pre-process the instance

If a contradiction is found, return "NO"

Return "Yes"
OK, **maybe** this new algorithm will work for ternary groups . . .

. . . but what does this have to do with Taylor algebras??
Generalizing to Taylor algebras

For general algebras, there is a notion of “abelian congruence.”

If A is finite and has a Taylor term, then every block of an abelian congruence “is” a ternary abelian group (in a natural way).

Definition. Let A be a finite algebra with a Taylor term, $\alpha \in \text{Con}(A)$, and p a prime. We say that α is **elementary p-abelian** if α is abelian and every α-block “is” a ternary abelian group of exponent p.

Many facts about finite ternary groups lift to abelian congruences in finite Taylor algebras. For example:

Proposition

Let A be a finite algebra with a Taylor term and α a **minimal** congruence. If α is abelian, then α is elementary p-abelian for some prime p.
Wild speculation

Let A be any finite, idempotent algebra with a Taylor term.

Let $Inst$ be an instance of 2-CSP(A).

Just as for ternary groups, we can “super” pre-process $Inst$ to either find a contradiction or produce an equivalent instance of 3-CSP(A) which:

- is 3-minimal;
- is congruence complete;
- is 2-linearly consistent;
- has M_3-induced active constraints;
- has no other active constraints.

Problem (Stará Lesná)

For which Taylor varieties is it true that every 3-CSP(A) instance satisfying the above conditions has a solution? (Could it be all Taylor varieties??)

Thank you!